

DOMINION ENERGY SOUTH CAROLINA

WILLIAMS STATION NEW FLUE GAS DESULFURIZATION POND

BERKELEY COUNTY, SOUTH CAROLINA

EPA CCR RULE COMPLIANCE

2023 CCR ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT

January 31, 2024

Jason A. Yonts, P.G. Hydrogeologist

Marg th.

Richard A. Mayer Jr., P.0 Project Hydrogeologist

TRC Environmental Corporation | Dominion Energy South Carolina Williams Station New FGD Pond 2023 Annual Groundwater Monitoring and Corrective Action Report

Table of Contents

Exe	cutive S	Summary	۷	iii			
1.	Intro	oduction		1-1			
	1.1	1.1 Site Location					
	1.2	Site Hi	istory	1-1			
	1.3	Key Ac	ctions	1-2			
	1.4	Monit	oring Program Concerns	1-3			
2.	Site	Informat	tion	2-1			
	2.1	Monit	oring Well Network	2-1			
	2.2	Monit	oring Well Installation and Decommissioning Activities	2-2			
	2.3	Groun	dwater Potentiometric Surface Evaluation	2-2			
		2.3.1	First Semiannual 2023 Detection Monitoring Program	2-3			
		2.3.2	Second Semiannual 2023 Detection Monitoring Program	2-3			
3.	Field	Activitie	es				
	3.1	Compl	liance Monitoring Program Sampling Activities	3-1			
4.	Labo	oratory A	analytical Results	4-1			
	4.1	First S	emiannual 2023 Detection Monitoring Program Event	4-1			
	4.2	Secon	d Semiannual 2023 Detection Monitoring Program Event	4-1			
5.	Data	Quality	Validation	5-1			
	5.1	First S					
	5.2	Second Semiannual 2023 Compliance Event Findings					
6.	Stati	stical Ev	aluation of Groundwater Data	6-1			
	6.1	Site-Sp	pecific Background Evaluations	6-1			
		6.1.1	First Semiannual 2023 Compliance Event	6-1			
		6.1.2	Second Semiannual 2023 Compliance Event	6-1			
7.	Cond	clusions.		7-1			
	7.1	Findin	gs				
	7.2	Planne	ed Activities	7-1			

8.	References	. 8-1
9.	Signature Page	.9-1

List of Tables

Table 1	Summary of Historical CCR Static Water Level Data
Table 2	Summary of First Semiannual 2023 Detection Monitoring Program Sampling Event Data
Table 3	Summary of Second Semiannual 2023 Detection Monitoring Program Sampling Event
	Data

List of Figures

Figure 1	Site Location Map
Figure 2	CCR Rule Compliance Monitoring Well Network – March 2023
Figure 3	CCR Rule Compliance Monitoring Well Network – October 2023
Figure 4	Groundwater Potentiometric Surface Map – March 20, 2023
Figure 5	Groundwater Potentiometric Surface Map – October 3, 2023

List of Appendices

Appendix A	September 2022 Alternate Source Demonstration
Appendix B	March 2023 Alternate Source Demonstration
Appendix C	First Semiannual Detection Monitoring Program Event Field Data Sheets, Laboratory Reports, and Data Validation Forms
Appendix D	Second Semiannual Detection Monitoring Program Event Field Data Sheets, Laboratory Reports, and Data Validation Forms
Appendix E	First Semiannual Detection Monitoring Program Statistical Evaluation
Appendix F	Second Semiannual Detection Monitoring Program Statistical Evaluation

Dominion Energy South Carolina (DESC) operates a New Flue Gas Desulfurization (FGD) Wastewater Pond (New FGD Pond) (Unit) for the management of coal combustion residuals (CCR) at the Williams Generating Station (Station) located in Goose Creek, Berkeley County, South Carolina. The Unit receives CCR generated from an air quality control system that produces FGD wastewater blowdown waste stream. Management of the CCR at the Unit is performed pursuant to national criteria established in Title 40 of the Code of Federal Regulations (40 CFR), Part 257 (CCR Rule), effective April 19, 2015, and subsequent revisions to the CCR Rule. Pursuant to the CCR Rule, the Station operator is required to complete an *Annual Groundwater Monitoring and Corrective Action Report* for the Unit by January 31st, annually.

This report documents the status of the CCR groundwater monitoring program for the Unit, summarizes key actions completed, describes issues encountered, actions taken to resolve identified concerns, and planned key activities for the upcoming year.

In accordance with 40 CFR Part 257.90(e)(6), the following information is being provided as an overview of the current status of groundwater monitoring and corrective action for the Unit:

- i. At the start of the current annual reporting period, indicate whether the CCR unit was operating under the detection monitoring program in §257.94 or the assessment monitoring program in §257.95.
 - At the start of 2023, the Unit was operating under the detection monitoring program in accordance with §257.94.
- ii. At the end of the current annual reporting period, indicate whether the CCR unit was operating under the detection monitoring program in §257.94 or the assessment monitoring program in §257.95.
 - At the end of 2023, the Unit was operating under the detection monitoring program in accordance with §257.94.
- *iii.* If it was determined that there was a statistically significant increase over background for one or more constituents listed in Appendix III to this part pursuant to §257.94(e).
 - a. Identify those constituents listed in Appendix III to this part and the names of the monitoring wells associated with such an increase.
 - In 2023, there were SSIs over background for the following Appendix III constituents at the following wells:
 - Boron MW-FGD-17, MW-FGD-18, MW-FGD-19D, and MW-FGD-20AR

- Calcium MW-FGD-17, MW-FGD-18, MW-FGD-19D, and MW-FGD-20AR
- Chloride MW-FGD-17, MW-FGD-18, MW-FGD-19D, and MW-FGD-20AR
- pH MW-FGD-17, MW-FGD-18, MW-FGD-19D, and MW-FGD-20AR
- _ Sulfate MW-FGD-20AR
- Total Dissolved Solids (TDS) MW-FGD-17, MW-FGD-18, MW-FGD-19D, and MW-FGD-20AR
- b. Provide the date when the assessment program was initiated for the CCR unit.
 - The Unit is in the detection monitoring program and has not initiated assessment monitoring to date.
- iv. If it was determined that there was a statistically significant level above the groundwater protection standard for one or more constituents listed in Appendix IV to this part pursuant to §257.95(g).
 - a. Identify those constituents listed in Appendix IV to this part and the names of the monitoring wells associated with such an increase.
 - The Unit is in the detection monitoring program and Appendix IV constituents were not evaluated in 2023.
 - b. Provide the date when the assessment of corrective measures was initiated for the CCR unit.
 - The Unit has not entered the assessment monitoring program and therefore not applicable.
 - c. Provide the date when the public meeting was held for the assessment of corrective measures for the CCR unit.
 - The Unit has not entered the assessment monitoring program and therefore not applicable.
 - d. Provide the date when the assessment of corrective measures was completed for the CCR unit.
 - The Unit has not entered the assessment monitoring program and therefore not applicable.

- v. Whether a remedy was selected pursuant to §257.97 during the current annual reporting period, and if so, the date of the remedy selection.
 - The Unit has not entered the assessment monitoring program and therefore not applicable.
- vi. Whether remedial activities were initiated or are ongoing pursuant to §257.98 during the current annual reporting period.
 - Remedial activities were not initiated or are not ongoing during this current annual reporting period.

Section 1 Introduction

This 2023 CCR Annual Groundwater Monitoring and Corrective Action Report (Report) was prepared by TRC Environmental Corporation (TRC) on behalf of Dominion Energy South Carolina (DESC) for the New Flue Gas Desulfurization (FGD) Wastewater Pond (New FGD Pond) (Unit) at the Williams Generating Station (Station) located in Goose Creek, Berkeley County, South Carolina. The original FGD Pond was closed in April 2021 by removal of CCR in accordance with §257.102(c) and the Closure Plan – Amendment 1 (Closure Plan), dated February 2021. The removed CCR was transported offsite for disposal at the Williams Station Highway 52 Class III Landfill. A Closure by Removal Certificate was prepared by Civil & Environmental Consultants, Inc., and dated May 2021 (CEC 2021).

A new FGD Pond was installed within the boundaries of the original FGD Pond which opened in April 2021 in accordance with the CCR Rule requirements. The Unit is managed as a new CCR unit and in accordance with the national criteria established by the CCR Rule. DESC installed a groundwater monitoring system at the Unit that is subject to the groundwater monitoring and corrective action requirements provided under 40 CFR §257.90 through §257.98. In accordance with 40 CFR §257.90(e), DESC must prepare an annual report by January 31st that provides information regarding the groundwater monitoring and corrective action program at the Unit. This Report provides the monitoring and corrective action data and data evaluations for the semiannual CCR monitoring compliance events performed in March and October 2023.

1.1 Site Location

The Station is operated by DESC and is located at 2242 Bushy Park Road in Berkeley County, South Carolina (**Figure 1**). The Station is located approximately 6 miles northeast of Goose Creek, South Carolina. The Unit is located onsite approximately 2,000 feet north of the generating plant.

1.2 Site History

The Williams Generating Station is an active coal-fired power station that began operations in 1973 and operates a single 633-megawatt unit. The Station operates a series of low volume waste treatment ponds in addition to the New FGD Pond of which only the New FGD Pond is designated as a CCR Rule Surface Impoundment. This report addresses the groundwater monitoring activities for the Unit only.

1.3 Key Actions

Key actions for the Unit are as follows:

- Initiated the Detection Monitoring Program (DMP) on April 28, 2021, with the collection of eight (8) baseline/background samples and completed the background monitoring activities on September 23, 2021, pursuant to 40 CFR §257.94(b).
- Conducted the initial DMP compliance sampling event on March 22-23, 2022, and completed the sample analyses on April 4, 2022, pursuant to 40 CFR §257.94(b).
- Placed a copy of the Units Groundwater Monitoring Plan (GMP) documenting the design information for the monitoring wells pursuant to 40 CFR §257.91(e)(1) in the Station's operating record on May 7, 2021, pursuant to 40 CFR §257.105(h)(2).
- Certified the groundwater monitoring system pursuant to 40 CFR §257.91(f) and posted the Certification in the Station's operating record on May 7, 2021, pursuant to 40 CFR §257.105(h)(3).
- Certified the selection of a statistical method pursuant to 40 CFR §257.93(f)(6) and posted the Certification in the Station's operating record on May 7, 2021, pursuant to 40 CFR §257.105(h)(4).
- On April 3, 2023, an Alternate Source Demonstration (ASD) was placed in Station's the operating record per 40 CFR §257.94€(2) in response to potential Statistically Significant Increases (SSIs) identified during the statistical evaluation of the data generated from the second semiannual (September 2022) detection monitoring event. The ASD was certified by a South Carolina-registered professional engineer. As required by 40 CFR §257.94(e)(2), a copy of the ASD is included in Appendix A. Based on the successful evaluation and the results presented in the ASD, DESC continued with detection monitoring in accordance with 40 CFR §257.94.
- In January 2023, DESC installed three new groundwater monitoring wells (MW-FGD-22, MW-FGD-23, and MW-FGD-24) along the western and southern edge of the Unit as part of an evaluation of the United States Environmental Protection Agency (EPA) CCR Compliance Monitoring Well Network performed by TRC in August 2022. The newly installed groundwater monitoring wells were sampled monthly from January 2023 through August 2023, to collect eight rounds of background monitoring data. The groundwater monitoring system was revised and certified pursuant to 40 CFR §257.91(f). The certification was posted in the Station's operating record on September 29, 2023, pursuant to 40 CFR §257.105 (h)(3).
- Conducted the first semiannual 2023 detection monitoring between March 20-21, 2023, and completed the sample analyses on April 3, 2023, pursuant to the CCR Rule [§257.94(b)].
- On September 29, 2023, a successful ASD was placed in the Station's operating record per 40 CFR §257.94(e)(2) for the potential SSIs identified during the first semiannual 2023 detection monitoring event. The ASD was certified by a South Carolina-registered professional engineer. As required by

40 CFR §257.94(e)(2), a copy of the ASD is included in this Report and provided in **Appendix B**. DESC continued with detection monitoring in accordance with 40 CFR §257.94.

- Conducted the second semiannual 2023 detection monitoring on October 3, 2023, in accordance with the revised groundwater monitoring system, and completed the sample analyses on October 18, 2023, pursuant to the CCR Rule [§257.94(b)].
- Completed a baseline statistical evaluation in November 2023 to meet the requirements of 40 CFR 257.91 for the revised CCR Compliance Monitoring Well Network.
- The Unit remained in detection monitoring for the duration of 2023.

1.4 Monitoring Program Concerns

There were no monitoring program concerns identified during 2023.

2.1 Monitoring Well Network

The Unit utilizes groundwater monitoring wells that were previously installed at the Station for the original FGD Pond. This includes monitoring wells MW-FGD-16, MW-FGD-17, MW-FGD-18, MW-FGD-19D, MW-FGD-20AR, and MW-FGD-21.

From August 2022 through August 2023, TRC performed a network evaluation to assess the current CCR monitoring well network for the Unit. As part of this evaluation, three new monitoring wells (MW-FGD-22, MW-FGD-23, and MW-FGD-24) were installed in January 2023 and were used to assist with groundwater flow of the Unit while the network evaluation was being performed. Based on this evaluation, the following revisions were made to refine the CCR monitoring well network:

- MW-FGD-19 was abandoned and removed from the CCR monitoring well network. The monitoring well was determined to be screened in clay fill material.
- New monitoring well MW-FGD-22 was installed along the southern edge of the Unit boundary as previously no coverage existed in this area. MW-FGD-22 was determined to not be upgradient of the Unit and was selected for the purpose of measuring water levels only.
- New monitoring wells MW-FGD-23 and MW-FGD-24 were installed along the western edge of the Unit boundary as previously no coverage existed in this area. MW-FGD-23 and MW-FGD-24 were incorporated into the CCR monitoring well network.

Pursuant to 40 CFR §257.91, these new monitoring wells were sampled monthly from January 2023 through August 2023. Sampling of monitoring well MW-FGD-22 stopped in June 2023 as it was determined to not be downgradient of the CCR Unit.

Given that the CCR monitoring well network evaluation was ongoing during the first 2023 semiannual sampling event, the Compliance Monitoring Well Network for the first 2023 semiannual sampling event consisted of the following monitoring wells:

- Background monitoring wells MW-FGD-16 and MW-FGD-21.
- Downgradient monitoring wells MW-FGD-17, MW-FGD-18, MW-FGD-19D, and MW-FGD-20AR.

The location of the CCR Rule Compliance Monitoring Well Network for the March 2023 semiannual sampling event is presented on **Figure 2**.

The monitoring well network was formally updated and certified in September 2023 (TRC, 2023b) to ensure the groundwater monitoring well network met the requirements of 40 CFR 257.91. The Compliance Monitoring Well Network for the second 2023 semiannual sampling event consisted of the following monitoring wells:

- Background monitoring wells MW-FGD-23 and MW-FGD-24.
- Downgradient monitoring wells MW-FGD-18, MW-FGD-19D, and MW-FGD-20AR.

The location of the CCR Rule Compliance Monitoring Well Network for the October 2023 semiannual sampling event is presented on **Figure 3**.

2.2 Monitoring Well Installation and Decommissioning Activities

DESC installed three new monitoring wells (MW-FGD-22, MW-FGD-23, and MW-FGD-24) in January 2023. Monitoring wells MW-FGD-23, and MW-FGD-24 were incorporated into the certified groundwater monitoring system. DESC decommissioned MW-FGD-19 in the certified groundwater monitoring system in January 2023.

2.3 Groundwater Potentiometric Surface Evaluation

Current and historical static water level data for the Station are summarized in **Table 1**. Per requirements of 40 CFR 257.93(c), the rate and direction of groundwater flow within the uppermost aquifer beneath the Unit must be determined after each sampling event. Groundwater potentiometric surface maps were prepared using water level data obtained from both semiannual sampling events conducted in March and October 2023. Using the groundwater contours from March (**Figure 4**) and October (**Figure 5**), the average horizontal hydraulic gradient was calculated using the following equation:

 $i = (h^1 - h^2)/S$

Where:

$$\begin{split} i &= \text{horizontal hydraulic gradient (unitless)} \\ h^1 &= \text{water elevation in well 1 (feet)} \\ h^2 &= \text{water elevation in well 2 (feet)} \\ S &= \text{horizontal distance between well 1 and well 2 (feet)} \end{split}$$

The groundwater seepage velocity was calculated using the following formula:

 $Vs = ki/n_e$

Where:

Vs = Groundwater seepage velocity (feet/day) k = hydraulic conductivity (feet/day) *i* = horizontal hydraulic gradient (unitless) n_e = effective porosity (percent)

TRC Environmental Corporation | Dominion Energy South Carolina Williams Station New FGD Pond 2023 Annual Groundwater Monitoring and Corrective Action Report

The result for each semiannual event is presented separately in Sections 2.3.1 and 2.3.2. As presented, the estimated groundwater seepage velocity in the uppermost aquifer beneath the Unit is between 64 to 66 ft/year. Furthermore, the overall interpreted data indicates that the groundwater flow direction remain consistent with previous calculations for the Unit. The groundwater flow velocities calculated in 2023 were higher than previous years due to additional information obtained from the new monitoring wells (MW-FGD-22, MW-FGD-23, and MW-FGD-24) and the removal of MW-FGD-19. The groundwater monitoring network continues to monitor the uppermost aquifer in accordance with the CCR Rule.

First Semiannual 2023 Detection Monitoring Program 2.3.1

The groundwater potentiometric surface map for March 20, 2023 is presented in Figure 4. Using an estimated effective porosity value of 18% and estimated average hydraulic conductivity value of 7.05 ft/day, the average rate of groundwater flow for the uppermost aquifer beneath the Unit was calculated to be 66.16 ft/year.

Well 1	Well 2	h¹ (ft)	h² (ft)	S (ft)	i	K (ft/day)	n _e	Vs (ft/day)	Vs (ft/yr.)
MW-FGD-24	MW-FGD-19D	4.46	3.51	385	0.0025			0.0966	35.28
MW-FGD-17	MW-FGD-18	4.53	2.99	165	0.0093			0.3656	133.43
MW-FGD-22	MW-FGD-20AR	4.49	3.24	215	0.0058	7.05	0.18	0.2277	83.12
MW-FGD-23	MW-FGD-19D	4.54	3.51	410	0.0025			0.0984	35.92
MW-FGD-24	MW-FGD-20AR	4.46	3.24	405	0.0030			0.1180	43.07
Hydraulic conductivity and effective porosity values from February 2021: Analysis of									

Groundwater Flow Rate and Direction - FGD Pond Wells (Nautilus 2021). Results from the March 2023 slug test conducted by TRC are also included in the hydraulic conductivity estimate (TRC 2023a).

Average 0.1813 66.16

Second Semiannual 2023 Detection Monitoring Program 2.3.2

The groundwater potentiometric surface map for October 3, 2023 is presented in Figure 5. Using an estimated effective porosity value of 18% and estimated average hydraulic conductivity value of 7.05 ft/day, the average rate of groundwater flow for the uppermost aquifer beneath the Unit was calculated to be 63.57 ft/year.

Well 1	Well 2	h ¹ (ft)	h² (ft)	S (ft)	i	K (ft/day)	n _e	Vs (ft/day)	Vs (ft/yr.)
MW-FGD-24	MW-FGD-19D	4.53	3.53	385	0.0026			0.1017	37.13
MW-FGD-17	MW-FGD-18	4.42	2.99	165	0.0087			0.3395	123.90
MW-FGD-22	MW-FGD-20AR	4.49	3.33	215	0.0054	7.05	0.18	0.2113	77.13
MW-FGD-23	MW-FGD-19D	4.60	3.53	410	0.0026			0.1022	37.31
MW-FGD-24	MW-FGD-20AR	4.53	3.33	405	0.0030			0.1161	42.36
Hydraulic conductivity and effective porosity values from February 2021: Analysis of Groundwater Flow Rate and Direction – FGD Pond Wells (Nautilus 2021). Results from the						Avera	ae	0.1742	63.57

March 2023 slug test conducted by TRC are also included in the hydraulic conductivity estimate (TRC 2023a).

TRC Environmental Corporation | Dominion Energy South Carolina Williams Station New FGD Pond

2023 Annual Groundwater Monitoring and Corrective Action Report \\EMPLOYEES.ROOT.LOCAL\ENV\ECC\GREENVILLE\WPGVL\PJT2\416559\0006 WILLIAMS\R4165590006-036 WILLIAMS FGD POND 2023 CCR DETECTION ANNUAL REPORT.DOCX CCR-related groundwater sampling activities that occurred during 2023 are summarized in the following sections.

3.1 Compliance Monitoring Program Sampling Activities

As per 40 CFR §257.94(c), two semiannual DMP sampling events were completed for the constituents and parameters listed in Appendix III of the CCR Rule. Summaries of the 2023 DMP sampling events are presented below.

2023 Monitoring Event	Sample Dates	Final Laboratory Package Receipt Date		
First Semiannual Detection Monitoring Program Event	March 20 - 21, 2023	April 4, 2023		
Second Semiannual Detection Monitoring Program Event	October 3, 2023	October 18, 2023		

During each of the DMP sampling events, the compliance monitoring wells were sampled in accordance with the Station's Groundwater Monitoring Plan (GMP).

Samples collected during the semiannual sampling events were submitted to GEL Laboratories (GEL) in Charleston, South Carolina under proper chain-of-custody procedures. GEL is a SC DHEC Environmental Laboratory Certification Program (ELCP) accredited laboratory for analysis of CCR Rule constituents (GEL certification #10120001).

Laboratory analytical results from the DMP sampling events conducted in 2023 are summarized in the following sections.

4.1 First Semiannual 2023 Detection Monitoring Program Event

The groundwater samples collected during the first semiannual DMP event were analyzed by GEL for the constituents and parameters listed in Appendix III of the CCR Rule. The laboratory certificates of analysis, chain-of-custody forms, and field notes for the sampling event are presented in **Appendix C**. A summary of the CCR sampling data for the Unit is included in **Table 2**.

4.2 Second Semiannual 2023 Detection Monitoring Program Event

The groundwater samples collected during the second semiannual DMP event were analyzed by GEL for the constituents and parameters listed in Appendix III of the CCR Rule. The laboratory certificates of analysis, chain-of-custody forms, and field notes for the sampling event are presented in **Appendix D**. A summary of the CCR sampling data for the Unit is included in **Table 3**.

Third-party data validation services were provided by Environmental Standards, Inc. for the DMP sampling events. The reviews were performed with guidance from the US EPA data validation guidelines. A discussion of the findings is presented below.

5.1 First Semiannual 2023 Compliance Event Findings

The following field quality assurance (QA) and quality control (QC) samples for this event included:

- One blind duplicate sample was collected from MW-FGD-17 on March 20, 2023.
- Additional sample volume was collected at MW-FGD-17 on March 20, 2023, to allow for the laboratory to conduct a matrix spike (MS) and matrix spike duplicate (MSD) quality control check.
- A field blank was collected at MW-FGD-19D on March 20, 2023, and MW-FGD-16 on March 21, 2023, using laboratory provided deionized water. The field blank was used to assess for potential contaminants from field conditions during sampling activities.

These QA/QC samples were analyzed for the same constituents as the groundwater samples. Based on review of the laboratory-provided QC data and Environmental Standards recommendations, the data for this sampling event were determined to meet the data quality objectives for the project with the provided data qualifiers. A copy of the data validation report is included in **Appendix C**.

5.2 Second Semiannual 2023 Compliance Event Findings

The following field QA/QC samples for this event included:

- One blind duplicate sample was collected from the MW-FGD-24 location on October 3, 2023.
- Additional sample volume was collected at MW-FGD-20AR on October 3, 2023, to allow for the laboratory to conduct a MS/MSD quality control check.
- A field blank was collected near MW-FGD-18 on October 3, 2023, using laboratory provided deionized water. The field blank was used to assess for potential contaminants from field conditions during sampling activities.

These QA/QC samples were analyzed for the same constituents as the groundwater samples. Based on review of the laboratory-provided QC data and Environmental Standards recommendations, the data for this sampling event were determined to meet the data quality objectives for the project with the provided data qualifiers. A copy of the data validation report is included in **Appendix D**.

Section 6 Statistical Evaluation of Groundwater Data

Statistical evaluation of the semiannual DMP data was performed in accordance with the statistical method certified by a qualified South Carolina-registered professional engineer. The certified statistical method has been posted to the Unit's operating record. Statistical evaluations completed in 2023 are summarized in the following sections.

6.1 Site-Specific Background Evaluations

Compliance data from each semiannual event was evaluated against site-specific background values as follows.

6.1.1 First Semiannual 2023 Compliance Event

Pursuant to 40 CFR §257.94, TRC evaluated Appendix III constituent detections against sitespecific background values that were established for the DMP (**Appendix E**). Based on that evaluation, the following Appendix III SSIs were identified for the first semiannual 2023 event (**Table 2**):

- Boron (MW-FGD-17, MW-FGD-18, MW-FGD-19D, and MW-FGD-20AR)
- Calcium (MW-FGD-17, MW-FGD-18, MW-FGD-19D, and MW-FGD-20AR)
- Chloride (MW-FGD-17, MW-FGD-18, MW-FGD-19D, and MW-FGD-20AR)
- pH (MW-FGD-17, MW-FGD-18, MW-FGD-19D, and MW-FGD-20AR)
- Sulfate (MW-FGD-20AR)
- TDS (MW-FGD-17, MW-FGD-18, MW-FGD-19D, and MW-FGD-20AR)

An ASD and certification were prepared for these SSIs and is attached as Appendix B.

6.1.2 Second Semiannual 2023 Compliance Event

Pursuant to 40 CFR §257.94, TRC evaluated Appendix III constituent detections against site-specific background values that were established for the DMP (**Appendix F**). The specific background values were updated for the new certified network established in September 2023. Based on that evaluation, no SSIs were identified for the second semiannual 2023 event (**Table 3**).

7.1 Findings

The first semiannual 2023 DMP compliance sampling event was conducted on March 20-21, 2023, with sample analyses completed on April 4, 2023. The second semiannual 2023 DMP compliance sampling event was conducted on October 3, 2023, with sample analyses completed on October 18, 2023. These groundwater sampling and analysis activities were performed in accordance with the requirements of the Unit's GMP for the CCR Rule network.

Evaluation of the monitoring results from the first semiannual 2023 event identified exceedances above the background value for boron, calcium, chloride, pH, sulfate, and TDS. DESC completed a successful ASD for the potential SSI identified during the first semiannual 2023 detection monitoring event. The ASD was certified by a South Carolina-registered professional engineer and presented in this Report (**Appendix B**). Monitoring results from the second semiannual 2023 event identified no exceedances above the background values.

7.2 Planned Activities

Based on the results from the 2023 monitoring activities, DESC intends to continue with semiannual detection groundwater monitoring activities in 2024 that are consistent with the provisions in the CCR Rule [Part 257.94].

- Civil & Environmental Consultants, Inc. (CEC) 2021. Closure By Removal Certification, Williams Station FGD Pond, Goose Creek, South Carolina: May 2021.
- Environmental Protection Agency (EPA). 2015. Federal Register. Volume 80. No. 74. Friday April 17, 2015. Part II. Environmental Protection Agency. *40 CFR Parts 257and 261. Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule.* [EPA-HQ-RCRA–2009–0640; FRL–9919–44–OSWER]. RIN–2050–AE81.
- EPA. 2016. Federal Register. Volume 81. No. 151. Friday August 5, 2016. Part II. Environmental Protection Agency. 40 CFR Parts 257 and 261. Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule. [EPA-HQ-OLAM-2016-0274; FRL-9949-44-OLEM].
- Garrett and Moore 2017. Groundwater Monitoring System Certification, Williams Station FGD Pond, Berkeley County, South Carolina: Garrett & Moore, Inc.
- Nautilus 2016. Groundwater Sampling and Analysis Plan, Williams Station FGD Pond. Berkeley County, South Carolina: Nautilus Geologic Consulting, PLLC.
- Nautilus 2021. Analysis of Groundwater Flow Rate and Direction: September 2020 Monitoring Data, Cope Station: Class III Landfill, Wateree Station: Class III Landfill, FGD Pond, Ash Pond, Williams Station: FGD Pond, Highway 52 Class III Landfill: Nautilus Geologic Consulting, PLLC. February 2021.
- TRC 2022. Evaluation of CCR Well Network Technical Memorandum, Williams Station New FGD Pond, Berkely County, South Carolina: TRC Environmental Corporation
- TRC 2023a. Groundwater Monitoring Well Installation Report, Williams Station New FGD Pond, Berkely County, South Carolina: TRC Environmental Corporation
- TRC 2023b. Groundwater Monitoring System Certification, Williams Station New FGD Pond, Berkely County, South Carolina: TRC Environmental Corporation
- TRC 2023c. Baseline Statistical Evaluation Report, Williams Station New FGD Pond, Berkely County, South Carolina: TRC Environmental Corporation

Section 9 Signature Page

This 2023 CCR Annual Groundwater Monitoring and Corrective Action Report (Report) has been prepared by a qualified groundwater scientist on behalf of Dominion Energy South Carolina (DESC) for the Williams Generating Station New FGD Pond. This Report satisfied the reporting requirements specified in Title 40 CFR §257.90(e) *et seq*. [Disposal of Coal Combustion Residuals (CCR) from Electric Utilities (CCR Rule; Federal Register Vol. 80, No. 74, 21302-21501 on April 17, 2015, as amended)].

Name: Richard A. Mayer Jr., P.G.

Company: TRC Environmental Corporation

Expiration Date: June 30, 2025

Date: January 31, 2024

(SEAL)

TRC Environmental Corporation | Dominion Energy South Carolina Williams Station New FGD Pond

2023 Annual Groundwater Monitoring and Corrective Action Report

ITEMPLOREES.ROOT.LOCALTENVEECCORREENVELEEWPGVLPHT2141655910006 WILLIAMSTR4165590006-036 WILLIAMS FGD POND 2023 CCR DETECTION ANNUAL REPORT.DOCK

Table 1							
	Summary of Historical CCR Static Water Level Data						
Dominion Energy South Carolina - Williams Station New FGD Pond							
Goose Creek, Berkeley County, South Carolina							
Monitoring Well ID	Top of Casing Elevation (ft. AMSL)	Date	Depth to Water (feet)	Static Water Level Elevation (ft. AMSL)			
		4/28/2021	9.11	3.59			
		5/18/2021	9.21	3.49			
		6/9/2021	8.53	4.17			
		6/30/2021	8.65	4.05			
		7/21/2021	8.40	4.30			
		8/10/2021	8.43	4.27			
		9/2/2021	7.03	5.67			
		9/23/2021	7.61	5.09			
MW-FGD-16	12.70	3/21/2022	9.11	3.59			
		9/19/2022	8.37	4.33			
		3/20/2023	8.67	4.03			
		4/13/2023	8.40	4.30			
		5/18/2023	8.62	4.08			
		6/15/2023	8.64	4.06			
		//20/2023	7.92	4.78			
		8/21/2023	8.20	4.50			
		10/3/2023	8.04	4.06			
		1/20/2021	7 56	1.42			
		4/20/2021 5/19/2021	7.50	4.42			
		6/0/2021	7.01	4.57			
		6/20/2021	7.44	4.54			
		7/21/2021	7.40	4.56			
		9/10/2021	7.45	4.55			
		0/2/2021	7.22	4.70			
		9/2/2021	7.55	4.45			
MW-FGD-17	11 98	3/23/2021	7.05	4.33			
WWW I GD 17	11.50	0/10/2022	7.77	4.21			
		3/20/2022	7.55	4.45			
		4/13/2023	7.43	4.55			
		5/18/2023	7.53	4.57			
		6/15/2023	7.55	4 33			
		7/20/2023	7.39	4 59			
		8/21/2023	7.30	4.68			
		10/3/2023	7.56	4.42			
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
		4/28/2021	9.48	2.16			
		5/18/2021	8.31	3.33			
		6/9/2021	9.41	2.23			
		6/30/2021	7.75	3.89			
		7/21/2021	9.64	2.00			
		8/10/2021	8.95	2.69			
		9/2/2021	8.23	3.41			
		9/23/2021	7.90	3.74			
MW-FGD-18	11.64	3/21/2022	9.30	2.34			
		9/19/2022	8.51	3.13			
		3/20/2023	8.65	2.99			
		4/13/2023	8.31	3.33			
		5/18/2023	9.03	2.61			
		6/15/2023	8.41	3.23			
		7/20/2023	9.36	2.28			
		8/21/2023	9.75	1.89			
		10/3/2023	8.65	2.99			

Notes:

Table 1						
	Summary of His	torical CCR Static	Water Level Data			
Dominion Energy South Carolina - Williams Station New FGD Pond						
	Goose Creek,	Berkeley County,	South Carolina			
	Top of Casing	.	Depth to Water	Static Water Level		
Monitoring Well ID	Elevation	Date	(feet)	Elevation		
	(IT. AIVISL)	1/20/2024	0.47	(π. AlvisL)		
		4/28/2021	9.17	3.32		
		5/18/2021	9.54	2.95		
		6/9/2021	9.89	2.60		
		6/30/2021	10.39	2.10		
	12.40	//21/2021	11.69	0.80		
WW-FGD-19	12.49	8/10/2021	11.62	0.87		
		9/2/2021	12.19	0.30		
		9/23/2021	11.73	0.76		
		3/21/2022	10.70	1.79		
		9/19/2022	8.3/	4.12		
			Abandoned 1/5/2023	5		
		4/20/2024	0.00	2.74		
		4/28/2021	8.82	3.74		
		5/18/2021	9.31	3.25		
		6/9/2021	9.01	3.55		
		6/30/2021	9.10	3.46		
		7/21/2021	9.12	3.44		
		8/10/2021	8.95	3.61		
		9/2/2021	8.92	3.64		
	12.56	9/23/2021	8.45	4.11		
MW-FGD-19D		3/21/2022	9.11	3.45		
		9/19/2022	9.10	3.46		
		3/20/2023	9.05	3.51		
		4/13/2023	9.28	3.28		
		5/18/2023	8.90	3.66		
		6/15/2023	9.05	3.51		
		7/20/2023	9.11	3.45		
		8/21/2023	8.80	3.76		
		10/3/2023	9.03	3.53		
-		T	1	T		
		4/28/2021	5.75	3.64		
		5/18/2021	6.21	3.18		
		6/9/2021	6.12	3.27		
		6/30/2021	6.10	3.29		
		7/21/2021	6.15	3.24		
		8/10/2021	5.87	3.52		
		9/2/2021	6.19	3.20		
		9/23/2021	5.78	3.61		
MW-FGD-20AR	9.39	3/21/2022	6.09	3.30		
		9/19/2022	6.07	3.32		
		3/20/2023	6.15	3.24		
		4/13/2023	6.12	3.27		
		5/18/2023	5.78	3.61		
		6/15/2023	6.05	3.34		
		7/20/2023	6.00	3.39		
		8/21/2023	5.85	3.54		
		10/3/2023	6.06	3.33		

Table 1							
Summary of Historical CCR Static Water Level Data							
Dominion Energy South Carolina - Williams Station New FGD Pond							
Goose Creek, Berkeley County, South Carolina							
	Top of Casing	· · · / · · · /		Static Water Level			
Monitoring Well ID	Elevation	Date	Depth to Water	Elevation			
wontoning wentb	(ft AMSI)	Date	(feet)	(ft AMSI)			
		4/28/2021	10.75	3.05			
		5/18/2021	10.75	3.05			
		6/9/2021	9.44	4.36			
		6/30/2021	9.66	4.14			
		7/21/2021	9.41	4.39			
		8/10/2021	9.62	4.18			
		9/2/2021	9.82	3.98			
		9/23/2021	8.46	5.34			
MW-FGD-21	13.80	3/21/2022	10.07	3.73			
_		9/19/2022	9.39	4.41			
		3/20/2023	9.49	4.31			
		4/13/2023	9.24	4.56			
		5/18/2023	9.50	4.30			
		6/15/2023	9.62	4.18			
		7/20/2023	8.76	5.04			
		8/21/2023	9.10	4.70			
		10/3/2023	9.66	4.14			
		, , , , , , , , , , , , , , , , , , ,		1			
		1/17/2023	7.93	4.35			
		2/15/2023	7.46	4.82			
		3/20/2023	7.79	4.49			
		4/13/2023	7.66	4.62			
MW-FGD-22	12.28	5/18/2023	7.78	4.50			
		6/15/2023	7.75	4.53			
		7/20/2023	7.47	4.81			
		8/21/2023	7.56	4.72			
		10/3/2023	7.79	4.49			
			•				
		1/17/2023	8.21	4.38			
		2/15/2023	7.65	4.94			
		3/20/2023	8.05	4.54			
		4/13/2023	8.97	3.62			
MW-FGD-23	12.59	5/18/2023	8.01	4.58			
		6/15/2023	7.99	4.60			
		7/20/2023	7.77	4.82			
		8/21/2023	7.94	4.65			
		10/3/2023	7.99	4.60			
			1				
		1/17/2023	8.29	4.36			
		2/15/2023	7.91	4.74			
		3/20/2023	8.19	4.46			
		4/13/2023	8.04	4.61			
MW-FGD-24	12.65	5/18/2023	8.12	4.53			
		6/15/2023	8.09	4.56			
		7/20/2023	7.95	4.70			
		8/21/2023	7.90	4.75			
		10/3/2023	8.12	4.53			

Notes:

		Table 1					
	Summary of Historical CCR Static Water Level Data						
Domi	Dominion Energy South Carolina - Williams Station New FGD Pond						
	Goose Creek, Berkeley County, South Carolina						
	Top of Casing		[Static Water Level			
Monitoring Well ID	Flevation	Date	Depth to Water	Flevation			
	(ft. AMSL)	Dute	(feet)	(ft. AMSL)			
	(5/18/2021	10.84	3.13			
		6/9/2021	10.60	3.37			
		6/30/2021	10.60	3.37			
		7/21/2021	10.60	3.37			
		8/10/2021	10.13	3.84			
		9/2/2021	10.67	3.30			
		9/23/2021	10.29	3.68			
GW/ 01P	12.07	3/21/2022	10.61	3.36			
GW-OIK	13.97	9/19/2022	10.52	3.45			
		3/20/2023	10.65	3.32			
		4/13/2023	10.56	3.41			
		5/18/2023	10.26	3.71			
		6/15/2023	10.45	3.52			
		7/20/2023	10.50	3.47			
		8/21/2023	10.20	3.77			
		10/3/2023	10.60	3.37			
		5/18/2021	11.50	3.21			
		6/9/2021	11.31	3.40			
		6/30/2021	11.28	3.43			
		//21/2021	11.34	3.37			
		8/10/2021	10.82	3.89			
		9/2/2021	11.34	3.37			
		9/23/2021	11.38	3.33 2.4E			
GW-02R	14.71	0/10/2022	11.20	3.45			
		3/19/2022	11.23	3.40			
		3/20/2023 //13/2023	11.35	3.38			
		5/18/2023	11.20	3.45			
		6/15/2023	11.02	3.56			
		7/20/2023	11.25	3.46			
		8/21/2023	10.93	3.78			
		10/3/2023	11.30	3.41			
		,-,=					
		5/18/2021	10.58	4.00			
		6/9/2021	10.21	4.37			
		6/30/2021	10.27	4.31			
		7/21/2021	10.15	4.43			
		8/10/2021	10.04	4.54			
		9/2/2021	10.35	4.23			
		9/23/2021	10.41	4.17			
GW-04A	14 58	3/21/2022	10.69	3.89			
JW-0+A	17.30	9/19/2022	10.11	4.47			
		3/20/2023	10.39	4.19			
		4/13/2023	10.16	4.42			
		5/18/2023	10.30	4.28			
		6/15/2023	10.31	4.27			
		7/20/2023	9.82	4.76			
		8/21/2023	9.95	4.63			
1		10/3/2023	10.28	4.30			

Notes:

		Table 1									
	Summary of His	torical CCR Static V	Vater Level Data								
Dominion Energy South Carolina - Williams Station New FGD Pond											
	Goose Creek,	Berkeley County, S	South Carolina								
	Top of Casing			Static Water Level							
Monitoring Well ID	Flevation	Date	Depth to Water	Flevation							
	(ft. AMSL)	Butc	(feet)	Pond Static Water Level Elevation (ft. AMSL) 4.49 4.87 4.80 4.86 5.05 4.68 4.53 4.49 4.53 4.49 4.53 4.49 4.53 4.49 4.99 4.79 4.99 4.79 4.86 4.87 5.26 5.12 4.78 2.66 3.87 3.58 4.07 3.88 3.59 3.51 3.35 4.02 4.17 5.39 4.25 4.07 4.25 4.07 3.75 3.86 3.95 3.86 3.95 3.86 3.95 3.68 3.81 3.66 3.75							
	(5/18/2021	10.59	4.49							
		6/9/2021	10.21	4.87							
		6/30/2021	10.28	4.80							
		7/21/2021	10.22	4.86							
		8/10/2021	10.03	5.05							
		9/2/2021	10.40	4.68							
		9/23/2021	10.55	4.53							
GW-06R	15.08	3/21/2022	10.59	4.49							
	15.00	9/19/2022	10.09	4.99							
		3/20/2023	10.29	4.79							
		4/13/2023	10.09	4.99							
		5/18/2023	10.22	4.86							
		6/15/2023	10.21	4.87							
		7/20/2023	9.82	5.26							
		8/21/2023	9.96	5.12							
		10/3/2023	10.30	4.78							
		5/18/2021	12.86	2.66							
		6/9/2021	11.65	3.87							
		6/30/2021	11.05	3 58							
		7/21/2021	11.45	4.07							
		8/10/2021	11.64	3.88							
		9/2/2021	11.93	3.59							
		9/23/2021	12.01	3.51							
	45.50	3/21/2022	12.17	3.35							
GW-07R	15.52	9/19/2022	11.50	4.02							
		3/20/2023	11.35	4.17							
		4/13/2023	10.13	5.39							
		5/18/2023	11.27	4.25							
		6/15/2023	11.45	4.07							
		7/20/2023	10.81	4.71							
		8/21/2023	11.03	4.49							
		10/3/2023	11.77	3.75							
		5/18/2021	11.57	3.63							
		6/9/2021	11.25	3.95							
		6/30/2021	11.34	3.86							
		//21/2021	11.33	3.87							
		8/10/2021	11.15	Static Water Level Elevation (ft. AMSL) 4.49 4.87 4.80 4.86 5.05 4.68 4.53 4.49 4.99 4.79 4.99 4.79 4.99 4.79 4.99 4.79 4.99 4.79 4.99 4.79 4.99 4.79 4.99 4.79 5.26 5.12 4.78 2.66 3.87 3.58 4.07 3.88 3.59 3.51 3.35 4.02 4.17 5.39 4.25 4.07 4.17 5.39 4.25 4.07 3.75 3.86 3.95 3.63 3							
		9/2/2021	11.52	3.68							
		3/23/2021	11.39	3.81							
GW-08	15.20	0/10/2022	11.54 11 AF	3.00							
		3/19/2022	11.45	3./5							
		3/20/2023	10.22	3.90							
		5/18/2023	10.52	4.00							
		6/15/2023	11.45	3.77							
		7/20/2023	10.27	<u> </u>							
		8/21/2023	11.26	3 94							
		10/3/2023	11.36	3.84							

Notes:

Table 2

Summary of First Semiannual 2023 Detection Monitoring Program Sampling Event Data Dominion Energy South Carolina - Williams Station New FGD Pond Goose Creek, Berkeley County, South Carolina

	Background We									Downgradient Wells																			
		Sample ID:		MW-F	GD-16			MW-	FGD-21			MW-F	GD-17		MM	/-FGD-1	7 Duplic	ate		MW-	GD-18			MW-FGD-19D			MW-FC	D-20AR	
		Sample Date:		03/21	1/2023			03/2	1/2023			03/20	0/2023			03/20	/2023			03/2	0/2023			03/20/2023			03/2	0/2023	
Parameter Name	Units	Background Threshold Values	Result	Qual	MDL	QL	Result	Qual	MDL	QL	Result	Qual	MDL	QL	Result	Qual	MDL	QL	Result	Qual	MDL	QL	Result	Qual MDL	QL	Result	Qual	MDL	QL
CCR Appendix III																													
Boron	µg/L	66.7	37.4		4.00	15.0	20.0		4.00	15.0	146		4.00	15.0	145		4.00	15.0	3620		200	750	2080	200	750	3410		200	750
Calcium	µg/L	41,700	15,200		30.0	100	45,600		300	1000	167,000		300	1000	151,000		300	1000	236,000		1500	5000	134,000	1500	5000	280,000		1500	5000
Chloride	mg/L	33.3	28.4		0.335	1.00	3.27		0.0670	0.200	110		1.68	5.00	110		3.35	10.0	1,410		8.38	25.0	645	8.38	25.0	563		13.4	40.0
Fluoride	mg/L	0.646	0.193		0.0330	0.100	0.0330	U	0.0330	0.100	0.526		0.0330	0.100	0.453		0.0330	0.100	0.611		0.0330	0.100	0.453	0.0330	0.100	0.0906	J	0.0330	0.100
рН	SU	4.67 - 5.82	5.09		0.01	0.01	5.82		0.01	0.01	6.46		0.01	0.01					6.72		0.01	0.01	6.79	0.01	0.01	6.53		0.01	0.01
Sulfate	mg/L	89.2	57.4		0.665	2.00	85.0		1.33	4.00	48.6		3.33	10.0	47.6		6.65	20.0	60.2		16.6	50.0	38.1	0.665	2.00	160		26.6	80.0
Total Dissolved Solids	mg/L	329	184		2.38	10.0	238		2.38	10.0	896		4.76	20.0	902		4.76	20.0	2,560		23.8	100	1,060	23.8	100	1,280		23.8	100
Field Parameters																								•					
Conductivity	μS/cm		300.96		0.1	0.1	439.23		0.1	0.1	1,481.0		0.1	0.1					5,448.9		0.1	0.1	2,646.1	0.1	0.1	2,802.5		0.1	0.1
Dissolved Oxygen	mg/L		1.64		0.01	0.01	0.69		0.01	0.01	0.15		0.01	0.01					0.14		0.01	0.01	0.10	0.01	0.01	0.23		0.01	0.01
Temperature	С		18.94		0.01	0.01	18.87		0.01	0.01	18.14		0.01	0.01					19.79		0.01	0.01	21.97	0.01	0.01	18.92		0.01	0.01
Turbidity	NTU		1.84		0.1	0.1	21.9		0.1	0.1	2.39		0.1	0.1					1.82		0.1	0.1	20.2	0.1	0.1	4.91		0.1	0.1
Depth to Water*	ft btoc		8.67		0.01	0.01	9.49		0.01	0.01	7.45		0.01	0.01					8.65		0.01	0.01	9.05	0.01	0.01	6.15		0.01	0.01
Groundwater Elevation*	ft msl		4.03		0.01	0.01	4.31		0.01	0.01	4.53		0.01	0.01					2.99		0.01	0.01	3.51	0.01	0.01	3.24		0.01	0.01
Oxidation Reduction Potential	millivolts		153.1		0.1	0.1	-1.8		0.1	0.1	-18.0		0.1	0.1					-109.5		0.1	0.1	-86.1	0.1	0.1	-20.2		0.1	0.1

Notes:

Qualifiers (Qual)

U = Samples reported below their respective MDL J = Estimated Results

= Concentration greater than Background Threshold Values

Bold font = Detected constituent

* - Groundwater Elevation data collected on March 20, 2023

MDL = Method Detection Limit QL = Quantitation Limit mg/L = Milligram per liter pCi/L = Picocurries per liter μ g/L = Microgram per liter μ S/cm = MicroSiemen per centimeter SU = Standard Units C = Degrees Celsius NTU = Nephelometric Turbidity Unit ft btoc = feet below top of casing ft msl = feet above mean sea level CCR = Coal Combustion Residuals

Table 3

Summary of Second Semiannual 2023 Detection Monitoring Program Sampling Event Data Dominion Energy South Carolina - Williams Station New FGD Pond

Goose Creek, Berkeley County, South Carolina

				Background Wells										Downgradient Wells												
		Sample ID:		MW-FC	GD-23			MW-FC	GD-24		MW-	FGD-24	1 Duplica	ite		MW-F	GD-18			MW-F	GD-19D			MW-FC	GD-20AR	
		Sample Date:		10/03/	2023			10/03/	2023			10/03/	2023			10/03	3/2023			10/0	3/2023			10/0	3/2023	
Parameter Name	Units	Background Threshold Values	Result	Qual	MDL	QL	Result	Qual	MDL	QL	Result	Qual	MDL	QL	Result	Qual	MDL	QL	Result	Qual	MDL	QL	Result	Qual	MDL	QL
CCR Appendix III																										
Boron	µg/L	31,100	23,500		800	3000	24,400		800	3000	24,200		800	3000	5,470		200	750	2,280		200	750	3,950		200	750
Calcium	µg/L	2,380,000	1,630,000		6000	20000	1,760,000		6000	20000	1,740,000		6000	20000	334,000		1500	5000	168,000		1500	5000	328,000		1500	5000
Chloride	mg/L	5,290	3,300		67.0	200	3,390		67.0	200	3,510		67.0	200	1,550		26.8	80.0	684		13.4	40.0	671		6.70	20.0
Fluoride	mg/L	0.938	0.379	U	0.379	0.500	0.440	U	0.440	0.440	0.439	U	0.439	0.500	0.67	U	0.670	0.670	0.612	U	0.612	0.612	0.331	U	0.331	0.331
рН	SU	5.3 - 7.1	6.16		0.01	0.01	5.87		0.01	0.01					6.50		0.01	0.01	7.11		0.01	0.01	6.78		0.01	0.01
Sulfate	mg/L	818	289		2.66	8.00	503		133	400	527		133	400	86.3		2.66	8.00	46.3		1.33	4.00	232		13.3	40.0
Total Dissolved Solids	mg/L	10,800	7,290		23.8	100	6,560		23.8	100	6,710		23.8	100	3,420		23.8	100	1,330		23.8	100	1,390		23.8	100
Field Parameters																										
Conductivity	μS/cm		10,545		0.1	0.1	11,404		0.1	0.1					5,884.7		0.1	0.1	2,783.5		0.1	0.1	2,961.9		0.1	0.1
Dissolved Oxygen	mg/L		0.04		0.01	0.01	0.05		0.01	0.01					0.12		0.01	0.01	0.04		0.01	0.01	0.05		0.01	0.01
Temperature	С		25.79		0.01	0.01	25.6		0.01	0.01					25.33		0.01	0.01	24.48		0.01	0.01	24.73		0.01	0.01
Turbidity	NTU		0.58		0.1	0.1	0.63		0.1	0.1					0.43		0.1	0.1	1.45		0.1	0.1	0.46		0.1	0.1
Depth to Water	ft btoc		7.99		0.01	0.01	8.12		0.01	0.01					8.65		0.01	0.01	9.03		0.01	0.01	6.06		0.01	0.01
Groundwater Elevation	ft msl		4.60		0.01	0.01	4.53		0.01	0.01					2.99		0.01	0.01	3.53		0.01	0.01	3.33		0.01	0.01
Oxidation Reduction Potential	millivolts		-105.8		0.1	0.1	-106.2		0.1	0.1					-113.5		0.1	0.1	-134.7		0.1	0.1	-125.7		0.1	0.1

Notes:

MDL = Method Detection Limit QL = Quantitation Limit mg/L = Milligram per liter pCi/L = Picocurries per liter μ g/L = Microgram per liter μ S/cm = MicroSiemen per centimeter SU = Standard Units C = Degrees Celsius NTU = Nephelometric Turbidity Unit ft btoc = feet below top of casing ft msl = feet above mean sea level CCR = Coal Combustion Residuals

Qualifiers (Qual)

U = Samples reported below their respective MDL

= Concentration greater than Background Threshold Values

Bold font = Detected constituent

LEGEND

- ← CCR BACKGROUND MONITORING WELL
- ↔ CCR DOWNGRADIENT MONITORING WELL
- NEW MONITORING WELL INSTALLATION
 LOCATION
- O EVENT PIEZOMETER
- STAFF GAUGE
- NEW FGD POND BOUNDARY
- PROPERTY BOUNDARY

NOTES:

1. AERIAL IMAGE FROM ESRI WORLD IMAGERY DATED OCTOBER, 2022.

1 :2,400 1 " = 200'										
0 100	200 FEET									
PROJECT: DESC WILLIAMS STATION NEW FGD POND GOOSE CREEK, SOUTH CAROLINA										
TITLE: CCR RU WE	TITLE: CCR RULE COMPLIANCE MONITORING WELL NETWORK - MARCH 2023									
DRAWN BY:	L. LILL	PROJ. NO.:	416559.0006.0000							
CHECKED BY:	J. YONTS									
APPROVED BY:	R. MAYER	F	IGURE 2							
DATE:	JANUARY 2024									
 Ti	RC PATE	50 IN WOOD PLAZ GR	TERNATIONAL DRIVE A THREE, SUITE 150 EENVILLE, SC 29615 PHONE: 864.281.0030							
FILE:			2023_Figures.aprx							

Appendix A September 2022 Alternate Source Demonstration

DOMINION ENERGY SOUTH CAROLINA

WILLIAMS STATION NEW FGD POND

BERKELEY COUNTY, SOUTH CAROLINA

EPA CCR RULE COMPLIANCE

ALTERNATE SOURCE DEMONSTRATION REPORT

Second Semiannual 2022 Detection Monitoring Event

March 31, 2023

del

Nakia W. Addison, P.E Senior Engineer

Marga lh.

Richard A. Mayer Jr., P.G. Project Hydrogeologist

TRC Environmental Corporation | Dominion Energy South Carolina Williams Station New FGD Pond Alternate Source Demonstration © 2022 TRC All Rights Reserved

 $\label{eq:cont_local_env} \end{tabular} where \end{tabular} wher$

50 INTERNATIONAL DRIVE, SUITE 150, GREENVILLE, SC 29615,

864.281.0030 PHONE

864.281.0288 Fax

WWW.TRCcompanies.com

Table of Contents

Execu	tive Su	immaryii
1.	Introd	luction1-1
	1.1	Background1-1
	1.2	Groundwater Monitoring and Statistical Analysis1-1
	1.3	Purpose1-2
	1.4	Site Hydrogeology1-3
	1.5	General Groundwater Quality1-3
2.	Alterr	nate Source Demonstration2-1
	2.1	Boron at MW-FGD-17, MW-FGD-18, MW-FGD-19D, and MW-FGD-20AR2-1
	2.2	Calcium at MW-FGD-17, MW-FGD-18, MW-FGD-19D, and MW-FGD-20AR2-2
	2.3	Chloride at MW-FGD-17, MW-FGD-18, MW-FGD-19D, and MW-FGD-20AR2-2
	2.4	pH at MW-FGD-17, MW-FGD-18, MW-FGD-19D, and MW-FGD-20AR2-3
	2.5	Sulfate at MW-FGD-182-3
	2.6	Total Dissolved Solids MW-FGD-17, MW-FGD-18, MW-FGD-19D, and MW-FGD-20AR2-3
3.	Concl	usions3-1
4.	Certif	ication4-1
5.	Refer	ences5-1

List of Figures

Figure 1	Site Location Map
Figure 2	CCR Rule Compliance Monitoring Well Network
Figure 3	Groundwater Potentiometric Surface Map September 19, 2022

List of Tables

Table 1	Summary of Second	Semiannual	2022 Detection	Monitoring	Program	Sampling	Event Data
---------	-------------------	------------	----------------	------------	---------	----------	------------

Table 2 Summary of May 2022 Sampling Event Data
Dominion Energy South Carolina (DESC) completed the most recent semiannual detection monitoring sampling (second semiannual 2022 sampling event) in September 2022 for the Williams Generating Station (Station) Flue Gas Desulfurization (FGD) Wastewater Pond (New FGD Pond) (Unit) pursuant to the *Criteria for Classification of Solid Waste Disposal Facilities and Practices; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule,* 40 CFR Part 257 (CCR Rule). The Unit constitutes a coal combustion residuals (CCR) Unit per the CCR Rule. Per 40 CFR §257.94, the samples were analyzed for the Appendix III detection monitoring parameters. Upon receipt of the laboratory analytical results, statistical analysis was performed and evaluated for potential statistically significant increases (SSI) above background concentrations.

The following SSIs above background concentrations were identified in samples from the second semiannual 2022 sampling event based on direct comparisons made between the statistically derived background threshold values (95 percent upper prediction limit) and the downgradient monitoring results:

- MW-FGD-17: boron, calcium, chloride, pH, and total dissolved solids (TDS)
- MW-FGD-18: boron, calcium, chloride, pH, sulfate, and TDS
- MW-FGD-19D: boron, calcium, chloride, pH, and TDS
- MW-FGD-20AR: boron, calcium, chloride, pH, and TDS

The information provided in this report serves as DESC's Alternate Source Demonstration (ASD) prepared in accordance with 40 CFR §257.94(e)(2) and is intended to demonstrate that the SSIs are not due to a release from the Unit to groundwater, but are due to the following:

- A potential source located upgradient from the Unit; and/or
- Natural variation in groundwater quality within the area.

Based on information provided in this ASD report, DESC intends to continue to conduct semiannual detection monitoring for Appendix III constituents in accordance with 40 CFR §257.94 at the certified groundwater monitoring well system (Certified Monitoring Well Network) for the Unit.

1.1 Background

Dominion Energy South Carolina (DESC) operates a Flue Gas Desulfurization (FGD) Wastewater Pond (New FGD Pond) (Unit) for the management of coal combustion residuals (CCR) at the Williams Generating Station (Station). The Unit is located at 2242 Bushy Park Road, Goose Creek, Berkley County, South Carolina as shown on **Figure 1**.

The Unit, installed within the boundaries of the original FGD Pond, opened in May 2021 in accordance with the CCR Rule requirements. The Unit is comprised of two 700,000-gallon forebays constructed with a composite liner system comprised of, from bottom to top: an 18-inch-thick compacted clay soil liner; 60-mil textured HDPE geomembrane liner; 28-ounce per square yard geotextile cushion; and 6-inch-thick fabric formed concrete protection layer (CEC 2021a).

The Unit receives wet FGD blowdown from the Station's FGD system. The FGD blowdown contains residual gypsum solids that are discharged from the secondary hydrocyclone overflows and pumped to the Unit. Each forebay within the Unit allows for solids to settle and provide temporary storage until dewatered, removed, and disposed offsite in the Williams Stations Highway 52 Class III Landfill.

The Unit is considered a surface impoundment that contains CCR for disposal in accordance with the federal *Criteria for Classification of Solid Waste Disposal Facilities and Practices; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule* (CCR Rule), effective October 19, 2015, and subsequent Final Rules promulgated by the United States Environmental Protection Agency (USEPA).

1.2 Groundwater Monitoring and Statistical Analysis

In accordance with 40 CFR §257.90 through §257.94, DESC installed a groundwater monitoring system for the Unit and has collected samples from the Certified Monitoring Well Network for laboratory analysis for CCR constituents and performed statistical analysis of the collected samples. DESC installed a Certified Monitoring Well Network for the Unit in accordance with 40 CFR §257.90 and §257.91. The location of the EPA CCR Rule Compliance Monitoring Well Network is presented on **Figure 2**. The Certified Monitoring Well Network consists of 6 wells installed into the subsurface to monitor shallow groundwater as follows:

 Two wells were installed as background monitoring wells and include MW-FGD-16 and MW-FGD-21. Four wells were installed as compliance monitoring wells and include MW-FGD-17, MW-FGD-18, MW-FGD-19D, and MW-FGD-20AR.

Pursuant to 40 CFR §257.91(f), DESC obtained certification by a qualified South Carolina-registered professional engineer (P.E.) stating that the Certified Monitoring Well Network has been designed and constructed to meet the requirements of 40 CFR §257.91 of the CCR Rule (CEC 2021b).

As discussed above, the Unit is currently being monitored pursuant to the CCR Rule. A groundwater sampling and analysis plan including selection of statistical procedures to evaluate groundwater data was prepared per the CCR Rule (Nautilus 2016). Eight independent baseline/detection monitoring background sample events were performed from April 2021 through September 2021 in accordance with 40 CFR §257.93(d) and §257.94(b). The eight baseline/detection monitoring background samples were analyzed for Appendix III to Part 257 – Constituents for Detection Monitoring and for Appendix IV to Part 257 – Constituents for Assessment Monitoring.

Following completion of background detection monitoring in September 2021, DESC implemented semiannual detection monitoring per 40 CFR §257.94(b) for the Unit. The second semiannual detection monitoring event was performed in September 2022. Per the CCR Rule, the semiannual detection monitoring event samples were analyzed for Appendix III constituents.

After completion of the semiannual detection monitoring event, the Appendix III laboratory analytical data were statistically evaluated to identify potential statistically significant increases (SSIs) for Appendix III constituents above background levels. In accordance with 40 CFR §257.93(f)(6), DESC obtained certification by a qualified South Carolina-registered P.E. stating that the selected statistical method is appropriate for evaluating the groundwater monitoring data for the CCR Unit (CEC 2021c).

Pursuant to 40 CFR §257.93(h), statistical analysis of the laboratory analytical data was performed to identify potential SSIs for the second semiannual 2022 detection monitoring event. Data from the second semiannual 2022 detection monitoring event is presented in **Table 1**. A total of 21 SSIs were identified for seven Appendix III constituents: boron, calcium, chloride, pH, sulfate, and total dissolved solids (TDS).

1.3 Purpose

Pursuant to 40 CFR §257.94(e)(2), DESC may demonstrate that a source other than the Unit caused the SSIs identified or that the SSIs resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. The purpose of this report is to provide written documentation of the successful ASD for the SSIs identified for the second semiannual 2022 detection monitoring event, pursuant to 40 CFR §257.94(e)(2) of the CCR Rule.

1.4 Site Hydrogeology

The Station is located in the outer Coastal Plain of South Carolina. The uppermost aquifer in the Coastal Plain of South Carolina is the unconfined surficial aquifer. In most areas, the surficial aquifer consists of discontinuous layers of sand, clay and locally occurring beds of shell and limestone.

The Unit is located within the Ashley-Cooper River Subbasin (Ashley-Combahee-Edisto (ACE) Basin watershed) of the Coastal Plain physiographic province. Aquifers and confining units in the South Carolina portion of the Coastal Plain are composed of crystalline carbonate rocks, sand, clay, silt, and gravel that contain large volumes of high-quality groundwater (SAWSC 2016). The Unit groundwater monitoring wells are within the surficial aquifer of the Cooper geologic formation. The Cooper formation (or Cooper Marl) underlies most of the area south of the Santee River. According to *State of South Carolina Resources Commission Report Number 139* (1985), the Cooper formation is approximately 130 feet thick beneath the site. This unit functions as a confining layer beneath the overlying surficial aquifer. At least three of the hydrogeologic logs for wells installed around the Unit identify the top of Cooper Marl at depths of 19.5 to 28 feet below ground surface, making the surficial aquifer beneath the Unit less than 20 feet in thickness. Groundwater flow beneath the Unit is generally to the east as depicted on **Figure 3**. Hydraulic conductivity values in the surficial aquifer at the Unit range from 4.47 x 10⁻⁵ cm/s to 1.08 x 10⁻² cm/s with an estimated groundwater flow velocities of between 0.002 to 2.85 feet/day (Nautilus 2021).

1.5 General Groundwater Quality

Regionally, groundwater quality in the Ashley-Cooper River Subbasin consists of a sodium bicarbonate water type grading to a sodium chloride water type with depth and proximity to the coast (SCDNR 2009). The USEPA has established National Primary Drinking Water Regulations that define a permitted maximum contaminant level (MCL) for specific constituents in drinking water. The primary MCLs are legally enforceable standards that were established to protect public health by limiting the levels of contaminants in drinking water. Additionally, the USEPA has established non-enforceable secondary MCLs for guidelines to assist public water systems in managing their drinking water for aesthetic consideration such as taste, color, and odor. Reported water quality concentrations for select secondary drinking water contaminants compared to USEPA secondary MCLs are provided in the table below.

	Concentrat	tion Range	USEPA				
Constituent	Low	High	MCL				
pH (s.u.)	4.8	7.2	6.5 – 8.5 (Secondary)				
Chloride (mg/L)	2.2	500	250 (Secondary)				
Sulfate (mg/L)	1.0	1,000	250 (Secondary)				
TDS (mg/L)	20	2,800	500 (Secondary)				

Ashley-Cooper River Subbasin Groundwater Water Quality

Note: mg/L = milligram per liter, s.u. = standard units

As noted in the table above, the natural range of groundwater quality within the Ashley-Cooper River Subbasin exceeds the secondary drinking water MCLs for chloride, sulfate, and TDS (SCDNR 2009).

Section 2 Alternate Source Demonstration

Pursuant to 40 CFR §257.94(e)(2), DESC may demonstrate that a source other than the Unit caused the SSI or that the SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. As discussed previously, the second semiannual 2022 detection monitoring event was performed in September 2022. Statistical analysis of the second semiannual 2022 detection monitoring data was performed pursuant to 40 CFR §257.93(f) and (g) and in accordance with the Statistical Methods Certification (CEC 2021c) and the Statistical Analysis Plan. Based on either increasing trends at 95% confidence levels using Thiel-Sen's trend test and/or interwell prediction limits statistical analyses, the following SSIs were identified:

- MW-FGD-17: boron, calcium, chloride, pH, and TDS
- MW-FGD-18: boron, calcium, chloride, pH, sulfate, and TDS
- MW-FGD-19D: boron, calcium, chloride, pH, and TDS
- MW-FGD-20AR: boron, calcium, chloride, pH, and TDS

All other Appendix III constituent concentrations were within their trends at 95% confidence levels using Thiel-Sen's trend and/or interwell prediction limits in all the CCR Rule groundwater monitoring system wells.

A discussion for each of the individual SSIs and associated evidence demonstrating that the SSIs were not caused by a release from the Unit is provided in the subsections below.

2.1 Boron at MW-FGD-17, MW-FGD-18, MW-FGD-19D, and MW-FGD-20AR

The boron SSIs identified at MW-FGD-17, MW-FGD-18, MW-FGD-19D, and MW-FGD-20AR are the result of a potential source upgradient from the Unit. The following evidence supports this determination:

- Boron was detected at concentrations greater than the background threshold value of 66.7 μg/L in MW-FGD-17 (256 μg/L), MW-FGD-18 (6,980 μg/L), MW-FGD-19D (1,610 μg/L), and MW-FGD-20AR (1,710 μg/L) during the September 2022 sampling event. Based on review of potentiometric surface mapping (Figure 3), the locations of MW-FGD-17, MW-FGD-18, MW-FGD-19D, and MW-FGD-20AR are hydraulically downgradient from Pond D.
- Monitoring wells GW-01R, GW-02R, GW-04A, GW-06R, GW-07R, and GW-08 (Figure 2) were previously sampled in May 2022 for total boron concentrations in support of an ASD evaluation. The highest total boron concentration from the May 2022 event (Table 2) was detected in upgradient monitoring well GW-04A (20,100 µg/L), suggesting that a potential source of boron upgradient from the Unit may exist.

2.2 Calcium at MW-FGD-17, MW-FGD-18, MW-FGD-19D, and MW-FGD-20AR

The calcium SSIs identified at MW-FGD-17, MW-FGD-18, MW-FGD-19D, and MW-FGD-20AR are the result of natural variation in groundwater quality and/or a potential source upgradient from the Unit. The following evidence supports this determination:

- Calcium was detected at concentrations greater than the background threshold value of 41,700 µg/L in MW-FGD-17 (151,000 µg/L), MW-FGD-18 (391,000 µg/L), MW-FGD-19D (112,000 µg/L), and MW-FGD-20AR (172,000 µg/L) during the September 2022 sampling event. Based on review of potentiometric surface mapping (Figure 3), the locations of MW-FGD-17, MW-FGD-18, MW-FGD-19D, and MW-FGD-20AR are hydraulically downgradient from Pond D.
- The calcium concentration in background well MW-FGD-21 was detected above the background threshold value of 41,700 μg/L at a concentration of 45,400 μg/L during the September 2022 sampling event. This observation suggests that the calcium SSIs may be the result of natural variation in groundwater quality from upgradient areas.
- Monitoring wells GW-01R, GW-02R, GW-04A, GW-06R, GW-07R, and GW-08 (Figure 2) were previously sampled in May 2022 for total calcium concentrations in support of an ASD evaluation. The highest total calcium concentrations from the May 2022 event (Table 2) were detected in upgradient monitoring wells GW-04A (1,290,000 µg/L) and GW-06R (491,000 µg/L), suggesting that a potential source of calcium upgradient from the Unit may exist.

2.3 Chloride at MW-FGD-17, MW-FGD-18, MW-FGD-19D, and MW-FGD-20AR

The chloride SSIs identified at MW-FGD-17, MW-FGD-18, MW-FGD-19D, and MW-FGD-20AR are the result of natural variation in groundwater quality and/or a potential source upgradient from the Unit. The following evidence supports this determination:

- Chloride was detected at concentrations greater than the background threshold value of 33.3 mg/L in MW-FGD-17 (148 mg/L), MW-FGD-18 (1,750 mg/L), MW-FGD-19D (600 mg/L), and MW-FGD-20AR (383 mg/L) during the September 2022 sampling event. Based on review of potentiometric surface mapping (Figure 3), the locations of MW-FGD-17, MW-FGD-18, MW-FGD-19D, and MW-FGD-20AR are hydraulically downgradient from Pond D.
- Chloride concentrations detected at MW-FGD-17 and MW-FGD-20AR during the September 2022 sampling event were above the reported regional chloride concentration for groundwater in the Unit area of 500 mg/L (SCDNR 2009). This observation suggests that the chloride SSIs for MW-FGD-17 and MW-FGD-20AR are the result of natural variation in groundwater quality from upgradient areas.
- Monitoring wells GW-01R, GW-02R, GW-04A, GW-06R, GW-07R, and GW-08 (Figure 2) were previously sampled in May 2022 for chloride concentrations in support of an ASD evaluation. The highest chloride concentration from the May 2022 event (Table 2) was detected in upgradient

monitoring well GW-04A (2,820 μ g/L), suggesting that a potential source of chloride upgradient from the Unit may exist.

2.4 pH at MW-FGD-17, MW-FGD-18, MW-FGD-19D, and MW-FGD-20AR

The pH SSIs identified at MW-FGD-17, MW-FGD-18, MW-FGD-19D, and MW-FGD-20AR are the result of natural variation in groundwater quality from areas upgradient from the Unit. The following evidence supports this:

The pH levels were detected at levels greater than the background threshold range for pH of 4.67 to 5.82 at MW-FGD-17 (6.18), MW-FGD-18 (6.11), MW-FGD-19D (6.85), and MW-FGD-20AR (6.47) during the September 2022 sampling event. Reported regional pH levels for groundwater in the Unit area range between 4.8 and 7.2 (SCDNR 2009). The pH levels within MW-FGD-17, MW-FGD-18, MW-FGD-19D, and MW-FGD-20AR from September 2022 all fall within the range of natural variation in area groundwater quality.

2.5 Sulfate at MW-FGD-18

The sulfate SSIs identified at MW-FGD-18 is the result of natural variation in groundwater quality from areas upgradient from the Unit. The following evidence supports this determination:

Sulfate was detected at concentrations greater than the background threshold value of 89.2 mg/L at MW-FGD-18 (175 mg/L) during the September 2022 sampling event. Reported regional sulfate concentrations for the groundwater in the Unit area range between 1 mg/L to 1,000 mg/L (SCDNR 2009). The detected sulfate concentrations for MW-FGD-18 falls within the range of natural variation in area groundwater quality.

2.6 Total Dissolved Solids MW-FGD-17, MW-FGD-18, MW-FGD-19D, and MW-FGD-20AR

The TDS SSIs identified at MW-FGD-17, MW-FGD-18, MW-FGD-19D, and MW-FGD-20AR are the result of natural variation in groundwater quality and/or a potential source upgradient from the Unit. The following evidence supports this determination:

- TDS was detected at concentrations greater than the background threshold value of 329 mg/L in MW-FGD-17 (948 mg/L), MW-FGD-18 (3,720 mg/L), MW-FGD-19D (1,320 mg/L), and MW-FGD-20AR (1,270 mg/L) during the September 2022 sampling event. Based on review of potentiometric surface mapping (Figure 3), the locations of MW-FGD-17, MW-FGD-18, MW-FGD-19D, and MW-FGD-20AR are hydraulically downgradient from Pond D.
- TDS concentrations detected at MW-FGD-17, MW-FGD-19D, and MW-FGD-20AR during the September 2022 sampling event were above the reported regional TDS concentration for

groundwater in the Unit area of 2,800 mg/L (SCDNR 2009). This observation suggests that the TDS SSIs for MW-FGD-17, MW-FGD-19D, and MW-FGD-20AR are the result of natural variation in groundwater quality from upgradient areas.

Monitoring wells GW-01R, GW-02R, GW-04A, GW-06R, GW-07R, and GW-08 (Figure 2) were previously sampled in May 2022 for TDS in support of an ASD evaluation. The highest TDS concentration from the May 2022 event (Table 2) was detected in upgradient monitoring well GW-04A (5,130 mg/L), suggesting that a potential source of TDS upgradient from the Unit may exist.

Section 3 Conclusions

The information provided in this report serves as the ASD prepared in accordance with 40 CFR §257.94(e)(2) of the CCR Rule and demonstrates that the SSIs determined based on statistical analysis of the second semiannual 2022 detection monitoring event performed in September of 2022 was not due to a release from the CCR Unit to the subsurface.

Based on the information provided in this ASD report, DESC will continue to conduct semiannual detection monitoring in accordance with 40 CFR §257.94 at the Certified Monitoring Well Network for the CCR Unit.

Additional observation wells were installed in January 2023 in the vicinity of the Unit to further refine hydrogeologic conditions. The results of the hydrogeological evaluation may be used to help optimize the groundwater monitoring well network for the Unit.

Section 4 Certification

I hereby certify that the alternative source demonstration presented within this document for the DESC Williams New FGD Pond CCR Unit has been prepared to meet the requirements of Title 40 CFR §257.94(e)2 of the Federal CCR Rule. This document is accurate and has been prepared in accordance with good engineering practices, including the consideration of applicable industry standards, and with the requirements of Title 40 CFR §257.94(e) 2.

Name: Nakia W. Addison, P.E.

Expiration Date: June 30, 2024

Company: TRC Engineers, Inc.

Date: March 31, 2023

(SEAL)

Section 5 References

- CEC 2021a. Closure Plan, Williams Station New FGD Pond, Goose Creek, South Carolina: Civil & Environmental Consultants, Inc.
- CEC 2021b. Groundwater Monitoring System Certification, Williams Station New FGD Pond, Berkeley County, SC: Civil & Environmental Consultants, Inc.
- CEC 2021c. Statistical Analysis Plan Certification, Williams Station New FGD Pond, Berkeley County, SC. Civil & Environmental Consultants, Inc.
- Nautilus 2016. Groundwater Sampling and Analysis Plan, Williams Station Landfill. Berkeley County, SC: Nautilus Geologic Consulting, PLLC.
- Nautilus 2021. Alternate Source Demonstration Report, Williams Station Class Three Landfill. Berkeley County, SC: Nautilus Geologic Consulting, PLLC.
- South Atlantic Water Science Center (SAWC), 2016. Atlantic Coastal Plain Physiographic Provinces. https://www.usgs.gov/media/images/atlantic-coastal-plain-physiographic-provinces.
- South Carolina Department of Natural Resources (SCDNR), 2009, South Carolina State Water Assessment, 2nd Edition. 408 pp.
- United States Environmental Protection Agency. 2017. Secondary Drinking Water Standards: Guidance for Nuisance Chemicals, March 8, 2017
- U.S. Geological Survey (USGS) Professional Paper: 1410-E, Hydrology of the Southeastern Coastal Plain Aquifer System in South Carolina and Parts of Georgia and North Carolina, 1996.

NOTE: Aerial Image from ESRI World Imagery dated March 2022.

		PROJECT:	DESC WIL NEW GOOSE CREEK	LIAMS S FGD PO (, SOUT	STATION ND H CAROLINA
		TITLE:	CCR RULE	E COMP 9 WELL	LIANCE NETWORK
		DRAWN BY:	J. YONTS	PROJ. NO.:	416559.0006.0000
		CHECKED BY:	D. SZYNAL		
		APPROVED BY:	R. MAYER		FIGURE 2
		DATE:	MARCH 2023		
) Feet	1 " = 200 ' 1:2,400	*	TRC	50 Inte Patew Green Phone www.T	ernational Drive, Suite 150 ood Plaza Three vitte, SC 29615 : 864.281.0030 RCcompanies.com
		FILE NO.:		Figure2_Williams	S_Station_FGD_CCR_Well_Network.mxd

Table 1

Summary of Second Semiannual 2022 Detection Monitoring Program Sampling Event Data Dominion Energy South Carolina - Williams Station New FGD Pond

Goose Creek, Berkeley County, South Carolina

						Backgrou	und Wells			Downgradient Wells								
		MW-FO	GD-16			MW-FC	GD-21			MW-FC	GD-17		MW-FGD-18					
		Sample Date:	09/20/2022					09/21/	2022			09/19/	2022		09/19/2022			
Parameter Name	Units	Background Threshold Values	Result	Qual	MDL	QL	Result	Qual	MDL	QL	Result	Qual	MDL	QL	Result	Qual	MDL	QL
CCR Appendix III																		
Boron	µg/L	66.7	51.4		4.00	15.0	32.8		4.00	15.0	256		20.0	75.0	6980		200	750
Calcium	µg/L	41700	15100		30.0	100	45400		30.0	100	151000		150	500	391000		1500	5000
Chloride	mg/L	33.3	24.5		0.335	1.00	3.01		0.0670	0.200	148		1.68	5.00	1750		26.8	80.0
Fluoride	mg/L	0.646	0.330		0.0330	0.100	0.0470	J	0.0330	0.100	0.511		0.0330	0.100	0.420		0.0330	0.100
рН	SU	4.67 - 5.82	4.80		0.1	0.1	5.32		0.1	0.1	6.18		0.1	0.1	6.11		0.1	0.1
Sulfate	mg/L	89.2	48.9		0.665	2.00	84.8		1.33	4.00	15.9		0.133	0.400	175		53.2	160
Total Dissolved Solids	mg/L	329	193		2.38	10.0	243		2.38	10.0	948		2.38	10.0	3720		2.38	10.0
Field Parameters																		
Conductivity	μS/cm		293.07		0.1	0.1	453.15		0.1	0.1	1596		0.1	0.1	6687		0.1	0.1
Dissolved Oxygen	mg/L		0.98		0.01	0.01	0.40		0.01	0.01	0.18		0.01	0.01	0.20		0.01	0.01
Temperature	С		25.48		0.01	0.01	24.17		0.01	0.01	25.68		0.01	0.01	25.11		0.01	0.01
Turbidity	NTU		3.26		0.1	0.1	3.91		0.1	0.1	3.49		0.1	0.1	3.25		0.1	0.1
Depth to Water	ft btoc		8.37		0.01	0.01	9.39		0.01	0.01	7.53		0.01	0.01	8.51		0.01	0.01
Groundwater Elevation	ft msl		4.33		0.01	0.01	4.41		0.01	0.01	4.45		0.01	0.01	3.13		0.01	0.01
Oxidation Reduction Potential	millivolts		104.1		0.1	0.1	45.5		0.1	0.1	-18.0		0.1	0.1	-76.7		0.1	0.1

Notes:

MDL = Method Detection Limit

QL = Quantitation Limit

mg/L = Milligram per liter

 μ g/L = Microgram per liter μ S/cm = MicroSiemen per centimeter

SU = Standard Units

C = Degrees Celsius

NTU = Nephelometric Turbidity Unit

ft btoc = feet below top of casing

ft msl = feet above mean sea level

Qualifiers (Qual)

J = Estimated Results

Bold font = Detected constituent

* - Groundwater Elevation data collected on September 19, 2022

= Concentration greater than Background Threshold Values

Table 1

Summary of Second Semiannual 2022 Detection Monitoring Program Sampling Event Data Dominion Energy South Carolina - Williams Station New FGD Pond

Goose Creek, Berkeley County, South Carolina

			Downgradient Wells													
		Sample ID:	M	W-FGD-18	3 Duplica		MW-FGD-20AR									
		Sample Date:		09/19/	/2022			09/19/	2022	09/20/2022						
Parameter Name	Units	Background Threshold Values	Result	Qual	MDL	QL	Result	Qual	MDL	QL	Result	Qual	MDL	QL		
CCR Appendix III																
Boron	µg/L	66.7	6930		200	750	1610		40.0	150	1710		40.0	150		
Calcium	µg/L	41700	391000		1500	5000	112000		300	1000	172000		300	1000		
Chloride	mg/L	33.3	1800		26.8	80.0	600		6.70	20.0	383		6.70	20.0		
Fluoride	mg/L	0.646	0.411		0.0330	0.100	0.640		0.0330	0.100	0.184		0.0330	0.10		
рН	SU	4.67 - 5.82	6.11		0.1	0.1	6.85		0.1	0.1	6.49		0.1	0.10		
Sulfate	mg/L	89.2	177		53.2	160	26.4		0.665	2.00	10.5		0.133	0.40		
Total Dissolved Solids	mg/L	329	3790		2.38	10.0	1320		2.38	10.0	1270		2.38	10.0		
Field Parameters																
Conductivity	μS/cm		6687		0.1	0.1	2894.7		0.1	0.1	3380.3		0.1	0.1		
Dissolved Oxygen	mg/L		0.20		0.01	0.01	0.16		0.01	0.01	0.12		0.01	0.01		
Temperature	С		25.01		0.01	0.01	25.55		0.01	0.01	27.67		0.01	0.01		
Turbidity	NTU		3.25		0.1	0.1	1.88		0.1	0.1	1.87		0.1	0.1		
Depth to Water	ft btoc		8.51		0.01	0.01	9.10		0.01	0.01	6.07		0.01	0.01		
Groundwater Elevation	ft msl		3.13		0.01	0.01	3.46		0.01	0.01	3.32		0.01	0.01		
Oxidation Reduction Potential	millivolts		-76.7		0.1	0.1	-127.3		0.1	0.1	-43.8		0.1	0.1		

Notes:

MDL = Method Detection Limit

QL = Quantitation Limit

mg/L = Milligram per liter

 $\mu g/L$ = Microgram per liter $\mu S/cm$ = MicroSiemen per centimeter

SU = Standard Units

C = Degrees Celsius

NTU = Nephelometric Turbidity Unit

ft btoc = feet below top of casing

ft msl = feet above mean sea level

Qualifiers (Qual)

J = Estimated Results

Bold font = Detected constituent

* - Groundwater Elevation data collected on September 19, 2022

= Concentration greater than Background Threshold Values

Table 2 - Summary of May 2022 Sampling Event Data Dominion Energy South Carolina - Williams Station New FGD Pond Goose Creek, Berkeley County, South Carolina

	Sample ID:		G١	N-01R			G١	V-02R			G١	N-04A			G	W-06R			GV	V-07R			G	W-08	
	Sample Date:		05/2	25/2022			05/2	25/2022			05/2	25/2022			05/3	25/2022			05/2	25/2022			05/2	25/2022	
Parameter Name	Units	Result	Qual	MDL	RL	Result	Qual	MDL	RL	Result	Qual	MDL	RL	Result	Qual	MDL	RL	Result	Qual	MDL	RL	Result	Qual	MDL	RL
CCR Appendix III																									
Boron	µg/L	11900		400	1500	9130		400	1500	20100		800	3000	6510		200	750	3330		200	750	7040		200	750
Calcium	µg/L	685000		600	2000	444000		600	2000	1290000		1500	5000	491000		600	2000	325000		600	2000	307000		600	2000
Chloride	mg/L	1800		33.5	100	1510		33.5	100	2820		33.5	100	931		33.5	100	596		6.70	20.0	710		6.70	20.0
Total Dissolved Solids	mg/L	3500		3.40	14.3	3140		3.40	14.3	5130		3.40	14.3	2060		3.40	14.3	1330		3.40	14.3	1350		3.40	14.3

Notes:

MDLES: MDL = Method Detection Limit RL = Reporting Limit mg/L = Milligram per liter µg/L = Microgram per liter Bold font = Detected constituent

Appendix B March 2023 Alternate Source Demonstration

DOMINION ENERGY SOUTH CAROLINA

WILLIAMS STATION NEW FGD POND

BERKELEY COUNTY, SOUTH CAROLINA

EPA CCR RULE COMPLIANCE

ALTERNATE SOURCE DEMONSTRATION REPORT

First Semiannual 2023 Detection Monitoring Event

September 29, 2023

del

Nakia W. Addison, P.E. Senior Engineer

Marga Ch.

Richard A. Mayer Jr., P.G. Project Hydrogeologist

TRC Environmental Corporation | Dominion Energy South Carolina Williams Station New FGD Pond Alternate Source Demonstration © 2023 TRC All Rights Reserved

\\employees.root.local\env\ECC\Greenville\WPGVL\PJT2\416559\0006 Williams\R4165590006-029 WMS_FGDPond_ASD Report_1st_Semiannual_2023.docx

50 INTERNATIONAL DRIVE, SUITE 150, GREENVILLE, SC 29615,

864.281.0030 PHONE

864.281.0288 Fax

WWW.TRCcompanies.com

Table of Contents

Execu	tive Su	ummary	ii									
1.	Introduction											
	1.1	Background1	l-1									
	1.2	Groundwater Monitoring and Statistical Analysis1	l-1									
	1.3	Purpose1	L-2									
	1.4	Site Hydrogeology	1-2									
2.	Alterr	nate Source Demonstration2	2-1									
	2.1	Boron at MW-FGD-17, MW-FGD-18, MW-FGD-19D, and MW-FGD-20AR	2-1									
	2.2	Calcium at MW-FGD-17, MW-FGD-18, MW-FGD-19D, and MW-FGD-20AR	2-2									
	2.3	Chloride at MW-FGD-17, MW-FGD-18, MW-FGD-19D, and MW-FGD-20AR	2-2									
	2.4	pH at MW-FGD-17, MW-FGD-18, MW-FGD-19D, and MW-FGD-20AR	2-2									
	2.5	Sulfate at MW-FGD-20AR	<u>2-3</u>									
	2.6	Total Dissolved Solids MW-FGD-17, MW-FGD-18, MW-FGD-19D, and MW-FGD-20AR2	2-3									
3.	Evalu	ation of CCR Well Network	3-1									
	3.1	Evaluation of Background Monitoring Wells	3-1									
	3.2	Evaluation of Downgradient Monitoring Wells	3-1									
4.	Concl	usions	1-1									
5.	Certif	ication	5-1									
6.	Refer	ences	5-1									
List c	of Figu	res										

Figure 1	Site Location Map
Figure 2	Site Layout Map
Figure 3	Groundwater Potentiometric Map - March 2023

List of Tables

Table 1	Summary of First Semiannual 2023 Detection Monitoring Program Sampling Event
	Data
Table 2	Summary of May 2022 Sampling Event Data

Dominion Energy South Carolina (DESC) completed the first semiannual 2023 detection monitoring event in March 2023 for the Williams Generating Station (Station) Flue Gas Desulfurization (FGD) Wastewater Pond (New FGD Pond) (Unit) pursuant to the *Criteria for Classification of Solid Waste Disposal Facilities and Practices; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule,* 40 CFR Part 257 (CCR Rule). The Unit constitutes a coal combustion residuals (CCR) Unit per the CCR Rule. Per 40 CFR §257.94, the samples were analyzed for the Appendix III detection monitoring parameters. Upon receipt of the laboratory analytical results, statistical analysis was performed and evaluated for potential statistically significant increases (SSI) above background concentrations.

The following SSIs were identified above background concentrations based on direct comparisons made between the statistically derived background threshold values (95 percent upper prediction limit) and the downgradient monitoring results:

- Boron (MW-FGD-17, MW-FGD-18, MW-FGD-19D, and MW-FGD-20AR).
- Calcium (MW-FGD-17, MW-FGD-18, MW-FGD-19D, and MW-FGD-20AR).
- Chloride (MW-FGD-17, MW-FGD-18, MW-FGD-19D, and MW-FGD-20AR).
- pH (MW-FGD-17, MW-FGD-18, MW-FGD-19D, and MW-FGD-20AR).
- Sulfate (MW-FGD-20AR).
- Total dissolved solids (MW-FGD-17, MW-FGD-18, MW-FGD-19D, and MW-FGD-20AR).

The information provided in this report serves as DESC's Alternate Source Demonstration (ASD) prepared in accordance with 40 CFR §257.94(e)(2) and successfully demonstrates that the SSIs are not due to a release from the Unit to groundwater, but may be due to the following:

- A potential source located upgradient from the Unit; and/or,
- An existing groundwater monitoring well network that may not be positioned to best represent monitoring of the groundwater quality passing the waste boundary of the Unit.

TRC is evaluating the current Certified Monitoring Well Network to determine if it satisfies the CCR rule for horizontal and vertical placements for monitoring groundwater at the waste boundary of the Unit. This evaluation began in January 2023 and is anticipated to conclude in October 2023. The review will include the evaluation of monthly groundwater level measurements and 8 independent sampling events for background parameter evaluation of the proposed monitoring well network.

1.1 Background

Dominion Energy South Carolina (DESC) operates a Flue Gas Desulfurization (FGD) Wastewater Pond (New FGD Pond) (Unit) for the management of coal combustion residuals (CCR) at the Williams Generating Station (Station). The Unit is located at 2242 Bushy Park Road, Goose Creek, Berkley County, South Carolina as shown on **Figure 1**.

The Unit is installed within the boundaries of the original FGD Pond and opened in May 2021 in accordance with the CCR Rule requirements. The Unit is comprised of two 700,000-gallon forebays constructed with a composite liner system comprised of, from bottom to top: an 18-inch-thick compacted clay soil liner; 60-mil textured high-density polyethylene (HDPE) geomembrane liner; 28-ounce per square yard geotextile cushion; and 6-inch-thick fabric formed concrete protection layer (CEC 2021a).

The Unit is considered a surface impoundment that contains CCR for disposal in accordance with the federal *Criteria for Classification of Solid Waste Disposal Facilities and Practices; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule* (CCR Rule), effective October 19, 2015, and subsequent Final Rules promulgated by the United States Environmental Protection Agency (USEPA).

1.2 Groundwater Monitoring and Statistical Analysis

In accordance with 40 CFR §257.90 through §257.94, DESC installed a groundwater monitoring system for the Unit, collected samples from the Certified Monitoring Well Network for laboratory analysis for CCR constituents, and performed statistical analysis of the collected samples. The location of the EPA CCR Rule Compliance Monitoring Well Network is presented on **Figure 2**. The Certified Monitoring Well Network consists of 6 wells installed into the subsurface to monitor shallow groundwater as follows:

- Two upgradient/background monitoring wells: MW-FGD-16 and MW-FGD-21.
- Four downgradient monitoring wells: MW-FGD-17, MW-FGD-18, MW-FGD-19D, and MW-FGD-20AR.

The first semiannual 2023 detection monitoring event was conducted March 20 – 21, 2023, and were analyzed for Appendix III constituents. Pursuant to 40 CFR §257.93(h), statistical analysis of the laboratory analytical data was performed to identify potential statistically significant increases (SSIs) above background. Data from the first semiannual 2023 detection monitoring event is presented in **Table 1**. SSIs were identified for six Appendix III constituents: boron, calcium, chloride, pH, sulfate, and total dissolved solids (TDS).

1.3 Purpose

Pursuant to 40 CFR §257.94(e)(2), DESC may demonstrate that a source other than the Unit caused the SSIs identified or that the SSIs resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. The purpose of this report is to provide written documentation of the successful alternate source demonstration (ASD) for the SSIs identified for the first semiannual 2023 detection monitoring event.

1.4 Site Hydrogeology

The Station is located in the outer Coastal Plain of South Carolina. The uppermost aquifer in the Coastal Plain of South Carolina is the unconfined surficial aquifer. In most areas, the surficial aquifer consists of discontinuous layers of sand, clay and locally occurring beds of shell and limestone.

The Unit is located within the Ashley-Cooper River Subbasin (Ashley-Combahee-Edisto (ACE) Basin watershed) of the Coastal Plain physiographic province. Aquifers and confining units in the South Carolina portion of the Coastal Plain are composed of crystalline carbonate rocks, sand, clay, silt, and gravel that contain large volumes of high-quality groundwater (SAWSC 2016). The Unit groundwater monitoring wells are within the surficial aquifer of the Cooper geologic formation. The Cooper formation (or Cooper Marl) underlies most of the area south of the Santee River.

According to *State of South Carolina Resources Commission Report Number 139* (1985), the Cooper formation is approximately 130 feet thick beneath the site. This unit functions as a confining layer beneath the overlying surficial aquifer. At least three of the hydrogeologic logs for wells installed around the Unit identify the top of Cooper Marl at depths of 19.5 to 28 feet below ground surface, making the surficial aquifer beneath the Unit less than 20 feet in thickness. Groundwater flow beneath the Unit is generally to the east as depicted on **Figure 3**. Hydraulic conductivity values in the surficial aquifer at the Unit range from 4.47×10^{-5} cm/s to 1.08×10^{-2} cm/s with an estimated groundwater flow velocities of between 0.002 to 2.85 feet/day (Nautilus 2021).

Section 2 Alternate Source Demonstration

Pursuant to 40 CFR §257.94(e)(2), DESC may demonstrate that a source other than the Unit caused the SSI or that the SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. As discussed previously, the first semiannual 2023 detection monitoring event was performed March 20 – 21, 2023. Statistical analysis of the first semiannual 2023 detection monitoring data was performed pursuant to 40 CFR §257.93(f) and (g) and in accordance with the Statistical Methods Certification (CEC 2021b). Based on either increasing trends at 95% confidence levels using Thiel-Sen's trend test and/or interwell prediction limits statistical analyses, the following SSIs were identified:

- Boron (MW-FGD-17, MW-FGD-18, MW-FGD-19D, and MW-FGD-20AR)
- Calcium (MW-FGD-17, MW-FGD-18, MW-FGD-19D, and MW-FGD-20AR)
- Chloride (MW-FGD-17, MW-FGD-18, MW-FGD-19D, and MW-FGD-20AR)
- pH (MW-FGD-17, MW-FGD-18, MW-FGD-19D, and MW-FGD-20AR)
- Sulfate (MW-FGD-20AR)
- TDS (MW-FGD-17, MW-FGD-18, MW-FGD-19D, and MW-FGD-20AR)

A discussion for each of the individual SSIs and associated evidence demonstrating that the SSIs were not caused by a release from the Unit is provided in the subsections below.

2.1 Boron at MW-FGD-17, MW-FGD-18, MW-FGD-19D, and MW-FGD-20AR

The boron SSIs identified at MW-FGD-17, MW-FGD-18, MW-FGD-19D, and MW-FGD-20AR are the result of a potential source upgradient from the Unit. The following evidence supports this determination:

- Boron was detected at concentrations greater than the background threshold value of 66.7 µg/L in MW-FGD-17 (146 µg/L), MW-FGD-18 (3,620 µg/L), MW-FGD-19D (2,080 µg/L), and MW-FGD-20AR (3,410 µg/L) during the March 2023 sampling event. Based on review of potentiometric surface mapping (Figure 3), the locations of MW-FGD-17, MW-FGD-18, MW-FGD-19D, and MW-FGD-20AR are hydraulically downgradient from Pond D.
- Monitoring wells GW-01R, GW-02R, GW-04A, GW-06R, GW-07R, and GW-08 (Figure 2) were previously sampled in May 2022 for total boron concentrations in support of an ASD evaluation. The highest total boron concentration from the May 2022 event (Table 2) was detected in upgradient monitoring well GW-04A (20,100 µg/L), suggesting that a potential source of boron upgradient from the Unit may exist.

2.2 Calcium at MW-FGD-17, MW-FGD-18, MW-FGD-19D, and MW-FGD-20AR

The calcium SSIs identified at MW-FGD-17, MW-FGD-18, MW-FGD-19D, and MW-FGD-20AR are the result of a potential source upgradient from the Unit. The following evidence supports this determination:

- Calcium was detected at concentrations greater than the background threshold value of 41,700 µg/L in MW-FGD-17 (167,000 µg/L), MW-FGD-18 (236,000 µg/L), MW-FGD-19D (134,000 µg/L), and MW-FGD-20AR (280,000 µg/L) during the March 2023 sampling event. Based on review of potentiometric surface mapping (Figure 3), the locations of MW-FGD-17, MW-FGD-18, MW-FGD-19D, and MW-FGD-20AR are hydraulically downgradient from Pond D.
- Monitoring wells GW-01R, GW-02R, GW-04A, GW-06R, GW-07R, and GW-08 (Figure 2) were previously sampled in May 2022 for total calcium concentrations in support of an ASD evaluation. The highest total calcium concentrations from the May 2022 event (Table 2) were detected in upgradient monitoring wells GW-04A (1,290,000 µg/L) and GW-06R (491,000 µg/L), suggesting that a potential source of calcium upgradient from the Unit may exist.

2.3 Chloride at MW-FGD-17, MW-FGD-18, MW-FGD-19D, and MW-FGD-20AR

The chloride SSIs identified at MW-FGD-17, MW-FGD-18, MW-FGD-19D, and MW-FGD-20AR are the result of a potential source upgradient from the Unit. The following evidence supports this determination:

- Chloride was detected at concentrations greater than the background threshold value of 33.3 mg/L in MW-FGD-17 (110 mg/L), MW-FGD-18 (1,410 mg/L), MW-FGD-19D (645 mg/L), and MW-FGD-20AR (563 mg/L) during the March 2023 sampling event. Based on review of potentiometric surface mapping (Figure 3), the locations of MW-FGD-17, MW-FGD-18, MW-FGD-19D, and MW-FGD-20AR are hydraulically downgradient from Pond D.
- Monitoring wells GW-01R, GW-02R, GW-04A, GW-06R, GW-07R, and GW-08 (Figure 2) were previously sampled in May 2022 for chloride concentrations in support of an ASD evaluation. The highest chloride concentration from the May 2022 event (Table 2) was detected in upgradient monitoring well GW-04A (2,820 µg/L), suggesting that a potential source of chloride upgradient from the Unit may exist.

2.4 pH at MW-FGD-17, MW-FGD-18, MW-FGD-19D, and MW-FGD-20AR

The pH SSIs identified at MW-FGD-17, MW-FGD-18, MW-FGD-19D, and MW-FGD-20AR are the result of a potential source upgradient from the Unit. The following evidence supports this:

The pH levels were detected at levels greater than the background threshold range for pH of 4.67 to 5.82 at MW-FGD-17 (6.46), MW-FGD-18 (6.72), MW-FGD-19D (6.79), and MW-FGD-20AR (6.53) during the March 2023 sampling event. Based on review of potentiometric surface mapping (Figure 3), the locations of MW-FGD-17, MW-FGD-18, MW-FGD-19D, and MW-FGD-20AR are hydraulically downgradient from Pond D.

Monitoring wells GW-01R, GW-02R, GW-04A, GW-06R, GW-07R, and GW-08 (Figure 2) were previously analyzed in May 2022 for pH levels in support of an ASD evaluation. The pH level at GW-04A (6.36) was above the background threshold value from the May 2022 event (Table 2), suggesting that a potential source of higher pH levels may be upgradient from the Unit.

2.5 Sulfate at MW-FGD-20AR

The sulfate SSI identified at MW-FGD-20AR is the result of a potential source upgradient from the Unit. The following evidence supports this determination:

- Sulfate was detected at concentrations greater than the background threshold value of 89.2 mg/L at MW-FGD-20AR (160 mg/L) during the March 2023 sampling event. Based on review of potentiometric surface mapping (Figure 3), the location of MW-FGD-20AR is hydraulically downgradient from Pond D.
- Monitoring wells GW-01R, GW-02R, GW-04A, GW-06R, GW-07R, and GW-08 (Figure 2) were previously sampled in May 2022 for sulfate concentrations in support of an ASD evaluation. The highest sulfate concentration from the May 2022 event (Table 2) was detected in upgradient monitoring well GW-04A (304 mg/L), suggesting that a potential source of sulfate upgradient from the Unit may exist.

2.6 Total Dissolved Solids MW-FGD-17, MW-FGD-18, MW-FGD-19D, and MW-FGD-20AR

The TDS SSIs identified at MW-FGD-17, MW-FGD-18, MW-FGD-19D, and MW-FGD-20AR are the result of a potential source upgradient from the Unit. The following evidence supports this determination:

- TDS was detected at concentrations greater than the background threshold value of 329 mg/L in MW-FGD-17 (896 mg/L), MW-FGD-18 (2,560 mg/L), MW-FGD-19D (1,060 mg/L), and MW-FGD-20AR (1,280 mg/L) during the March 2023 sampling event. Based on review of potentiometric surface mapping (Figure 3), the locations of MW-FGD-17, MW-FGD-18, MW-FGD-19D, and MW-FGD-20AR are hydraulically downgradient from Pond D.
- Monitoring wells GW-01R, GW-02R, GW-04A, GW-06R, GW-07R, and GW-08 (Figure 2) were previously sampled in May 2022 for TDS in support of an ASD evaluation. The highest TDS concentration from the May 2022 event (Table 2) was detected in upgradient monitoring well GW-04A (5,130 mg/L), suggesting that a potential source of TDS upgradient from the Unit may exist.

Section 3 Evaluation of CCR Well Network

Pursuant to 40 CFR §257.91(a)(2), the groundwater monitoring network should accurately represent the quality of groundwater passing the waste boundary of the Unit and monitor all potential contaminant pathways. TRC is evaluating the current Certified Monitoring Well Network to determine if it satisfies the CCR rule for horizontal and vertical placements for monitoring groundwater at the waste boundary of the Unit. This evaluation began in January 2023 and is anticipated to conclude in October 2023.

3.1 Evaluation of Background Monitoring Wells

The Unit is located amid solids settling ponds A, B, D, and E as depicted on **Figure 2**. Based on groundwater elevation measurements in this area, one or more of these ponds may act as a groundwater recharge area, generating radial groundwater flow away from the ponds. While not specifically downgradient of the Unit, background monitoring wells MW-FGD-16 and MW-FGD-21 are located hydraulically downgradient of Pond D.

It is suspected that surface water from Pond D may be influencing groundwater for both MW-FGD-16 and MW-FGD-21 and therefore these wells may not accurately represent the quality of background groundwater per the CCR Rule for the Unit. To evaluate this, monitoring wells MW-FGD-23 and MW-FGD-24 were installed in January 2023 along the western boundary of the Unit, between the Unit and Pond D, to monitor groundwater quality in this area. The newly installed monitoring wells are currently gauged for water levels monthly to evaluate groundwater flow of the western side of the Unit. The locations of the new monitoring wells are depicted on **Figure 2**.

3.2 Evaluation of Downgradient Monitoring Wells

Downgradient monitoring wells MW-FGD-17, MW-FGD-18, MW-FGD-19D, and MW-FGD-20AR are located along the northern and eastern boundaries of the Unit. To monitor groundwater quality at the southern boundary of the Unit, monitoring well MW-FGD-22 was installed in January 2023. The newly installed monitoring well is currently gauged for water levels monthly to evaluate groundwater flow on the downgradient portion of the Unit. The location of the new monitoring well is depicted on **Figure 2**.

The two new background monitoring wells have been sampled 8 times (January 2023 to August 2023) for background data collection in accordance with the CCR Rule in the circumstance that these monitoring wells may be used for compliance in the groundwater monitoring network. The data is

currently being evaluated by TRC however, based on preliminary review, the proposed monitoring well network may include:

- Background monitoring wells MW-FGD-23 and MW-FGD-24.
 - Remove existing CCR network wells MWFGD-16 and MW-FGD-21 as they do not appear to provide representative background groundwater quality per CCR Rule §257.91(a)(1)(ii).
- Downgradient monitoring wells MW-FGD-18, MW-FGD-19D, and MW-FGD-20AR.
 - Remove MW-FGD-17 from the existing CCR well network as this well does not appear to monitor groundwater passing beneath the Unit.

The new network will be certified in accordance with the CCR Rule §257.91(f).

The information provided in this report serves as the ASD prepared in accordance with 40 CFR §257.94(e)(2) of the CCR Rule and demonstrates that the SSIs at wells MW-FGD-17, MW-FGD-18, MW-FGD-19D, and MW-FGD-20AR were not due to a release from the Unit to the subsurface, but is most likely due to:

- A potential source located upgradient from the Unit; and/or,
- An existing groundwater monitoring well network that may not be positioned to best represent monitoring of the groundwater quality passing the waste boundary of the Unit.

TRC is evaluating the current Certified Monitoring Well Network to determine if it satisfies the CCR rule for horizontal and vertical placements for monitoring groundwater at the waste boundary of the Unit. This evaluation began in January 2023 and is anticipated to conclude in October 2023. The review will include the evaluation of monthly groundwater level measurements and 8 independent sampling events for background parameter evaluation of the proposed monitoring well network.

Section 5 Certification

I hereby certify that the alternative source demonstration presented within this document for the DESC Williams New FGD Pond Unit has been prepared to meet the requirements of Title 40 CFR §257.94(e)(2) of the Federal CCR Rule. This document is accurate and has been prepared in accordance with good engineering practices, including the consideration of applicable industry standards, and with the requirements of Title 40 CFR §257.94(e)(2).

Name:	Nakia W. Addison, P.E.	Expiration Date

Company: TRC Engineers, Inc.

Expiration Date: June 30, 2024

Date: September 29, 2023

(SEAL)

Section 6 References

- CEC 2021a. Closure Plan, Williams Station New FGD Pond, Goose Creek, South Carolina: Civil & Environmental Consultants, Inc.
- CEC 2021b. Statistical Analysis Plan Certification, Williams Station New FGD Pond, Berkeley County, SC. Civil & Environmental Consultants, Inc.
- Nautilus 2016. Groundwater Sampling and Analysis Plan, Williams Station Landfill. Berkeley County, SC: Nautilus Geologic Consulting, PLLC.
- Nautilus 2021. Alternate Source Demonstration Report, Williams Station Class Three Landfill. Berkeley County, SC: Nautilus Geologic Consulting, PLLC.
- U.S. Geological Survey (USGS) Professional Paper: 1410-E, Hydrology of the Southeastern Coastal Plain Aquifer System in South Carolina and Parts of Georgia and North Carolina, 1996.

LEGEND

- ← CCR BACKGROUND MONITORING WELL
- CCR DOWNGRADIENT MONITORING WELL
- ♦ NPDES MONITORING WELL
- NEW MONITORING WELL INSTALLATION
 LOCATION
- NEW FGD POND BOUNDARY
- PROPERTY BOUNDARY

NOTES:

1. AERIAL IMAGE FROM ESRI WORLD IMAGERY DATED OCTOBER, 2022.

1:2,400 1" = 200'				
0	100	200 FEET		
PROJECT:	G	DESC WILLIA NEW FG DOSE CREEK, S	AMS STAT D POND SOUTH C/	TION AROLINA
TITLE:	Μ	CCR RULE C ONITORING V	OMPLIA	NCE TWORK
DRAWN BY		L. LILL	PROJ. NO.:	416559.0006.0000
CHECKED E	BY:	J. YONTS		
APPROVED	BY:	R. MAYER		FIGURE 2
DATE:		SEPTEMBER 2023		
$\mathbf{\dot{\mathbf{b}}}$		RC	50 IN EWOOD PLA G	ITERNATIONAL DRIVE ZA THREE, SUITE 150 REENVILLE, SC 29615 PHONE: 864.281.0030
FILE:				2023_Figures.aprx

LEGEND

- ← CCR BACKGROUND MONITORING WELL
- CCR DOWNGRADIENT MONITORING WELL
- NEW MONITORING WELL INSTALLATION
- ♦ NPDES MONITORING WELL
- STAFF GAUGE
- NEW FGD POND BOUNDARY
- PROPERTY BOUNDARY
- APPROXIMATE GROUNDWATER FLOW
 DIRECTION
 - WATER TABLE ELEVATION IN FEET ABOVE MEAN SEA LEVEL (0.5' CONTOUR INTERVALS) - DASHED WHERE INFERRED
- 4.31 WATER ELEVATION (FT. MSL)

NOTES:

1. AERIAL IMAGE FROM ESRI WORLD IMAGERY DATED OCTOBER, 2022.

Table 1 Summary of First Semiannual 2023 Detection Monitoring Program Sampling Event Data Dominion Energy South Carolina - Williams Station New FGD Pond Goose Creek, Berkeley County, South Carolina

						Backgrou	und Wells							Downgrad	dient Wells			
		Sample ID:		MW-FC	GD-16			MW-FC	GD-21			MW-FC	GD-17		M	W-FGD-17	' Duplica	te
		Sample Date:		03/21/	2023			03/21/	2023			03/20/	2023			03/20/	2023	
Parameter Name	Units	Background Threshold Values	Result	Qual	MDL	QL	Result	Qual	MDL	QL	Result	Qual	MDL	QL	Result	Qual	MDL	QL
CCR Appendix III																		
Boron	µg/L	66.7	37.4		4.00	15.0	20.0		4.00	15.0	146		4.00	15.0	145		4.00	15.0
Calcium	µg/L	41,700	15,200	30.0 100 45,600			45,600		300	1000	167,000		300	1000	151,000		300	1000
Chloride	mg/L	33.3	28.4	4 0.335 1.00 3.27			3.27		0.0670	0.200	110		1.68	5.00	110		1.68	5.00
Fluoride	mg/L	0.646	0.193		0.0330	0.100	0.0330	U	0.0330	0.100	0.526		0.0330	0.100	0.453		0.0330	0.100
рН	SU	4.67 - 5.82	5.09		0.1	0.1	5.82		0.1	0.1	6.46		0.1	0.1	6.46		0.1	0.1
Sulfate	mg/L	89.2	57.4		0.665	2.00	85.0		1.33	4.00	48.6		3.33	10.0	47.6		3.33	10.0
Total Dissolved Solids	mg/L	329	184		2.38	10.0	238		2.38	10.0	896		4.76	20.0	902		4.76	20.0
Field Parameters																		
Conductivity	μS/cm		300.96		0.1	0.1	439.23		0.1	0.1	1,481.0		0.1	0.1	1,481.0		0.1	0.1
Dissolved Oxygen	mg/L		1.64		0.01	0.01	0.69		0.01	0.01	0.15		0.01	0.01	0.15		0.01	0.01
Temperature	С		18.94		0.01	0.01	18.87		0.01	0.01	18.14		0.01	0.01	18.14		0.01	0.01
Turbidity	NTU		1.84		0.1	0.1	21.9		0.1	0.1	2.39		0.1	0.1	2.39		0.1	0.1
Oxidation Reduction Potential	millivolts		153.1	0.1 0.1 -1.8		-1.8		0.1	0.1	-18.0		0.1	0.1	-18.0		0.1	0.1	

Notes:

MDL = Method Detection Limit

QL = Quantitation Limit

mg/L = Milligram per liter

 μ g/L = Microgram per liter

 $\mu S/cm$ = MicroSiemen per centimeter

SU = Standard Units

C = Degrees Celsius

NTU = Nephelometric Turbidity Unit

Qualifiers (Qual)

U = Samples reported below their respective MDL

= Concentration greater than Background Threshold Values

Bold font = Detected constituent

Table 1 Summary of First Semiannual 2023 Detection Monitoring Program Sampling Event Data Dominion Energy South Carolina - Williams Station New FGD Pond Goose Creek, Berkeley County, South Carolina

					5								
		Sample ID:		MW-F0	GD-18			MW-FG	D-19D			MW-FG	D-20AR
_		Sample Date:		03/20/	/2023			03/20/	2023			03/20	/2023
Parameter Name	Units	Background Threshold Values	Result	Qual	MDL	QL	Result	Qual	MDL	QL	Result	Qual	MDL
CCR Appendix III													
Boron	µg/L	66.7	3,620 200 750 2		2,080		200	750	3,410		200		
Calcium	µg/L	41,700	236,000		1,500	5,000	134,000		1,500	5,000	280,000		1,500
Chloride	mg/L	33.3	1,410		8.38	25.0	645		8.38	25.0	563		13.4
Fluoride	mg/L	0.646	0.611		0.0330	0.100	0.453		0.0330	0.100	0.0906	J	0.0330
рН	SU	4.67 - 5.82	6.72		0.1	0.1	6.79		0.1	0.1	6.53		0.1
Sulfate	mg/L	89.2	60.2		16.6	50.0	38.1		0.665	2.00	160		26.6
Total Dissolved Solids	mg/L	329	2,560		23.80	100	1,060		23.8	100	1,280		23.8
Field Parameters													
Conductivity	μS/cm		5,448.9		0.1	0.1	2,646.1		0.1	0.1	2,802.5		0.1
Dissolved Oxygen	mg/L		0.14		0.01	0.01	0.10		0.01	0.01	0.23		0.01
Temperature	С		19.79		0.01	0.01	21.97		0.01	0.01	18.92		0.01
Turbidity	NTU		1.82		0.1	0.1	20.2		0.1	0.1	4.91		0.1
Oxidation Reduction Potential	millivolts		-109.5		0.1	0.1	-86.1		0.1	0.1	-20.2		0.1

Notes:

MDL = Method Detection Limit

QL = Quantitation Limit

mg/L = Milligram per liter

 μ g/L = Microgram per liter

 μ S/cm = MicroSiemen per centimeter

SU = Standard Units

C = Degrees Celsius

NTU = Nephelometric Turbidity Unit

Qualifiers (Qual)

J = Estimated results

= Concentration greater than Background Threshold Values

Bold font = Detected constituent

QL
750
5,000
40.0
0.100
0.10
80.0
100
0.1
0.01
0.01
0.1
0.1

Table 2 - Summary of May 2022 Sampling Event Data Dominion Energy South Carolina - Williams Station New FGD Pond Goose Creek, Berkeley County, South Carolina

	Sample ID:		GW-01R		GW-02R			GW-04A			GW-06R				GW-07R					GV	/-08				
	Sample Date:		05/2	25/2022			05/2	25/2022			05/2	5/2022			05/2	5/2022			05/2	5/2022			05/25	5/2022	
Parameter Name	Units	Result	Result Qual MDL RL		Result	Qual	MDL	RL	Result	Qual	MDL	RL	Result	Qual	MDL	RL	Result	Qual	MDL	RL	Result	Qual	MDL	RL	
CCR Appendix III																									
Boron	µg/L	11,900		400	1500	9,130		400	1500	20,100		800	3000	6,510		200	750	3,330		200	750	7,040		200	750
Calcium	µg/L	685,000		600	2000	444,000		600	2000	1,290,000		1500	5000	491,000		600	2000	325,000		600	2000	307,000		600	2000
Chloride	mg/L	1,800		33.5	100	1,510		33.5	100	2,820		33.5	100	931		33.5	100	596		6.70	20.0	710		6.70	20.0
рН	SU	6.48		0.01	0.01	3.39		0.01	0.01	6.36		0.01	0.01	3.44		0.01	0.01	3.56		0.01	0.01	6.08		0.01	0.01
Sulfate	mg/L	162		13.3	40.0	181		13.3	40.0	304		13.3	40.0	123		13.3	40.0	81.4		13.3	40.0	152		13.3	40.0
Total Dissolved Solids	mg/L	3,500		3.40	14.3	3,140		3.40	14.3	5,130		3.40	14.3	2,060		3.40	14.3	1,330		3.40	14.3	1,350		3.40	14.3

Notes:

MDL = Method Detection Limit

RL = Reporting Limit

mg/L = Milligram per liter

 μ g/L = Microgram per liter

Appendix C First Semiannual Detection Monitoring Program Event Field Data Sheets, Laboratory Reports, and Data Validation Forms

Dominion Energy*	GROL	JNDW/	ATER L	EVEL	MEASU	REME	NT FOI	RM
P	ROGRAM:	CCR/NPI	DES		FACILITY:	Williams Ge	enerating	Station
	DATE:	03/20/202	23	PROJECT	NUMBER:	416559.00	06.000	
SAMPLER(S)	NAME(S):	B. Medlin, A.	. Misiunas, R	. Culp				
	-	-			1			
Well ID	Well Type	Time (hhmm)	Depth (bto	to GW oc,ft)	Depth to (btoc	Bottom ,ft)	No	tes/Remarks
WMS-GW-01R	2" PVC	1530	10	.65	NM	1		
WMS-GW-02R	2" PVC	1432	11	.33	NM			
WMS-GW-04A	2" PVC	1506	10	.39	NM			
WMS-GW-06R	2" PVC	1517	10	.29	NM			
WMS-GW-07R	2" PVC	1523	11	.35	NM			
WMS-GW-08	2" PVC	1526	1526 11.3		NM			
WMS-GW-09	2" PVC	1716	6.	31	NM	1		
WMS-MW-FGD-16	2" PVC	1618	8.	67	NM	1		
WMS-MW-FGD-17	2" PVC	1419	7.	45	NM	1		
WMS-MW-FGD-18	2" PVC	1428	8.	65	NM	1		
WMS-MW-FGD-19D	2" PVC	1356	9.	05	NM	1		
WMS-MW-FGD-20AR	2" PVC	1438	6.	15	NM	1		
WMS-MW-FGD-21	2" PVC	1724	9.	49	NM			
see comments	2" PVC	1446	7.	79	NM	1	Ν	/W-FGD-22
see comments	2" PVC	1453	8.	05	NM	1	Ν	/W-FGD-23
see comments	2" PVC	1457	8.	19	NM	1	Ν	/W-FGD-24
	Notes:							
Field Team Leader	Signature:	Jason A.	Yonts	Digitally signed b Date: 2023.03.29	y Jason A. Yonts 11:03:36 -04'00'	Signatu	ure Date:	03/29/2023

WATER SAMPLE LOG

				I										
PROJECT	F NAME:	Willian	ns Station - CC	R 2023Q1		PR	EPARED			CHEC	KED			
PROJECT		R: 41655	9.0006.0000	E	3Y: A C	m	DATE: 3	ગઝ	ba: JWB	.	DATE: 3/27/23			
SAMPLE	ID: M	N-FGD-1	6	WELL DI	IAMETE	ER: 🗸	2" 4"	6"	OTHER					
WELL MAT	ERIAL:	✓ PVC	ss 🗌	IRON 🗌 (GALVA	NIZEDS	TEEL		OTHER					
SAMPLE T	YPE:	⊡ GW		sw 🗌 I	DI		LEACHATE		OTHER					
PUR	GING	TIME: DQ	31 DA	™:3· <i>31.</i> 3	り	S	AMPLE	TIME: \	1005	DA	NTE: 3-21.23			
). []	PUMP	PERISTALTIC F	PUMP		PH:	<u>5.09</u> s	U CO		ITY: <u>300-</u>	umhos/cm			
		BAILER		<u> </u>		ORP:	<u>157'</u> u		. <u> </u>	<u>21</u> mg	/L			
	D VVATER:	19.20												
		10.39			s	TEMPE		<u>,94</u>	°C 0TH					
VOLUME		1.2			 S	COLO	2: Cler.			DR: 1	bru			
COLOR:	de		OD(OR: MOR		FILTRA	TE (0.45 um)		s 🔽	NO				
		- TUF	RBIDITY			FILTRA	TE COLOR: _			TRATE ODC	PR:			
DISPOSAL	METHOD					POST	URBIDITY:		NTU TIM	1E:	DTW: ชิ.าช			
		F				СОММ	ENTS: FBLK	-wM	5-FGD	-23102	@ 1010			
TIME	PURGE RATE	PH	CONDUCTIVITY	ORP		D.O.	TURBIDITY	ТЕМРІ	ERATURE	WATER LEVEL	CUMULATIVE PURGE VOLUME			
	(GPM or ML/MIN)	(SU)	(umhos/cm)	(mV)	(mg/L)	(NTU)	((°C)	(FEET)	(GAL OR L)			
0930	135	5.22	405.00	119.7	1	1.14	16.3	14.	48	8.72	INITIAL			
<u>0</u> 935		5.15	339.17	114.0	2	.IQ	7.52	18.	٥5	8.74				
0940		5.13	336.87	118.0		٥5	5.98	5.98 18.1			/			
0945		5.10	318.41	126.9	1.	86	2.64	18.4	14	8.76				
0950		5.14	325.38	133.4	1.	86	3.81	\8.	67	3.78	(
0955		5.09	306.11	141.4	1.	าว	443	18:	3)	<u> </u>				
1000		5.10	303.61	147.)	1.	60	2.21	18.8	85					
1005		5.09	300.96	153.)	<u> </u>	64	1.84	18.	94		1.2			
N	OTE: STAE	BILIZATION	TEST IS COMP	LETE WHEN :	3 SUCO	CESSIVE	READINGS A	RE WITI	HIN THE F	OLLOWING	G LIMITS:			
pH: +/-	0.1	COND.: +/-	3% ORP:	+/- 10	D.O.:	+/- 10 9	% TURB: +/-	10 %	or =</td <td>5</td> <td>TEMP.: +/- 3%</td>	5	TEMP.: +/- 3%			
BOTTLE	S FILLED	PRESERV	ATIVE CODES	A - NONE	В -	HNO3	C - H2SO4	D -	NaOH	E - HC	L F			
NUMBER	SIZE	TYPE	PRESERVATI	VE FILTEI	RED	NUMB	ER SIZE	TYF	PE PR	RESERVATI	VE FILTERED			
2	250 mL	PLASTIC	В		√ N									
2	250 mL	PLASTIC	A	ΓY	√ N									
. 1	125 mL	PLASTIC	A		√ N						U Y U N			
				ΠY	N									
					N						Y N			

Shipping Method:	DATE SHIPPED:	AIRBILL NUMBER:
	SIGNATURE:	DATE SIGNED:

>TRC

WATER SAMPLE LOG

PROJECT	NAME:	Willian	ns Station - CC	R 2023Q1	PR	EPARED		CHEC	KED			
PROJECT	NUMBE	R: 41655	9.0006.0000	BY:	PPC	DATE: 03	120 BY: JM	в	DATE: 3/27/23			
SAMPLE	ID: M	N-FGD-1	7	WELL DIAM	1eter: 🗸	2" 4"	6" 🗌 OTHER					
WELL MAT	ERIAL:	✓ PVC	ss 🗌		LVANIZED S	STEEL		!				
SAMPLE T	YPE:	⊡ GW	ww 🗆	SW 🗌 DI		LEACHATE		!	``````````````````````````````````````			
PUR	GING		125 DA	TE: 03/20	S	AMPLE	TIME: 1456) D4	ATE: 03/20			
PURGE METHOE):	PUMP BAILER	PERISTALTIC P	UMP	PH: ORP:	6.46 s		VITY: 148	۱.۰ umhos/cm			
DEPTH TO	WATER:	7.45	T/ PVC		TURBI	DITY: 2.39						
DEPTH TO		: 18.50	T/ PVC		_ X NO		GHT 🗌 M	DDERATE				
WELL VOL	WELL VOLUME: <u>1.77</u> LITERS GALLONS TEMPERATURE: <u>18.14</u> °C OTHER: <u></u>											
VOLUME REMOVED: 0.85 LITERS GALLONS PC COLOR: CLEAN ODOR: NOR: NOR: NOR: NOR: NOR: NOR: NOR: N												
COLOR:	C	leur	OD(DR: Hove	- FILTRA	TE (0.45 um)	YES -		slight Sull	fur		
TURBIDITY SULFUR FILTRATE COLOR: FILTRATE ODOR: NONE SLIGHT MODERATE VERY QC SAMPLE: MS/MSD DU-WMS-FGD-23(0)												
DISPOSAL	METHOD	: 🗌 GROUI	ND 🗌 DRUM	✓ OTHER	POST		<u>.37</u> NTU Т	ME: 1534	DTW: 7.85			
TIME	PURGE RATE	РН	CONDUCTIVITY	ORP	D.O.		TEMPERATURE	WATER	CUMULATIVE PURGE VOLUME			
	(GPM or ML/MIN)	(SU)	(umhos/cm)	(mV)	(mg/L)	(NTU)	(°C)	(FEET)	(GAL OR L)			
1430	80	6.40	1863.1	56.0	0.65	2.98	21.28	1.75	INITIAL			
1435	80	6.44	1441.3	20.2	0.14	2.65	18.52	7.80				
1440	80	6.45	144352	5.3	6.15	2.26	18.04	7.85				
1445	ŠO	6.46	1461.5	-5.2	0.16	2.45	18-07	7.85				
1450	.80	6.46	1472.0	-11.9	0.16	3.18	18.08	7.85				
1453	80	6.46	1476.6	~14.6	0.16	3.17	18.16	7.85				
1456	80	6.46	1481.0	-18.0	0.15	2.39	18.14	7.85				
		-										
					- -							

NOTE: STABILIZATION TEST IS COMPLETE WHEN 3 SUCCESSIVE READINGS ARE WITHIN THE FOLLOWING LIMITS:

pH: +/- **0.1**

COND.: +/- 3 % ORP: +/- 10 D.O.: +/- 10 % TURB: +/- 10 % or </= 5

TEMP.: +/- 3%

BOTTLES	S FILLED	PRESERVA	ATIVE CODES	Δ-	NON	E		В-	HNO3	C - H2SO4	D - NaOł	E - HCL	F			
NUMBER	SIZE	TYPE	PRESERVA	TIVE	FI	LT	EREI	D	NUMBER	SIZE	TYPE	PRESERVATIVE	FILT	ERED		
2	250 mL	PLASTIC	В			Y	$\overline{\mathbf{A}}$	Ν					Υ	N		
2	250 mL	PLASTIC	А			Y	~	N					ΠY			
1	125 mL	PLASTIC	А			Y	7	Ν					ΠY	N		
								Ν					ΠY			
								N					ΠY	N		
SHIPPING	METHOD:	DATE SHIPPED:					D:				AIRBILL NUMBER:					
COC NUMBER:					TUR	Ξ:					DATE SIG	DATE SIGNED:				

PAGE _____ OF _____

🗌 N

ΠY

2

2

250 mL PLASTIC

PLASTIC

250 mL

WATER SAMPLE LOG

PROJEC	T NAME:	Williar	ns Station - CC	R 2023Q1		PR	EPARED			CHECK	(ED
PROJEC		R: 41655	9.0006.0000	1	^{BY:} A	3M	DATE: 3-3	10:33 BY:	JWI	B I	DATE: 3/27/23
SAMPLE	ID: M	N-FGD-1	8	WELL D	IAMETI	ER: 🗸	2" 4"	6" 🗌 ОТ	HER		
WELL MAT	FERIAL:	✓ PVC	ss 🗌		GALVA	NIZED S	STEEL	🗌 от	HER		
SAMPLE T	YPE:	√ GW	Dww D	sw 🗌	DI		LEACHATE	от	HER		
PUR	GING	TIME: \ 5	DA DA	TE: 3.90.5	2 3	S	AMPLE	TIME: 160		DAT	⊧∷ઽે~90.9?
PURGE METHOE	ک ۲ :	PUMP BAILER	PERISTALTIC F	PUMP		PH:	<u>6.7∂</u> s ∽109.5 m			ודץ: <u>\$448</u> א המוו	9 umhos/cm
		7.41	T/ PVC							<u>1 </u>	-
DEPTH TO		18.30	T/ PVC				NE 🗌 SLI	у— тто GHT Г		DERATE	
WELL VOL	UME:	1.7		GALLON	s		RATURE: 19	.79 °C	OTH	IER:	
VOLUME	REMOVED:	0.6		GALLON	s	COLO	R: dear		ODO		
COLOR:	cle	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	OD	OR: 101		FILTRA	TE (0.45 um)	 YES	 	NO	
		TUF	RBIDITY			FILTRA	TE COLOR:		FIL	TRATE ODOF	t:
NONE	🗌 SLI	GHT 🗌	MODERATE	VER'	Y	QC SA	MPLE: 🗌 MS	/MSD		DU	
DISPOSAI	L METHOD:	GROU	ND 🗌 DRUM	✓ OTHER		POST		. רו אדע	TIM	1E: 1642 1	DTW: 7.89
						COMM	ENTS:				_
TIME	PURGE RATE	РН	CONDUCTIVITY	ORP		D.O.	TURBIDITY	TEMPERAT	URE	WATER LEVEL	CUMULATIVE PURGE VOLUME
	(GPM or ML/MIN)	(SU)	(umhos/cm)	(mV)	((mg/L)	(NTU)	(°C)	(°C)		(GAL OR L)
1540	75	6.66	5158.0	-90.0	C	.58	5,0)	21.29		7.5 %	INITIAL
1545	$\overline{)}$	6.73	5202.4	-104.7	0	.18	1.27	18.99		7.66	<u> </u>
1550		6.74	5212.1	-107.3	0	17	5.33	19.08		7.78	
1555		6.14	5273.1	-108.3	0	.17	0.94	19.05		7.89	
1600		6.73	5339.)	-109.2	0	.15	2.20	19.21)	1	
1605	(6.73	5367.8	-109.0	0.	.15	3.12	19.32			N
1610		6.72	5448.9	-109.5	0.	14	1 82	19.79			0.6
						• ,		,			
-											
N	OTE: STAP		TEST IS COMP	LETE WHEN :		CESSIVE			THE F		LIMITS:
pH: +/-	0.1	COND.: +/-	3% ORP:	+/- 10	D.O.:	: +/- 10	% TURB: +/-	10 % or	=</td <td>5 T</td> <td>EMP.: +/- 3%</td>	5 T	EMP.: +/- 3%
BOTTLE	S FILLED	PRESERV	ATIVE CODES	A - NONE	В-	HNO3	C - H2SO4	D - NaC	н	E - HCL	F
NUMBER	SIZE	TYPE	PRESERVATI		NUMB	ER SIZE	TYPE	PF	RESERVATIV	E FILTERED	

		1		L	- I I -	Ľ				1	ļĽ.	1.	
1	125 mL	PLASTIC	A] Y	$\overline{\checkmark}$	N					Y	Ν
] Y		Ν					Y	Ν
] Y		Ν					Υ	Ν
SHIPPING	METHOD:			DATE SH	IIPPE	ED:		 	AIRBILI	NUMBER:			
		SIGNAT	JRE:			 	DATE S	GNED:					
	00/2011												

□ Y ✓ N □ Y ✓ N

в

А

N

ΠY

ΠY

ΠY

AIRBILL NUMBER:

DATE SIGNED:

WATER SAMPLE LOG

PROJECT	NAME:	Williar	ns Station - CC	R 2023Q1		PR	EPARED		CHECKED		
PROJECT	NUMBER	R: 41655	9.0006.0000	Ε	3Y: 🏹	GM	DATE:3.2	ЮЭ) ВҮ: .	1 mB	[DATE: 3/27/23
SAMPLE	ID: M\	N-FGD-1	9D	WELL DI	AMETE	ER: 🗸	2" [] 4" []	6" 🗌 OTH	IER		
WELL MAT	ERIAL:	✓ PVC	🗌 SS 🗌		GALVA	NIZED 8	STEEL	🗌 ΟΤΗ	IER _		
SAMPLE T	YPE:	√ GW	w	SW 🗌 [DI		LEACHATE	ΟΤΗ	IER		
PUR	GING	тіме:\५	2 2 DA	TEZ-DOD	3	s	SAMPLE TIME: 1500			DAT	E:3.20.2)
PURGE METHOD	PURGE PUMP PERISTALTIC PUMP METHOD: BAILER					PH: <u>6.79</u> SU CONDUCTIVITY: <u>2646.</u> umhos/cm ORP: - 36. mV DO: 3.10 mg/L					
DEPTH TC	WATER:	9.13	T/ PVC			TURBI	DITY: 20.2				
DEPTH TC	DEPTH TO BOTTOM: 28.20 T/ PVC						NE 🕅 ŠLI	GHT 🗌	MODE	RATE	
WELL VOL	UME:	3			6	TEMPE	RATURE: QI	.97 °C	OTHE	२:	
VOLUME F	REMOVED:	1.2			6	COLO	R: haht bro	m/char	ODOR	: <u>nół</u>	۹
COLOR:	<u>tigh</u>	t prom	<u>r od</u>	OR: none		FILTR A	TE (0.45 um)	YES	✓ N	C	
	9	TUF	RBIDITY			FILTRA	TE COLOR:		FILTR	ATE ODOF	<u>}:</u>
	🗌 SLI	GHT 🗌	MODERATE		(QC SA	MPLE: 🔀 MS	/MSD		DU	
						POST		<u>.)</u> NTU	TIME:	1530 r	DTW: 9,24
						COMM	IENTS: FBLK	23101 WI	ected	<u>@151</u>	5
TIME	PURGE RATE	PH	CONDUCTIVITY	ORP		D.O.	TURBIDITY	TEMPERATU		NATER LEVEL	CUMULATIVE PURGE VOLUME
	(GPM or ML/MIN)	(SU)	(umhos/cm)	(m _v V)	(mg/L)	(NTU)	(°C)		(FEET)	(GAL OR L)
1425	125	6.46	2441.8	79.5	۵	.43	80.8	25.38	0	1.22	INITIAL
1430		6.71	2616.1	15.3	0	-15	441	<u> </u>		\	
1435		6.72	2624.4	-12.5	0.	13	35.4	21.66	4	1.24	
1440		6.7)	2631.4	-28.5	٥.	12	24.4	21,44		\mathbf{i}	
1445		6.71	2639.9	-41.5	0.	6	24.6	21.62			
1450		6.75	2631.3	-68.5	C	. 10	20 .)	21.94			
14 55		6.76	2629.6	-75.6	٥.	16	16.8	21,79			\backslash
1500	l	6.79	2646.)	-86.)	0.	10	20.2	31.97		\sum	1.9
											· · · · ·
N (pH: +/-	OTE: STAB	COND.: +/-	TEST IS COMP 3 % ORP:	LETE WHEN 3	B SUCO D.O.:	CESSIVE : +/- 10	E READINGS A % TURB: +/-	RE WITHIN T 10 % or	HE FOL = 5</td <td>LOWING.</td> <td>LIMITS: "EMP.: +/- 3%</td>	LOWING.	LIMITS: "EMP.: +/- 3%
BOTTLES	SFILLED	PRESERV	ATIVE CODES	A - NONE	В-	HNO3	C - H2SO4	D - NaO	4	E - HCL	. F
NUMBER	SIZE	TYPE	PRESERVATI		RED	NUMB	ER SIZE	TYPE	PRES	SERVATIV	E FILTERED
2	250 mL	PLASTIC	В		2 N		-				

V N

✓ N

ΥΠ

N

N |

□ |Y

DATE SHIPPED:

SIGNATURE:

Y

Y

COC NUMBER: REVISED 06/2011

SHIPPING METHOD:

2

1

250 mL

125 mL

PLASTIC

PLASTIC

А

А

WATER SAMPLE LOG

PROJECT NAME: Williams Station - CCR 2023Q1					PREPARED C			CHEC	CHECKED		
PROJECT	NUMBER	R: 41655	9.0006.0000	BY:	PPC	DATE:03	ZO BY: JM	3	DATE: 3/27/23		
SAMPLE	ID: M \	N-FGD-2	DAR	WELL DIAM	IETER: 🗸	2" [] 4" []	6" 🗍 OTHER				
WELL MAT	ERIAL:	✓ PVC	ss 🗌	IRON 🗌 GAI	LVANIZED S	TEEL	OTHER				
SAMPLE T	YPE:	⊡ GW	ww 🗆	SW 🗌 DI		LEACHATE					
PUR	GING	TIME:		1E03 20	S	AMPLE	TIME: 1631	DA	TE:03/20		
PURGE METHOD	⊡ ::	PUMP BAILER	PERISTALTIC P	UMP	PH: <u>6.53</u> SU CONDUCTIVITY: <u>2802.5</u> umhos/cr						
DEPTH TO	WATER:	6.18	T/ PVC		TURBI	DITY: 4.9					
DEPTH TO		22.70	T/ PVC			NE 🕅 SLI	GHT 🗌 МОІ	DERATE			
WELL VOL	UME:	2.64	LITERS	GALLONS	TEMPE	RATURE: 18	.92 °C OTH	IER:			
VOLUME REMOVED: 0.90 LITERS GALLO					COLO	R: <u>Clear</u>		DR:	None		
COLOR:	C	leer	OD0	DR: None	Filtra	TE (0.45 um)	YES 🗸	NO			
	NONE SLIGHT MODERATE VERY QC SAMPLE: MS/MSD JU-										
DISPOSAL	. METHOD:				POST ⁻		. <u>20</u> NTU TIN	<u>⊫:1653</u>	DTW: 6. 25		
	DUDOF		I			ENTS:	-				
TIME	RATE	PH	CONDUCTIVITY	ORP	D.O.	TURBIDITY	TEMPERATURE	LEVEL	PURGE VOLUME		
	(GPM or ML/MIN)	(SU)	(umhos/cm)	<u>(</u> mV)	(mg/L)	(NTU)	(°C)	(FEET)	(GAL OR L)		
1605	90	6.55	2590.5	-1.6	2.96	7.12	20.42	6.25	INITIAL		
1610	90	6.51	2730.8	-10.9	0.49	5.86	19.08	6.25			
1615	90	6.52	2770.2	-16.Ż	0.36	6.26	19.70	6.25			
1620	90	6.53	2719.6	-16.4	0.26	6.42	18.52	6.25			
1625	90	6.52	2753.3	-17.8	0.25	4.16	18.52	6.25			
1628	90	6.53	2766.6	-18.6	0.23	4.55	18.43	6.25	V		
1631	90	6.53	2802.5	-20.2	0.23	4.91	18.92	6.25	0.90		
		-									

NOTE: STABILIZATION TEST IS COMPLETE WHEN 3 SUCCESSIVE READINGS ARE WITHIN THE FOLLOWING LIMITS:

pH: +/- 0.1 COND.: +/- 3% ORP: +/- 10 D.O.: +/- 10% TURB: +/- 10% or </= 5 TEMP.: +/- 3%

BOTTLES	BOTTLES FILLED PRESERVATIVE COD				NONE	1		В-	HNO3	C - H2SO4	D - NaO⊦	E - HCL	F	[
NUMBER	SIZE	TYPE	PRESERVAT	TIVE FILTEI			REI)	NUMBER	SIZE	TYPE	PRESERVATIVE	FILTERE	Ð
2	250 mL	PLASTIC	В			, [7	N					V V	Ν
2	250 mL	PLASTIC	A			,	7	N						Ν
1	125 mL	PLASTIC	А	A 🗌 Y			ノ	N						Ν
						1		Ν						Ν
				l		·		N					DY D	Ν
SHIPPING METHOD:				DATE SHIPPED:							AIRBILL	NUMBER:		
			SI	SIGNATURE:							DATE SIC	GNED:		

|--|

WATER SAMPLE LOG

PROJECT	PROJECT NAME: Williams Station - CCR 2023Q1					PREPARED				CHECKED		
PROJEC1	NUMBER	R: 41655	9.0006.0000	B	Y: By	м	DATE: 3.2	1.23 BY:	Jub	ξ	DATE: 3/27/23	
SAMPLE	id: MV	N-FGD-2	1	WELL DIA	METER	≀ : √	2" [] 4" []	6" 🗌 OTH	IER			
WELL MAT	ERIAL:	V PVC	ss 🗌		ALVAN	IZED S	TEEL	🗌 отн	IER			
SAMPLE T	YPE:	⊡ GW	[]	SW 🗌 D	I		LEACHATE		IER		····	
PUR	GING	TIME: 04	155 DA	TE: 3.2).	23	S	AMPLE	TIME:	1)0	D/	ATE: 3.21.23	
PURGE METHOD):	PUMP BAILER	PERISTALTIC	^D UMP		PH: ORP:	<u>5.82</u> s <u>-1.8</u> m	U CONDU	стіvі <u>0</u> ,	TY: <u>439</u> 69 mg	1.2 <u>3</u> umhos/cm /L	
DEPTH TO	DEPTH TO WATER: T/ PVC					TURBI	DITY: <u>21.9</u>	NTU				
DEPTH TO	BOTTOM:	20.92	T/ PVC		[NE 🗹 SLI	GHT 🗌	MOE	DERATE		
WELL VOL	UME:	1.8		GALLONS	Т	EMPE	RATURE: 12	. <u>87</u> °C	отн	IER:		
VOLUME F	REMOVED:	1.5		GALLONS		COLO	R: Clear W	fine sed.	ODC	DR:	pore	
COLOR:	Clear	w orage	<u>sed.</u> OD	OR: none	<u> </u>	ILTRA	TE (0.45 um)	YES	, 🗸	NO		
TURBIDITY					F	ILTRA	TE COLOR:		FILT	RATE ODC)R:	
	SLI	GHT 🗌	MODERATE			QC SA	MPLE: 🗌 MS	MSD		DU	13 <u>1</u>	
DISPOSAL	METHOD:				F	POST	furbidity: <u>1</u>	6.6 NTU	ТΙМ	E: 1135	dtw: 9.64	
	BUDOF				(ENTS:					
TIME	RATE	РН	CONDUCTIVITY	ORP	D	.0.	TURBIDITY	TEMPERATI	JRE	WATER LEVEL	CUMULATIVE PURGE VOLUME	
	(GPM or ML/MIND	(SU)	ု' (umhos/cm)	(mV)	(m	g/L)	(NTU)	(°C)		(FEET)	(GAL OR L)	
1000	80	5.72	486.13	40.9	}.	80	50.5	17.5	5	9.64	INITIAL	
1005		5.74	451.21	30.3	1.	45	40.2	18.0	7			
1010		5.79	448.65	20.7	1.	29	30.6	18.5				
1015		5.80	443.77	15.3	1.	})	47.9	18.69				
1020		5.81	441.78	12.4	1.	09	45.6	18.82	-			
1025		5.81	441.22	7.7	0.	99	35.3	18.89		- I		
1030		5.82	441.10	6.7	0.	93	37.1	18.9				
1100		5.83	440.15	-0.1	0.	75	22.6	19.53	5			
1105		5.83	439.63	-1.)	0	7]	25.2	19.23	_			
111D		5.82	439.23	-1.8	0.	69	21.9	18.87			1.5	
N	OTE: STAB		TEST IS COMP	LETE WHEN 3	SUCCE	SSIVE	READINGS A		HE FO		G LIMITS:	
pH: +/-	0.1 (COND.: +/-	3% ORP:	+/- 10	D.O.: +	/- 10 9	% TURB: +/-	10 % or	=</td <td>5</td> <td>TEMP.: +/- 3%</td>	5	TEMP.: +/- 3%	
BOTTLES	6 FILLED	PRESERV	ATIVE CODES	A - NONE	B - F	INO3	C - H2SO4	D - NaOl	Н	E - HC	 %L F	
NUMBER	SIZE	TYPE	PRESERVATI	VE FILTERI	ED I	NUMB	ER SIZE	TYPE	PR	ESERVATI	VE FILTERED	
2	250 mL	PLASTIC	В	□ Y 🗸] N							
2	250 mL	PLASTIC	A	□ Y ✓] N							
1	125 mL	PLASTIC	A	□ Y ✓] N							
	-] N							
				T Y] N							
SHIPPING	METHOD:		DA	TE SHIPPED:				AIRBILL	NUME	BER:		
	BER:		SI	GNATURE: /	$\overline{}$			DATE SI	GNED): 3	21-23	

COC NUMBER:

>TRC

Rost

WATER QUALITY METER CALIBRATION LOG

PROJECT NAME:	Williams Station	MODEL: AQUA TROLL 400	SAMPLER: BM / AMY RC
PROJECT NO.:	416559.0006.0000	SERIAL #: 383546	DATE: 3.20.2)

	PH	CALIBRATION CHECK		SPECIFIC CONDUCTIVITY CALIBRATION CHECK					
	pH 7	pH 4 / 10				CAL. READING	TEMPERATURE		
	(LOT #):2216893	(LOT #): 🔶	CAL.			(LOT #):		CAL.	TIME
	(EXP. DATE): \\ (23	(EXP. DATE): 🗕	RANGE			(EXP. DATE):	(°CELSIUS)	RANGE	
	PRE-CAL. READING / STANDARD	PRE-CAL. READING / STANDARD				PRE-CAL. READING / STANDARD			1
	691 / 7,00	4.08 14.00		1309		4.50 14.49	19.00	WITHIN RANGE	1309
Fest	7.00 / 7.00	4.00 / 4.00		1309	Post	4.49 14.49	20.11		1309
,	· 1	10 ^{MM} /				1			
	1 · · · · · · · · · · · · · · · · · · ·	1				1		WITHIN RANGE	
	ORP	CALIBRATION CHECK				D.O. CAL	IBRATION CHEC	K	
	CAL. READING	TEMPERATURE				CALIBRATION R	EADING		
	(LOT #):21390147 (EXP. DATE): 11 /23	(°CELSIUS)	CAL. RANGE	TIME		mg/L		CAL. RANGE	TIME
	PRE-CAL. READING / STANDARD								
	218 /228mV	20.06		1309		Temp: 20°L			1309
Post	225 /228	20.24		1309		Baro? 770mmHg			
	/					Actual: 9,07			
	1					CNUTA			
	TURBID	ITY CALIBRATION CHEC	ĸ		1		COMMENTS		с.
	CALIBRATION	READING (NTU)				AUTOCAL SOLUTION	STANDARD S	BOLUTION (S)
	(LOT #): ~/~ (EXP. DATE): ~ /~	(LOT #): ~/~	CAL. RANGE	TIME		(LOT #):22350153 (EXP. DATE): 11/23	LIST LOT NUMBERS A UNDER CALIB	ND EXPIRATI RATION CHE	ON DATES CK
	PRE-CAL. READING / STANDARD	POST-CAL. READING / STANDARD				CALIBRATED PARAMETERS	CALIBRATIC	N RANGES (ų
	0,45 / 0	0 / 0		1209		Г рН	pH: +/- 0.2 S.L	J.	
	1.52 1	1.00 / 1					COND: +/- 1% OF	CAL. STAN	DARD
	11.4 / 10	10.3 / 10					ORP: +/- 25 mV		
	1	1	WITHIN RANGE			□ D.O.	D.O.: VARIES		
		NOTES				TURB	TURB: +/- 5% OF	CAL. STAN	DARD
	5/N 1837-3919						⁽¹⁾ CALIBRATION RAN THE MODEL OF THE V	GES ARE SP VATER QUAL	ECIFIC TO ITY METER
		~ ę						-	
					1 ,	· · · · · · · · · · · · · · · · · · ·		• •••	

PROBLEMS ENCOUNTERED	CORRECTIVE ACTIONS
NORE	rone.

4 3.90.93 DATE SIGNED

CHECKED BY Bradley 3/27 DATE

>TRC

WATER QUALITY METER CALIBRATION LOG

PROJECT NAME:	Williams Station	MODEL: AQUA TROLL 400	SAMPLER: BM / AM / RC
PROJECT NO .:	416559.0006.0000	SERIAL #: BS1425	DATE: 3.20-22

	PH	CALIBRATION CHECK				SP	ECIFIC CONDU	ICTIVITY CALIBR	ATION C	HECK
	pH 7	pH 4 / 10].	CAL.	READING	TEMPERATURE		
	(LOT #): 2216893	(LOT #):	CAL.	715.45		(LOT #): ~~			CAL:	
· ·	(EXP. DATE): 11/23	(EXP. DATE):	RANGE			(EXP. DATE):		(°CELSIUS)	RANGE	TIME
	PRE-CAL. READING / STANDARD	PRE-CAL. READING / STANDARD	- -			PRE-CAL. RE	EADING / STÁNDARD			
	6.85 17,00	4.09 /4.00		1309		4,60	14.49	18.95		1309
Part	7.00 17.00	4.00 14.00		1309	Post	4.49	14.49	21.86		1209
~	1	1					1			1001
	/	I I					1			
	ORP	CALIBRATION CHECK	,I.,		3		D.O. CAL	IBRATION CHEC	K	L
	CAL. READING	TEMPERATURE]	(CALIBRATION R	EADING		
	(LOT #12) 1390 144	(*OEL 81118)	CAL.	TIME		1.			CAL.	-
	(EXP. DATE): 11(みう	(CELSIUS)	RANGE				mg/L	1	RANGE	
	PRE-CAL, READING / STANDARD								· .	
	204 /228mV	20,97		1309		Emp'a	б ^о х			V309
Post	228 1229	21.45		1309		Baro"	Journity			
	. /					Actual!	9.0 mgTL			
	1					CAC.9.	2 mg/L			
						ļ	<u>ບ</u>	COMMENTO		
				· .	1					
							250163		SOLUTION (3)
	(EXP. DATE):	(EXP. DATE):	RANGE	TIME		(EVP DATE)	N/17	LIST LOT NUMBERS A UNDER CALIB	ND EXPIRATI RATION CHE	ON DATES
	PRE-CAL. READING / STANDARD	POST-CAL, READING / STANDARD				CALIBRATI	The parameters		N PANCES (1)
	107/0	2 / 2		1300		q 🗸	H	pH: +/- 0.2 S.U		
	220 / 1	101 / 1		1201		. ⊡ c	OND	COND: +/- 1% OF	CAL. STAN	DARD
	7.10 / 10	a.11 / 10					DRP	ORP: +/- 25 mV		
	1	1).O.	D.O.: VARIES		
		NOTES			1		URB	TURB' +/- 5% OF	CAL STAN	DARD
	(1) (5 (1) (1) (1)	NOTES			1				0,12,0,1,1	
	5/10 1511-411							⁽¹⁾ CALIBRATION RAN	GES ARE SP	ECIFIC TO
								THE MODEL OF THE V	ATER QUAL	ITY METER
						· ·		I		
				· .	 					
	PI	ROBLEMS ENCOUNTERED					CORRECTI	VE ACTIONS		
	none				no	ne				
						:	a			
		I								
						$\overline{\Lambda}$	10	11		
	M		56.063			Sal	d Bun	dun ,	3/2	7/23
	SIGNED		DATE			CHECK	KED BY	X		DATE
						/	(/		

PAGE _____ OF ____

WATER QUALITY METER CALIBRATION LOG

PROJECT NAME:	Williams Station			MODEL:	AQUA TROLL 40	0	SAMPLER:	BM / AN	1/62		
PROJECT NO.:	416559.0006.0000			SERIAL	# 90926	8		3/21/2	3		
PH	CALIBRATION CHECK			SPECIFIC CONDUCTIVITY CALIBRATION CHEC							
pH 7	pH 4 / 10	. *]	CAL. READ	DING	TEMPERAT	URE	T		
(LOT #): 2216893	(LOT #): 21320202	CAL.			(LOT #): 22250	153	4	CAL.			
(EXP. DATE): 11/2023	(EXP. DATE): 12/2023	RANGE			(EXP. DATE): N/2	623	(°CELSIUS	B) RANGE			
PRE-CAL. READING / STANDARD	PRE-CAL. READING / STANDARD		·		PRE-CAL. READING /	STANDARD					
6.91 17.00	4.27 / 4.00				4343.1/1	1490	13.63		N E		
1	997 1000		:		1	iuan	13 90		[▶] •\$<		
1 1 / 1	4 00 / 11 00		~ ~ 2Q	lagua	4971.1	• (10			N		
1.00 1.00	7.00 4.00		0031	10097							
/	10.13 / 10.00		0844	J	/				E		
		1	· · · · · ·	1	CALIB	D.O. CAL					
	TEIMFERATORE	CAL					EADING				
(EXP. DATE): 11 1202-3	(°CELSIUS)	RANGE	TIME			ma/L	,	RANGE	TIME		
PRE-CAL. READING / STANDARD											
218.2 / 228	14.46				& TEMP! 1	L. 20) ·				
1280/228	121 77		8859	-	Brund. I	74 11					
/			0001		nalian	•					
				-	ATCT . 7.7						
TURBID		K RANGE		J		0.00	COMMENT	RANG S	E]		
CALIBRATION	READING (NTU)			1	AUTOCAL SO	LUTION		ARD SOLUTION	(S)		
(LOT #):	(LOT #):	CAL.			(LOT #):		LIST LOT NUME	BERS AND EXPIRA	TION DATE		
(EXP. DATE):	(EXP. DATE):	RANGE			(EXP. DATE):		UNDER	CALIBRATION CH	ECK		
PRE-CAL. READING / STANDARD	POST-CAL. READING / STANDARD				CALIBRATED PAR	AMETERS	CALIE	BRATION RANGES	(1)		
0.00 / 0.00	0.00 / 0.00		0846	-	√ pH		pH: +/- (0.2 S.U.			
1.04 / 1.00	1.02 / 1.00		0847	· · ·	COND		COND: +/- *	1% OF CAL. STA	NDARD		
9.57 / 10.00	10.00 / 10.00		848				ORP: +/- 2	25 mV			
1	1				D.O.		D.O.: VAF	RIES			
	NOTES			_	TURB		TURB: +/-	5% OF CAL. STA	NDARD		
]							
				- ·			THE MODEL OF	THE WATER QUA	LITY METE		
<u> </u>	· · ·			-	L		L				
· · · · · · · · · · · · · · · · · · ·]							
P	ROBLEMS ENCOUNTERED					CORRECT	VE ACTIONS				
none				10	ne .						
^	·. ·										
					•						
Pla V	1	1. 1.	7		\wedge	10	11				
	$\lambda \Lambda \land 2$	19/17	2			1. AL	Ven Miller	21	7/na		

PAGE OF

STRC

WATER QUALITY METER CALIBRATION LOG

PROJECT NAME:	Williams Station	MODEL: AQUA TROLL 400	SAMPLER:	BM / M)/ RC
PROJECT NO .:	416559.0006.0000	SERIAL #: 38 3546	DATE: 3.21.3	1)

NED DATE DATE DATE DECKED BY

SIGNED

PAGE OF

TRC

Post

WATER QUALITY METER CALIBRATION LOG

PROJECT NAME:	Williams Station	MODEL: AQUA TROLL 400	SAMPLER: BMY AM / RC
PROJECT NO.:	416559.0006.0000	SERIAL #: #51425	DATE: 3.21.23

PROBLEMS ENCOUNTERED	CORRECTIVE ACTIONS
none	none

3.21.23

HECKED BY

SIGNED

REVISED 06/2011

a member of The GEL Group INC

gel.com

April 04, 2023

Kelly Hicks Dominion Energy Services, Inc. 120 Tredegar Street Richmond, Virginia 23219

Re: CCR Groundwater Monitoring - Level 1 Package Work Order: 615220

Dear Kelly Hicks:

GEL Laboratories, LLC (GEL) appreciates the opportunity to provide the enclosed analytical results for the sample(s) we received on March 22, 2023. This original data report has been prepared and reviewed in accordance with GEL's standard operating procedures.

Test results for NELAP or ISO 17025 accredited tests are verified to meet the requirements of those standards, with any exceptions noted. The results reported relate only to the items tested and to the sample as received by the laboratory. These results may not be reproduced except as full reports without approval by the laboratory. Copies of GEL's accreditations and certifications can be found on our website at www.gel.com.

Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at (843) 556-8171, ext. 1648.

Sincerely,

Meredith Boldiford

Meredith Boddiford Project Manager

Purchase Order: 50149867 Chain of Custody: 202303211 Enclosures

Table of Contents

Case Narrative1
Chain of Custody and Supporting Documentation.4
Laboratory Certifications
Metals Analysis9
Case Narrative10
Sample Data Summary14
Quality Control Summary24
General Chem Analysis36
Case Narrative
Sample Data Summary43
Quality Control Summary

Receipt Narrative for Dominion Energy (50149867) SDG: 615220

April 04, 2023

Laboratory Identification:

GEL Laboratories LLC 2040 Savage Road Charleston, South Carolina 29407 (843) 556-8171

Summary:

Sample receipt: The samples arrived at GEL Laboratories LLC, Charleston, South Carolina on March 22, 2023 for analysis. The samples were delivered with proper chain of custody documentation and signatures. All sample containers arrived without any visible signs of tampering or breakage. There are no additional comments concerning sample receipt.

Sample Identification: The laboratory received the following samples:

<u>Laboratory ID</u>	<u>Client ID</u>
615220001	MW-FGD-16-2023Q1
615220002	MW-FGD-17-2023Q1
615220003	MW-FGD-18-2023Q1
615220004	MW-FGD-19D-2023Q1
615220005	MW-FGD-20AR-2023Q1
615220006	MW-FGD-21-2023Q1
615220007	FBLK-WMS-FGD-23101
615220008	FBLK-WMS-FGD-23102
615220009	DU-WMS-FGD-23101

Case Narrative:

Sample analyses were conducted using methodology as outlined in GEL's Standard Operating Procedures. Any technical or administrative problems during analysis, data review, and reduction are contained in the analytical case narratives in the enclosed data package.

The enclosed data package contains the following sections: Case Narrative, Chain of Custody, Cooler Receipt Checklist, Data Package Qualifier Definitions and data from the following fractions: General Chemistry and Metals.

Meredith Boldiford

Meredith Boddiford Project Manager

Chain of Custody and Supporting Documentation

Pages: 1 of 1 Powert # <u>416559,6.0.6.2</u> CM3. Quote #:	U		÷	abor mistry I Rad	ator	I OS LLC	av I Sner	Ana Vila	Inter O	6		GEL 2040 Charl	Laboratories, LLC Savage Road		
COC Number ⁽¹⁾ : 202303211		Cha	in of C	ustody	and A	nalytical R	eques	t.				Phone	e: (843) 556-817		
CQnt Number: PO 30149867 CQnt Name: Dominion Energy	GEL WORK Order Number	Phone # 80	3-258-15	28 58	. Projec	t Manager:	Meredi	th Bod	diford	- transfer	(2) (2) P	Fax: ((843) 766-1178		
Project/Site Name: Williams Station New FGD CCR	102001	Eav #					Idmic	C WIIGH	N sick	- Incontra	n (L1	Inn ann m	moer of contain	rrs for each test)	
	176202	rax #			T	Should this samule he	61.2							< Preservative Typ	e (6)
Address: Goose Creek, South Carolina						considered:	onistr	C	¥.	etals					
Collected By: B. Medlin / A. Misiunas	Send Results To: AReed@	envstd.com			31)	nrds pply (n	. ot coi	075240	-1-1-1-1-1-0-	ри Ш				Comments Note: extra sam	
DD DD Sample ID * For composites - indicate start and stop date/in	*Date Collected ne (mm-dd-yy)	*Time Collected (Military) (hhmm)	QC Code ⁽²⁾ 1	Field S Tiltered ⁽³⁾ M	atrix (*)	yes, please sur sotopic info.) (7) Known or (7) Known or	rotal number	MS-SQT	300 Cli Fli 20	99A latoT		_		required for sam specific QC	ple
0 MW-FGD-16-2023Q1	3.21.23	2001	z	z	GW		m	1	-	-	-			EPA 200 7 - B Ca	
MW-FGD-17-2023Q1	3.20.23	1456	z	N	GW	z	m	-	-	-				n	
M&-FGD-18-2023Q1	3.20.23	1610	z	Z	GW	z	m	-	-	_					Τ
MW FGD 10 2023Q1			z	z	GW	z			-						
MW-FGD-19D-2023Q1 /MS/MSD	3.20.23	1500	z	z	GW	z	e	2	2	2					
MW-FGD-20AR-2023Q1	3.20.23	1631	z	z	GW	Z	m	-	-	-				see attached work	
MW-FGD-21-2023Q1	3.21.23	011	z	z	GW	N	3	-	-	-				order for details	
FBLK-WMS-FGD-23101	3.20.23	1515	FB	z	AQ	Z	3	-	-	-					
FBLK-WMS-FGD-23102	3.21.23	1010	FB	z	AQ	N	m	-	-	-					
DU-WMS-FGD-23101	3.20.23	/	FD	z	GW	z	M	-	-	-					
Chai	n of Custody Signatures							TA	T Requ	uested:	Normal	X R	ush: Spec	fy:	
Relinquished By (Signed) Date Time	Received by (sign	D D	ate	Time		Fax Re	sults: [IYes	X	No					
3.22.23 07	35 1 151	Sor	3/22	123	235	Select	Delivera	able: [C of /	110	C Summe	ry [X] lev	vel 1 Level	[] [] Level 3 [] Leve	4
2	2					Additic	mal Ren	narks:							
3	3					For La	th Rece	iving Us	se Only	:: Custo	ty Seal In	tact?] Ye	25 [] No Co	iler Temp: °C	
> For sample shipping and delivery details, see Sam	ple Receipt & Review form (1	SRR.)			Sa	mple Collectio	on Time	Zone:	[X] E	lastern	[] Pacil	ic [] Cer	ntral [] Moun	ain [] Other:	
 Chain of Custody Number = Client Determined QC Codes: N = Normal Sample, TB = Trip Blank, FD = Field 	Duplicate, EB = Equipment Blank.	MS = Matrix S	Spike Samp	le. MSD = N	fatrix Snike	e Dunlicate Samn	le G = G	rah C=0	lisoumo	4					
 Field Filtered: For liquid matrices, indicate with a - Y - for yes 	s the sample was field filtered or - N	- for sample wa	as not field	filtered.			r F	Ì		2					
 Matrix Codes: DW=Drinking Water, GW=Groundwater, SW= 	-Surface Water, WW=Waste Water,	W=Water, MI	L=Misc Liq	uid, SO=Soi	l, SD=Sedi	ment, SL=Sludge	, SS=Soli	id Waste,	0 =0il, I	⁷ =Filter, P	=Wipe, U=l	lrine, F=Fecal,	, N=Nasal		
 bampie Analysis Kequested: Analytical method requested (i.e. Preservative Type: IIA = Hydrochloric Acid, NI = Nitric Acid. 	8200B, 6010B/7470A) and number SH = Sodium Hydroxide, SA = Sull	of containers p furic Acid. AA	= Ascorbic	r each (i.e. 8. Acid. HX =	260B - 3, 6 Hexane S	010B/7470A - 1) T = Sodium Thio	sulfate If	Teser on	vative is	addad = 1	ld hlad ave	4			
7.) KNOWN OR POSSIBLE HAZARDS C	haracteristic Hazards	Listed V	Vaste			Other	1 (commo	bend ou				VIII	Please prov	ide any additional details	
F RCRA Metals C As = Arsenic Hg= Mercury R Ba = Barium Se= Selenium	L = Flammable/Ignitable (0 = Corrosive E = Reactive	LW= Li (F,K,P a Waste co	sted Wasi nd U-list ode(s):	e ed wastes.	-	OT= O (i.e.: H misc. h Descrij	ther / U igh/low ealth ha otion:	Inknowr <i>pH, asl</i> Eards, e	t bestos, etc.)	berylliu	ı, irritant	s, other	below regan concerns. (of site colle	ding handling and/or dis i.e.: Origin of sample(s), ited from, odd matrices, e	posal type tc.)
$Cd = Cadmium Ag= Silver \qquad \boxed{I}$ $Cr = Chromium MR= Misc. RCRA metals \qquad \boxed{P}$ $Pb = Lead$	SCA Regulated CB = Polychlorinated biphenyls				1										

			SDG//	AR/COC/Work Order: (DIS 220
Received By:			Date	Received: 2 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Enter one tracking number per line below.			1	IR temperature gun# Daily Calibration performed?Y/N
Enter courier if applicable and no tracking available			Unc	orrected temperature readings are to the 0.1 degree with final recorded tepmeratures rounded to the 0.5 degree.
Mech-				A tovide individual container details when a cooler requiring o v=ooc is identified as out of specification.
ALL I	_		Uncor	rected Temp: IR Correction Factor: +/- / Final Recorded Temp: Within 0.0-6.0C? 2/
Ultera-		_	Uncor	rected Temp:) IR Correction Factor: +/- Final Recorded Temp; 3 Within 0.0-6.002 VA
MEC3-			Uncon	390000000000000000000000000000000000000
			Uncor	rected Temp: Jr TR Correction Factor: +/- V Final Recorded Temp: TAU Within 0.0-6.0C?
	_		Uncor	rected Temp: IR Correction Factor: +/- Final Recorded Temp: Within 0.0-6.0C? Y/
		11	Uncor	rected Temp: IR Correction Factor: +/- Final Recorded Temp: Within 0.0-6.0C? Y/
			Uman	
	8		Uncor	rected 1 emp: IR Correction Factor: +/- Final Recorded Temp: Within 0.0-6.0C? Y/N
uspected Hazard Information	Ye	ž	*If Net	Counts > 100cpm on samples not marked "radioactive", contact the Radiation Safety Group for further investigation.
		V	Hazard	Class Shipped: UN#:
A) Shipped as a DOT Hazardous?		1		If UN2910, Is the Radioactive Shipment Survey Compliant? Yes No
B) Did the client designate the samples are to be	1	V	COCn	otation or radioactive stickers on containers equal client designation.
eceived as radioactive?	1	1	-	
	1.1	V	Maxim	um Net Counts Observed* (Observed Counts - Area Background Counts):
2) Did the RSO classify the samples as radioactive?		1	1	Clabsilled as, Rad I Rad 2 Rad 5
)) Did the client designate samples are hazardous?	11	X	COC n	otation or hazard labels on containers equal client designation.
,,,,,,,		1.1	If D or	E is yes, select Hazards below.
b) Did the RSO identify possible hazards?		X		PCB's Flammable Foreign Soil RCRA Asbestos Beryllium Other:
Sample Receipt Criteria	es	V		Communit/Oursiling (Description Non-Contraction Non-
Sumple Receipt Criteria	Y	Z	z	Comments/Qualifiers (Required for Non-Conforming Items)
1 Shipping containers received intact and	X			Circle Applicable: Seals broken Damaged container Leaking container Other (describe)
Chain of custody documents included with	2)		-	Circle Applicable: Client contacted and provided COC COC created upon receipt
shipment?	X			
3 Sample containers intact and sealed?	X	1		Circle Applicable: Seals broken Damaged container Leaking container Other (describe)
	-1	-		
4 Samples requiring cold preservation were	X		111	Unconcerted remp: Confection Factor; +/- Final Recorded Temp: Within 0.0-6.0C? Y/N
unpacked directly into cold storage?	1	-	-	NA Response = Samples are for radiochemistry testing only
5 Samples requiring chemical preservation at	X			Sample ID's and Containers Affected:
proper pri	-)		-	If Preservative added Lot#: If Yes, are Encores or Soil Kits present for solide? Yes No. NA. (If we take to VOA Errores)
a second second second second second		(–	V	Do liquid VOA vials contain acid preservation? Yes No NA(If uknown, select No)
6 Do any samples require Volatile Analysis?			Х	Are liquid VOA vials free of headspace? Yes No NA
			-)	Sample LD's and containers affected:
7 Samples received within holding time?	1		-	ID's and tests affected:
	X			TD/s and southings a first d
8 Sample ID's on COC match ID's on bottles?	1			in's and containers affected:
	X	1.		
9 Date & time on COC match date & time	×		19.1	Circle Applicable: No dates on containers No times on containers COC missing info Other (describe)
Number of sector	4	-		Circle Applicable: No container count on COC Other (describe)
number indicated on COC?	X		1	
Are sample containers identifiable as GEL	V		1	
provided by use of GEL labels?	3			Circle Applicable: Not relinquished Other (describe)
relinquished/received sections?	7			
omments (Use Continuation Form if needed):				

MG_ Date 3/23/23 Page __ of __

PM (or PMA) review: Initials

1

G.-CHL-SR-001A Rev 1

Laboratory Certifications

	State	Certification
	Alabama	42200
	Alaska	17-018
A	laska Drinking Water	SC00012
	Arkansas	88-0651
	CLIA	42D0904046
	California	2940
	Colorado	SC00012
	Connecticut	PH-0169
DoD	ELAP/ ISO17025 A2LA	2567.01
	Florida NELAP	E87156
]]	Foreign Soils Permit	P330-15-00283, P330-15-00253
	Georgia	SC00012
	Georgia SDWA	967
	Hawaii	SC00012
	Idaho	SC00012
	Illinois NELAP	200029
	Indiana	C-SC-01
	Kansas NELAP	E-10332
	Kentucky SDWA	90129
k	Kentucky Wastewater	90129
Lo	uisiana Drinking Water	LA024
	Louisiana NELAP	03046 (AI33904)
	Maine	2019020
	Maryland	270
	Massachusetts	M-SC012
Mass	sachusetts PFAS Approv	Letter
	Michigan	9976
	Mississippi	SC00012
	Nebraska	NE-OS-26-13
	Nevada	SC000122023-4
Ne	ew Hampshire NELAP	2054
	New Jersey NELAP	SC002
	New Mexico	SC00012
	New York NELAP	11501
	North Carolina	233
N	orth Carolina SDWA	45709
	North Dakota	R-158
	Oklahoma	2022-160
P	Pennsylvania NELAP	68-00485
	Puerto Rico	SC00012
S.	. Carolina Radiochem	10120002
Sa	anitation Districts of L	9255651
So	uth Carolina Chemistry	10120001
	Tennessee	TN 02934
	Texas NELAP	T104704235-22-20
	Utah NELAP	SC000122022-37
	Vermont	VT87156
	Virginia NELAP	460202
	Washington	C780
		•

List of current GEL Certifications as of 04 April 2023

Metals Technical Case Narrative Dominion Energy SDG #: 615220

Product: Determination of Metals by ICP-MS Analytical Method: EPA 200.8 SC_NPDES **Analytical Procedure:** GL-MA-E-014 REV# 35 **Analytical Batch:** 2402426

Preparation Method: EPA 200.2 **Preparation Procedure:** GL-MA-E-016 REV# 18 **Preparation Batch:** 2402425

The following samples were analyzed using the above methods and analytical procedure(s).

<u>GEL Sample ID#</u>	Client Sample Identification
615220001	MW-FGD-16-2023Q1
615220002	MW-FGD-17-2023Q1
615220003	MW-FGD-18-2023Q1
615220004	MW-FGD-19D-2023Q1
615220005	MW-FGD-20AR-2023Q1
615220006	MW-FGD-21-2023Q1
615220007	FBLK-WMS-FGD-23101
615220008	FBLK-WMS-FGD-23102
615220009	DU-WMS-FGD-23101
1205353565	Method Blank (MB)ICP-MS
1205353566	Laboratory Control Sample (LCS)
1205353569	615220004(MW-FGD-19D-2023Q1L) Serial Dilution (SD)
1205353567	615220004(MW-FGD-19D-2023Q1D) Sample Duplicate (DUP)
1205353568	615220004(MW-FGD-19D-2023Q1S) Matrix Spike (MS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Calibration Information

ICSA/ICSAB Statement

For the ICP-MS analysis, the ICSA solution contains analyte concentrations which are verified trace impurities indigenous to the purchased standard.

Technical Information

Sample Dilutions

Dilutions may be required for many reasons, including to minimize matrix interferences or to bring over range target

analyte concentrations into the linear calibration range. Samples 615220002 (MW-FGD-17-2023Q1), 615220003 (MW-FGD-18-2023Q1), 615220004 (MW-FGD-19D-2023Q1), 615220005 (MW-FGD-20AR-2023Q1), 615220006 (MW-FGD-21-2023Q1) and 615220009 (DU-WMS-FGD-23101) were diluted to ensure that the analyte concentrations were within the linear calibration range of the instrument.

Amalata			615	220		
Analyte	002	003	004	005	006	009
Boron	1X	50X	50X	50X	1X	1X
Calcium	10X	50X	50X	50X	10X	10X

Miscellaneous Information

Additional Comments

All method-driven specifications are followed for these analyses except where client-specific SOW requirements are required to be met.

Certification Statement

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

GEL LABORATORIES LLC

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Qualifier Definition Report for

DMNN001 Dominion Energy (50149867)

Client SDG: 615220 GEL Work Order: 615220

The Qualifiers in this report are defined as follows:

- * A quality control analyte recovery is outside of specified acceptance criteria
- B Either presence of analyte detected in the associated blank, or MDL/IDL < sample value < PQL
- J Value is estimated
- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

Review/Validation

GEL requires all analytical data to be verified by a qualified data reviewer. In addition, all CLP-like deliverables receive a third level review of the fractional data package.

The following data validator verified the information presented in this data report:

Signature:

Date: 29 MAR 2023

Name: Alan Stanley Title: Team Leader

METALS -1-INORGANICS ANALYSIS DATA PACKAGE

SDG	No: 615220		CON	ГКАСТ	: DM	NN00101				MET	HOD TYPE	: EPA	
SAM	IPLE ID:615220001			B	ASIS: A	s Receive	ed	DATI	E CO	LLEC	FED 21-M	AR-23	
CLII	ENT ID: MW-FGD-1	6-2023Q1		L	EVEL:	Low		DAT	E RE	CEIVE	D: 22-M	AR-23	
MA	TRIX: GW							%S(OLID	S:	0		
CAS	Analyte	Result	Units	Qual	MDL	PQL	CRDL	DF	М*	Analyst	Run Date	Analytical Run	Analytical Batch
440-42-8	Boron	37.4	ug/L		4.00	15.0	15.0	1	MS	PRB	03/28/23 13:29	230328-1	2402426
440-70-2	Calcium	15200	ug/L		30.0	100	100	1	MS	PRB	03/28/23 13:29	230328-1	2402426

Prep Information:

Analytical Batch	Prep Batch	Prep Method	Initial wt./vol.	Units	Final wt./vol.	Units	Date	Analyst
2402426	2402425	EPA 200.2	50	mL	50	mL	03/23/23	JD2

*Analytical Methods:

MS EPA 200.8 SC_NPDES
SDO	G No: 615220		CON	TRACI	RACT: DMNN00101				METHOD TYPE: EPA				
SAM	IPLE ID:615220002			B	ASIS: A	s Receive	ed	DATI	E CO	LLEC	ГЕД 20-М.	AR-23	
CLI	ENT ID: MW-FGD-1	L	EVEL:	Low		DATE RECEIVED: 22-MAR-23							
MA	TRIX: GW							%S(OLID	S:	0		
CAS	Analyte	Result	Units	Qual	MDL	PQL	CRDL	DF	М*	Analyst	Run Date	Analytical Run	Analytical Batch
440-42-8	Boron	146	ug/L		4.00	15.0	15.0	1	MS	PRB	03/28/23 15:35	230328-1	2402426
440-70-2	Calcium	167000	ug/L		300	1000	1000	10	MS	PRB	03/28/23 13:31	230328-1	2402426

Prep Information:

Analytical Batch	Prep Batch	Prep Method	Initial wt./vol.	Units	Final wt./vol.	Units	Date	Analyst
2402426	2402425	EPA 200.2	50	mL	50	mL	03/23/23	JD2

*Analytical Methods:

SDG	G No: 615220		CON	ГКАСТ	: DM	NN00101		METHOD TYPE: EPA					
SAM	IPLE ID:615220003			B	ASIS: A	s Receive	ed	DATI	E CO	LLEC	FED 20-M	AR-23	
CLII	ENT ID: MW-FGD-1	8-2023Q1	L	EVEL:	Low		DATE RECEIVED: 22-MAR-23						
MA	TRIX: GW							%S(OLID	S:	0		
CAS	Analyte	Result	Units	Qual	MDL	PQL	CRDL	DF	М*	Analyst	Run Date	Analytical Run	Analytical Batch
440-42-8	Boron	3620	ug/L		200	750	750	50	MS	PRB	03/28/23 13:33	230328-1	2402426
440-70-2	Calcium	236000	ug/L		1500	5000	5000	50	MS	PRB	03/28/23 13:33	230328-1	2402426

Prep Information:

Analytical Batch	Prep Batch	Prep Method	Initial wt./vol.	Units	Final wt./vol.	Units	Date	Analyst
2402426	2402425	EPA 200.2	50	mL	50	mL	03/23/23	JD2

*Analytical Methods:

SDG	No: 615220		CON	ГКАСТ	: DM	NN00101		METHOD TYPE: EPA					
SAM	IPLE ID:615220004			В	ASIS: A	s Receive	ed	DATI	E CO	LLEC	FED 20-M	AR-23	
CLII	ENT ID: MW-FGD-1	9D-2023Q	21	L	EVEL:	Low		DATE RECEIVED: 22-MAR-23					
MA	TRIX: GW							%S(OLID	S:	0		
CAS	Analyte	Result	Units	Qual	MDL	PQL	CRDL	DF	М*	Analyst	Run Date	Analytical Run	Analytical Batch
440-42-8	Boron	2080	ug/L		200	750	750	50	MS	PRB	03/28/23 13:35	230328-1	2402426
440-70-2	Calcium	134000	ug/L		1500	5000	5000	50	MS	PRB	03/28/23 13:35	230328-1	2402426

Prep Information:

Analytical Batch	Prep Batch	Prep Method	Initial wt./vol.	Units	Final wt./vol.	Units	Date	Analyst
2402426	2402425	EPA 200.2	50	mL	50	mL	03/23/23	JD2

*Analytical Methods:

SDG	G No: 615220		CON	ГКАСТ	: DM	NN00101		METHOD TYPE: EPA					
SAM	IPLE ID:615220005			В	ASIS: A	s Receive	ed	DATI	E CO	LLEC	TED 20-MA	AR-23	
CLI	ENT ID: MW-FGD-2	0AR-2023	L	EVEL:	Low		DATE RECEIVED: 22-MAR-23						
MA	TRIX: GW							%S(OLID	S:	0		
CAS	Analyte	Result	Units	Qual	MDL	PQL	CRDL	DF	М*	Analyst	Run Date	Analytical Run	Analytical Batch
440-42-8	Boron	3410	ug/L		200	750	750	50	MS	PRB	03/28/23 13:46	230328-1	2402426
440-70-2	Calcium	280000	ug/L		1500	5000	5000	50	MS	PRB	03/28/23 13:46	230328-1	2402426

Prep Information:

Analytical Batch	Prep Batch	Prep Method	Initial wt./vol.	Units	Final wt./vol.	Units	Date	Analyst
2402426	2402425	EPA 200.2	50	mL	50	mL	03/23/23	JD2

*Analytical Methods:

SDG	G No: 615220		CON	ГКАСТ	: DM	NN00101		METHOD TYPE: EPA					
SAM	IPLE ID:615220006			B	ASIS: A	s Receive	ed	DATI	E CO	LLEC	FED 21-M	AR-23	
CLI	ENT ID: MW-FGD-2	L	EVEL:	Low		DATE RECEIVED: 22-MAR-23							
MA	TRIX: GW					%S(OLID	S:	0				
CAS	Analyte	Result	Units	Qual	MDL	PQL	CRDL	DF	М*	Analyst	Run Date	Analytical Run	Analytical Batch
440-42-8	Boron	20.0	ug/L		4.00	15.0	15.0	1	MS	PRB	03/28/23 15:37	230328-1	2402426
440-70-2	Calcium	45600	ug/L		300	1000	1000	10	MS	PRB	03/28/23 13:48	230328-1	2402426

Prep Information:

7

Analytical Batch	Prep Batch	Prep Method	Initial wt./vol.	Units	Final wt./vol.	Units	Date	Analyst
2402426	2402425	EPA 200.2	50	mL	50	mL	03/23/23	JD2

*Analytical Methods:

SDO	G No: 615220		CON	TRACI	RACT: DMNN00101				METHOD TYPE: EPA				
SAM	IPLE ID:615220007			B	ASIS: A	s Receive	ed	DATI	E CO	LLEC	FED 20-M	AR-23	
CLI	ENT ID: FBLK-WMS	S-FGD-23	101	L	LEVEL: Low DATE RECEIVED: 22-MAR-23						AR-23		
MA	TRIX: AQ							%S(OLID	S:	0		
CAS	Analyte	Result	Units	Qual	MDL	PQL	CRDL	DF	M*	Analyst	Run Date	Analytical Run	Analytical Batch
440-42-8	Boron	4.00	ug/L	U	4.00	15.0	15.0	1	MS	PRB	03/28/23 13:50	230328-1	2402426
440-70-2	Calcium	30.0	ug/L	U	30.0	100	100	1	MS	PRB	03/28/23 13:50	230328-1	2402426

Prep Information:

Analytical Batch	Prep Batch	Prep Method	Initial wt./vol.	Units	Final wt./vol.	Units	Date	Analyst
2402426	2402425	EPA 200.2	50	mL	50	mL	03/23/23	JD2

*Analytical Methods:

SDG	No: 615220	TRACI	TRACT: DMNN00101				METHOD TYPE: EPA						
SAM	IPLE ID:615220008			B	ASIS: A	s Receive	ed	DAT	E CO	LLEC	FED 21-M	AR-23	
CLII	ENT ID: FBLK-WMS	S-FGD-23	L	EVEL:	Low		DATE RECEIVED: 22-MAR-23						
MA	TRIX: AQ							%S(OLID	S:	0		
CAS	Analyte	Result	Units	Qual	MDL	PQL	CRDL	DF	М*	Analyst	Run Date	Analytical Run	Analytical Batch
440-42-8	Boron	4.00	ug/L	U	4.00	15.0	15.0	1	MS	PRB	03/28/23 13:52	230328-1	2402426
440-70-2	Calcium	30.0	ug/L	U	30.0	100	100	1	MS	PRB	03/28/23 13:52	230328-1	2402426

Prep Information:

Analytical Batch	Prep Batch	Prep Method	Initial wt./vol.	Units	Final wt./vol.	Units	Date	Analyst
2402426	2402425	EPA 200.2	50	mL	50	mL	03/23/23	JD2

*Analytical Methods:

SDG No: 615220 CONT					FRACT: DMNN00101				METHOD TYPE: EPA				
SAM	IPLE ID:615220009			B	ASIS: A	s Receive	ed	DATI	E CO	LLEC	FED 20-MA	AR-23	
CLI	E NT ID: DU-WMS-F	L	EVEL:	Low		DAT	E RE	CEIVE	ED: 22-M	AR-23			
MA	TRIX: GW							%S(OLID	S:	0		
CAS	Analyte	Result	Units	Qual	MDL	PQL	CRDL	DF	М*	Analyst	Run Date	Analytical Run	Analytical Batch
440-42-8	Boron	145	ug/L		4.00	15.0	15.0	1	MS	PRB	03/28/23 15:39	230328-1	2402426
440-70-2	Calcium	151000	ug/L		300	1000	1000	10	MS	PRB	03/28/23 13:54	230328-1	2402426

Prep Information:

Analytical Batch	Prep Batch	Prep Method	Initial wt./vol.	Units	Final wt./vol.	Units	Date	Analyst
2402426	2402425	EPA 200.2	50	mL	50	mL	03/23/23	JD2

*Analytical Methods:

Quality Control Summary

METALS -2a-Initial and Continuing Calibration Verification

SDG No: 615220

Contract: DMNN00101 Lab Code: GEL

Instrument ID: ICPMS15

Sample ID	Analyte	Result	Units	True Value	Units	% Recovery	Acceptance Window (%R)	M*	Analysis Date/Time	Run Number
ICV01										
	Boron	101	ug/L	100	ug/L	101.5	90.0 - 110.0	MS	28-MAR-23 11:52	230328-1
	Calcium	4960	ug/L	5000	ug/L	99.2	90.0 - 110.0	MS	28-MAR-23 11:52	230328-1
CCV01										
	Boron	104	ug/L	100	ug/L	103.7	90.0 - 110.0	MS	28-MAR-23 12:02	230328-1
	Calcium	5070	ug/L	5000	ug/L	101.4	90.0 - 110.0	MS	28-MAR-23 12:02	230328-1
CCV02										
	Boron	101	ug/L	100	ug/L	101.3	90.0 - 110.0	MS	28-MAR-23 12:08	230328-1
	Calcium	5240	ug/L	5000	ug/L	104.7	90.0 - 110.0	MS	28-MAR-23 12:08	230328-1
CCV03										
	Boron	100	ug/L	100	ug/L	100.5	90.0 - 110.0	MS	28-MAR-23 13:21	230328-1
	Calcium	5090	ug/L	5000	ug/L	101.8	90.0 - 110.0	MS	28-MAR-23 13:21	230328-1
CCV04										
	Boron	97.1	ug/L	100	ug/L	97.1	90.0 - 110.0	MS	28-MAR-23 13:42	230328-1
	Calcium	4990	ug/L	5000	ug/L	99.8	90.0 - 110.0	MS	28-MAR-23 13:42	230328-1
CCV05										
	Boron	90.8	ug/L	100	ug/L	90.8	90.0 - 110.0	MS	28-MAR-23 14:02	230328-1
	Calcium	4800	ug/L	5000	ug/L	95.9	90.0 - 110.0	MS	28-MAR-23 14:02	230328-1
CCV06										
	Boron	105	ug/L	100	ug/L	104.8	90.0 - 110.0	MS	28-MAR-23 15:31	230328-1
	Calcium	5080	ug/L	5000	ug/L	101.5	90.0 - 110.0	MS	28-MAR-23 15:31	230328-1
CCV07										
	Boron	97.9	ug/L	100	ug/L	97.9	90.0 - 110.0	MS	28-MAR-23 15:47	230328-1
	Calcium	4900	ug/L	5000	ug/L	98.1	90.0 - 110.0	MS	28-MAR-23 15:47	230328-1

*Analytical Methods:

METALS -2b-CRDL Standard for ICP & ICPMS

SDG No: 615220

Contract: DMNN00101 Lab Code: GEL

Instrument ID: ICPMS15

Sample ID	Analyte	Result	Units	True Value	Units	% Recovery	Advisory Limits (%R)	<i>M</i> *	Analysis Date/Time	Run Number
CRDL01										
	Boron	17.2	ug/L	15	ug/L	114.9	70.0 - 130.0	MS	28-MAR-23 11:56	230328-1
	Calcium	241	ug/L	200	ug/L	120.5	70.0 - 130.0	MS	28-MAR-23 11:56	230328-1
CRDL02										
	Boron	21.9	ug/L	15	ug/L	146.1	70.0 - 130.0 *	MS	28-MAR-23 13:04	230328-1
	Calcium	276	ug/L	200	ug/L	137.9	70.0 - 130.0 *	MS	28-MAR-23 13:04	230328-1
CRDL03										
	Boron	16.8	ug/L	15	ug/L	111.8	70.0 - 130.0	MS	28-MAR-23 13:56	230328-1
	Calcium	244	ug/L	200	ug/L	122.1	70.0 - 130.0	MS	28-MAR-23 13:56	230328-1
CRDL04										
	Boron	16.9	ug/L	15	ug/L	112.9	70.0 - 130.0	MS	28-MAR-23 15:22	230328-1
	Calcium	239	ug/L	200	ug/L	119.6	70.0 - 130.0	MS	28-MAR-23 15:22	230328-1
CRDL05										
	Boron	17.6	ug/L	15	ug/L	117.2	70.0 - 130.0	MS	28-MAR-23 15:41	230328-1
	Calcium	242	ug/L	200	ug/L	121.1	70.0 - 130.0	MS	28-MAR-23 15:41	230328-1

*Analytical Methods: MS

Metals -3a-Initial and Continuing Calibration Blank Summary

SDG No.: 615220

Contract: DMNN00101

Lab Code: GEL

Sample ID	<u>Analyte</u>	<u>Result</u> <u>ug/L</u>	<u>Acceptance</u>	<u>Conc</u> Qual	<u>MDL</u>	<u>RDL</u>	<u>Matrix</u>	<u>M*</u>	<u>Analysis</u> Date/Time	<u>Run</u>
ICB01	Doron	4.0		TT	4.0	15.0	110	мс	29 MAD 22 11.54	220228 1
	Bololi	4.0	+/-7.5	U	4.0	100	LIQ	MG	28 MAD 22 11 54	230326-1
	Calcium	30.0	+/-50	U	30.0	100	LIQ	MS	28-MAR-23 11:54	230328-1
CCB01	Doron	4.0	. / 7 5	T	4.0	15.0	LIO	мс	28 MAD 22 12:04	220229 1
	Bololi	4.0	+/-7.5	U	4.0	100	LIQ	MS	28-MAR-23 12:04	250526-1
	Calcium	30.0	+/-50	U	30.0	100	LIQ	MS	28-MAK-23 12:04	230328-1
CCB02	Doron	4.0	. / 7 5	T	4.0	15.0	LIO	мс	28 MAD 22 12.10	220229 1
	Bololi	4.0	+/-7.5	U	4.0	13.0	LIQ	MS	28-MAR-23 12:10	250526-1
	Calcium	30.0	+/-50	U	30.0	100	LIQ	MS	28-MAR-23 12:10	230328-1
CCB03	D	4.55		р	4.0	15.0		МС	00 MAD 02 12 02	020208 1
	Boron	4.55	+/-7.5	В	4.0	15.0	LIQ	MS	28-MAR-23 13:23	230328-1
	Calcium	30.0	+/-50	U	30.0	100	LIQ	MS	28-MAR-23 13:23	230328-1
CCB04	D	1.0		D	1.0	15.0		MG	20 MAD 22 12 44	220220 1
	Boron	4.0	+/-7.5	В	4.0	15.0	LIQ	MS	28-MAR-23 13:44	230328-1
	Calcium	30.0	+/-50	U	30.0	100	LIQ	MS	28-MAR-23 13:44	230328-1
CCB05										
	Boron	4.0	+/-7.5	U	4.0	15.0	LIQ	MS	28-MAR-23 14:04	230328-1
	Calcium	30.0	+/-50	U	30.0	100	LIQ	MS	28-MAR-23 14:04	230328-1
CCB06										
	Boron	4.0	+/-7.5	U	4.0	15.0	LIQ	MS	28-MAR-23 15:33	230328-1
	Calcium	30.0	+/-50	U	30.0	100	LIQ	MS	28-MAR-23 15:33	230328-1
ССВ07										
	Boron	4.0	+/-7.5	U	4.0	15.0	LIQ	MS	28-MAR-23 15:49	230328-1
	Calcium	30.0	+/-50	U	30.0	100	LIQ	MS	28-MAR-23 15:49	230328-1

*Analytical Methods:

METALS -3b-PREPARATION BLANK SUMMARY

 SDG NO.
 615220

 Contract:
 DMNN00101

Matrix: GW

Acceptance Conc Sample ID Analyte Result <u>Units</u> **M*** MDL <u>RDL</u> Window Qual 1205353565 Calcium 30.0 30.0 100 ug/L +/-50 U MS Boron 4.00 ug/L +/-7.5 U MS 4.00 15.0

*Analytical Methods:

METALS -4-Interference Check Sample

SDG No: 615220

Contract: DMNN00101

Lab Code: GEL

Instrument: ICPMS15

Sample ID	<u>Analyte</u>	<u>Result</u>	<u>Units</u>	<u>True</u> Value	<u>Units</u>	<u>%</u> <u>Recovery</u>	<u>Acceptance</u> Window (%R)	<u>Analysis</u> Date/Time	<u>Run</u> Number
ICSA01									
	Boron	3.92	ug/L					28-MAR-23 11:58	230328-1
	Calcium	99100	ug/L	100000	ug/L	99.1	80.0 - 120.0	28-MAR-23 11:58	230328-1
ICSAB01									
	Boron	23.7	ug/L	22.06	ug/L	107	80.0 - 120.0	28-MAR-23 12:00	230328-1
	Calcium	98000	ug/L	100000	ug/L	98	80.0 - 120.0	28-MAR-23 12:00	230328-1
ICSA02									
	Boron	7.07	ug/L					28-MAR-23 13:06	230328-1
	Calcium	101000	ug/L	100000	ug/L	101	80.0 - 120.0	28-MAR-23 13:06	230328-1
ICSAB02									
	Boron	27.2	ug/L	22.06	ug/L	123	80.0 - 120.0	28-MAR-23 13:08	230328-1
	Calcium	100000	ug/L	100000	ug/L	100	80.0 - 120.0	28-MAR-23 13:08	230328-1
ICSA03									
	Boron	3.71	ug/L					28-MAR-23 13:58	230328-1
	Calcium	96200	ug/L	100000	ug/L	96.2	80.0 - 120.0	28-MAR-23 13:58	230328-1
ICSAB03									
	Boron	21.9	ug/L	22.06	ug/L	99.3	80.0 - 120.0	28-MAR-23 14:00	230328-1
	Calcium	96700	ug/L	100000	ug/L	96.7	80.0 - 120.0	28-MAR-23 14:00	230328-1
ICSA04									
	Boron	4.91	ug/L					28-MAR-23 14:32	230328-1
	Calcium	98600	ug/L	100000	ug/L	98.6	80.0 - 120.0	28-MAR-23 14:32	230328-1
ICSAB04									
	Boron	22.7	ug/L	22.06	ug/L	103	80.0 - 120.0	28-MAR-23 14:34	230328-1
	Calcium	93600	ug/L	100000	ug/L	93.6	80.0 - 120.0	28-MAR-23 14:34	230328-1
ICSA05									
	Boron	3.96	ug/L					28-MAR-23 15:08	230328-1
	Calcium	98100	ug/L	100000	ug/L	98.1	80.0 - 120.0	28-MAR-23 15:08	230328-1
ICSAB05									
	Boron	23.5	ug/L	22.06	ug/L	106	80.0 - 120.0	28-MAR-23 15:10	230328-1

METALS -4-Interference Check Sample

SDG No: 615220

Contract: DMNN00101

Lab Code: GEL

Sample ID	<u>Analyte</u>	<u>Result</u>	<u>Units</u>	<u>True</u> Value	<u>Units</u>	<u>%</u> <u>Recovery</u>	<u>Acceptance</u> Window (%R)	<u>Analysis</u> Date/Time	<u>Run</u> Number
	Calcium	96200	ug/L	100000	ug/L	96.2	80.0 - 120.0	28-MAR-23 15:10	230328-1
ICSA06									
	Boron	4.34	ug/L					28-MAR-23 15:24	230328-1
	Calcium	93600	ug/L	100000	ug/L	93.6	80.0 - 120.0	28-MAR-23 15:24	230328-1
ICSAB06									
	Boron	24.9	ug/L	22.06	ug/L	113	80.0 - 120.0	28-MAR-23 15:26	230328-1
	Calcium	100000	ug/L	100000	ug/L	100	80.0 - 120.0	28-MAR-23 15:26	230328-1
ICSA07									
	Boron	4.05	ug/L					28-MAR-23 15:43	230328-1
	Calcium	97900	ug/L	100000	ug/L	97.9	80.0 - 120.0	28-MAR-23 15:43	230328-1
ICSAB07									
	Boron	21.4	ug/L	22.06	ug/L	96.9	80.0 - 120.0	28-MAR-23 15:45	230328-1
	Calcium	91400	ug/L	100000	ug/L	91.4	80.0 - 120.0	28-MAR-23 15:45	230328-1

GEL Laboratories LLC

METALS

-5a-

Matrix Spike Summary

SDG NO.	615220		Client ID:	MW	/-FGD-19D-	2023Q	01S			
Contract:	DMNN00101		Level:	Low						
Matrix:	GROUND WAT	ER	% Solids:							
Sample ID:	615220004		Spike ID:	12053	53568					
Analyte	<u>Units</u>	<u>Acceptance</u> <u>Limit</u>	<u>Spiked</u> <u>Result</u>	<u>C</u>	<u>Sample</u> <u>Result</u>	<u>C</u>	<u>Spike</u> <u>Added</u>	<u>%</u> <u>Recovery</u>	Qual	<u>M*</u>
Boron	ug/L		2140		2080		100	54.5	N/A	MS

134000

2000

299

MS

N/A

140000

*Analytical Methods:

Calcium

MS EPA 200.8 SC_NPDES

ug/L

Metals -6-Duplicate Sample Summary

SDG No.:	615220			L	ab Cod	e: GEL							
Contract:	DMNN001	01		(lient II): MW-FGD-19	D-2023	Q1D					
Matrix:	GROUND	WATER	Level:	Low									
Sample ID	615220004		Duplicate	Duplicate ID:1205353567Percent Solids for Dup:N/A									
Ana	llyte	Units	Acceptance Limit	Sample Result	С	Duplicate Result	С	RPD	Qual	M*			
Boron		ug/L	+/-1500	2080)	2030		2.48		MS			
Calcium		ug/L	+/-20%	13400)	136000		1.8		MS			

*Analytical Methods:

METALS -7-Laboratory Control Sample Summary

SDG NO. 615220

Contract: DMNN00101

Aqueous LCS Source: Environmental Express

Sample ID 1205353566	Analyte	<u>Units</u>	<u>True</u> Value	<u>Result</u>	<u>C</u>	<u>%</u> <u>Recovery</u>	<u>Acceptance</u> <u>Limit</u>	<u>M*</u>
	Boron	ug/L	100	97.9		97.9	85-115	MS
	Calcium	ug/L	2000	2230		111	85-115	MS

Solid LCS Source:

*Analytical Methods:

GEL Laboratories LLC

METALS -9-Serial Dilution Sample Summary

SDG NO.	615220			Client ID:	MW-FGI	D-19D-2023Q1L						
Contract:	DMNN0010	1										
Matrix:	LIQUID			Level: I	LOW							
Sample ID:	615220004 Serial Dilution ID: 1205353569											
Analyte		Initial Value ug/L	<u>C</u>	<u>Serial</u> <u>Value</u> <u>ug/L</u>	<u>C</u>	<u>%</u> Difference	Qual	<u>Acceptance</u> <u>Limit</u>	<u>M*</u>			
Boron		41.6		54.4	В	30.641			MS			
Calcium		2670		2530		5.221			MS			

*Analytical Methods:

METALS -13-SAMPLE PREPARATION SUMMARY

SDG No: 615220

Method Type: MS

Contract: DMNN00101

Lab Code: GEL

Some la ID		Sample Type	Madada	Prep Date	<u>Initial</u> <u>Sample</u> <u>S</u> Size <u>V</u>	Final ample Percent Jolume Solids
Sample ID	<u>Client ID</u>	<u>Type</u>	Matrix	Date		
Batch Numbe	r 2402425					
1205353565	MB for batch 2402425	MB	G	23-MAR-23	50mL	50mL
1205353566	LCS for batch 2402425	LCS	G	23-MAR-23	50mL	50mL
1205353568	MW-FGD-19D-2023Q1S	MS	G	23-MAR-23	50mL	50mL
1205353567	MW-FGD-19D-2023Q1D	DUP	G	23-MAR-23	50mL	50mL
615220001	MW-FGD-16-2023Q1	SAMPLE	G	23-MAR-23	50mL	50mL
615220002	MW-FGD-17-2023Q1	SAMPLE	G	23-MAR-23	50mL	50mL
615220003	MW-FGD-18-2023Q1	SAMPLE	G	23-MAR-23	50mL	50mL
615220004	MW-FGD-19D-2023Q1	SAMPLE	G	23-MAR-23	50mL	50mL
615220005	MW-FGD-20AR-2023Q1	SAMPLE	G	23-MAR-23	50mL	50mL
615220006	MW-FGD-21-2023Q1	SAMPLE	G	23-MAR-23	50mL	50mL
615220007	FBLK-WMS-FGD-23101	SAMPLE	G	23-MAR-23	50mL	50mL
615220008	FBLK-WMS-FGD-23102	SAMPLE	G	23-MAR-23	50mL	50mL
615220009	DU-WMS-FGD-23101	SAMPLE	G	23-MAR-23	50mL	50mL

General Chemistry Technical Case Narrative Dominion Energy SDG #: 615220

Product: Ion Chromatography Analytical Method: EPA 300.0 **Analytical Procedure:** GL-GC-E-086 REV# 30 **Analytical Batch:** 2402854

The following samples were analyzed using the above methods and analytical procedure(s).

<u>GEL Sample ID#</u>	Client Sample Identification
615220001	MW-FGD-16-2023Q1
615220002	MW-FGD-17-2023Q1
615220003	MW-FGD-18-2023Q1
615220004	MW-FGD-19D-2023Q1
615220005	MW-FGD-20AR-2023Q1
615220006	MW-FGD-21-2023Q1
615220007	FBLK-WMS-FGD-23101
615220008	FBLK-WMS-FGD-23102
615220009	DU-WMS-FGD-23101
1205354405	Method Blank (MB)
1205354406	Laboratory Control Sample (LCS)
1205354407	615220004(MW-FGD-19D-2023Q1) Sample Duplicate (DUP)
1205354408	615220004(MW-FGD-19D-2023Q1) Post Spike (PS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Technical Information

Sample Dilutions

The following samples 1205354407 (MW-FGD-19D-2023Q1DUP), 1205354408 (MW-FGD-19D-2023Q1PS), 615220001 (MW-FGD-16-2023Q1), 615220002 (MW-FGD-17-2023Q1), 615220003 (MW-FGD-18-2023Q1), 615220004 (MW-FGD-19D-2023Q1), 615220005 (MW-FGD-20AR-2023Q1), 615220006 (MW-FGD-21-2023Q1) and 615220009 (DU-WMS-FGD-23101) were diluted because target analyte concentrations exceeded the calibration range. Dilutions may be required for many reasons, including to minimize matrix interferences or to bring over range target analyte concentrations into the linear calibration range.

Analyte		615220													
	001	002	003	004	005	006	009								
Chloride	5X	25X	125X	125X	200X	1X	50X								
Sulfate	5X	25X	125X	5X	200X	10X	50X								

Miscellaneous Information

Additional Comments

All method-driven specifications are followed for these analyses except where client-specific SOW requirements are required to be met.

<u>Product:</u> Solids, Total Dissolved <u>Analytical Method:</u> SM 2540C <u>Analytical Procedure:</u> GL-GC-E-001 REV# 20 <u>Analytical Batches:</u> 2402709 and 2402712

The following samples were analyzed using the above methods and analytical procedure(s).

<u>GEL Sample ID#</u>	Client Sample Identification
615220001	MW-FGD-16-2023Q1
615220002	MW-FGD-17-2023Q1
615220003	MW-FGD-18-2023Q1
615220004	MW-FGD-19D-2023Q1
615220005	MW-FGD-20AR-2023Q1
615220006	MW-FGD-21-2023Q1
615220007	FBLK-WMS-FGD-23101
615220008	FBLK-WMS-FGD-23102
615220009	DU-WMS-FGD-23101
1205354121	Method Blank (MB)
1205354122	Laboratory Control Sample (LCS)
1205354123	615214003(NonSDG) Sample Duplicate (DUP)
1205354124	615220004(MW-FGD-19D-2023Q1) Sample Duplicate (DUP)
1205354131	Method Blank (MB)
1205354132	Laboratory Control Sample (LCS)
1205354133	615230001(NonSDG) Sample Duplicate (DUP)
1205354134	615298001(NonSDG) Sample Duplicate (DUP)
1205354135	615312006(NonSDG) Sample Duplicate (DUP)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Quality Control (QC) Information

Duplicate Relative Percent Difference (RPD) Statement

The Relative Percent Difference (RPD) between the sample and duplicate falls outside of the established acceptance limits because of the heterogeneous matrix of the sample:

Analyte	Sample	Value
Total Dissolved Solids	1205354124 (MW-FGD-19D-2023Q1DUP)	17.2* (0%-5%)

Miscellaneous Information

Additional Comments

Sample filtration took > 10 minutes; therefore as prescribed in the method, a reduced aliquot was used. 1205354123

(Non SDG 615214003DUP), 1205354124 (MW-FGD-19D-2023Q1DUP), 615220002 (MW-FGD-17-2023Q1), 615220003 (MW-FGD-18-2023Q1), 615220004 (MW-FGD-19D-2023Q1), 615220005 (MW-FGD-20AR-2023Q1) and 615220009 (DU-WMS-FGD-23101). All method-driven specifications are followed for these analyses except where client-specific SOW requirements are required to be met.

Certification Statement

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

GEL LABORATORIES LLC

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Qualifier Definition Report for

DMNN001 Dominion Energy (50149867)

Client SDG: 615220 GEL Work Order: 615220

The Qualifiers in this report are defined as follows:

- * A quality control analyte recovery is outside of specified acceptance criteria
- J Value is estimated
- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

Review/Validation

GEL requires all analytical data to be verified by a qualified data reviewer. In addition, all CLP-like deliverables receive a third level review of the fractional data package.

The following data validator verified the information presented in this data report:

rüsten Muzell Signature:

Name: Kristen Mizzell

Date: 04 APR 2023

Title: Group Leader

				5		5 5				Rep	ort Date:	April 4,	2023
	Company : Address :	Dor 120	ninion Energy Servic Tredegar Street	es, Inc.									
		Ric	hmond, Virginia 232	219									
	Contact:	Kel	ly Hicks										
	Project:	CC	R Groundwater Moni	toring - Lev	/el 1	Package							
	Client Sample ID:	MW	/-FGD-16-2023Q1				Pro	ject:		DMN	N00101		
	Sample ID:	615	220001				Cli	ent ID):	DMN	N001		
	Matrix:	GW	7										
	Collect Date:	21-1	MAR-23 10:05										
	Receive Date:	22-]	MAR-23										
	Collector:	Clie	ent										
Parameter	Quali	fier	Result	D!		RL	Units	PF	DF	Analy	yst Date	Time Batc	h Method
Ion Chroma	atography				-								
EPA 300.0	Anions Liquid "As	Recei	ved"										
Chloride	1		28.4	0.33	5	1.00	mg/L		5	JLD1	03/23/23	2052 24028	54 1
Sulfate			57.4	0.66	5	2.00	mg/L		5				
Fluoride			0.193	0.033	0	0.100	mg/L		1	JLD1	03/23/23	1354 24028	54 2
Solids Ana	lysis												
SM2540C	TDS "As Received"						_						.
Total Dissolve	ed Solids		184	2.3	8	10.0	mg/L			CH6	03/23/23	1132 24027	09 3
The follow	ving Analytical Meth	ods v	were performed:										
Method	Descr	iption	1				A	Analys	t Co	mment	S		
1	EPA 30	0.0											
2	EPA 30 SM 25/	0.0 10C											
5	SIM 252	IUC											

Notes:

Column headers are defined as follows: DF: Dilution Factor Lc/LC: Critical Level **DL:** Detection Limit PF: Prep Factor RL: Reporting Limit MDA: Minimum Detectable Activity MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

				U	0 0				Rep	oort Date:	Apr	il 4, 20	023
	Company : Address :	Dom 120 7	inion Energy Services Γredegar Street	, Inc.									
		Rich	mond, Virginia 23219)									
	Contact:	Kelly	y Hicks										
	Project:	CCR	Groundwater Monitor	ring - Level	1 Package								
	Client Sample ID:	MW	-FGD-17-2023Q1			Pro	ject:		DMN	N00101			
	Sample ID:	6152	20002			Cli	ient ID	:	DMN	N001			
	Matrix:	GW											
	Collect Date:	20-M	IAR-23 14:56										
	Receive Date:	22-M	IAR-23										
	Collector:	Clier	nt										
Parameter	Quali	fier	Result	DL	RL	Units	PF	DF	Analy	yst Date	Time I	Batch	Method
Ion Chroma	atography												
EPA 300.0	Anions Liquid "As	Receiv	red"										
Fluoride			0.526	0.0330	0.100	mg/L		1	JLD1	03/23/23	1423 24	402854	1
Chloride			110	1.68	5.00	mg/L		25	JLD1	03/23/23	2122 24	402854	2
Sulfate	1!-		48.6	3.33	10.0	mg/L		25					
Solids Alla													
SM2540C	IDS "As Received"		907	170	20.0				CIIC	02/22/22	1122 0	102700	2
		1	890	4.70	20.0	mg/L			CH0	03/23/23	1132 24	402709	3
The follow	ing Analytical Metr	lods w	ere performed:					~					
Method	Descr	ption				I	Analys	t Coi	nment	S			
1	EPA 30	0.0											
2 3	SM 254	0.0 40C											
-	5111 20												

Notes:

> Column headers are defined as follows: DF: Dilution Factor Lc/LC: Critical Level **DL:** Detection Limit PF: Prep Factor RL: Reporting Limit MDA: Minimum Detectable Activity MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

			J	5 5			Report Da	te: April 4, 2	2023
	Company : Address :	Dominion Energy Serv 120 Tredegar Street	vices, Inc.						
		Richmond, Virginia 2	3219						
	Contact:	Kelly Hicks							
	Project:	CCR Groundwater Mo	onitoring - Level	1 Package					
	Client Sample ID:	MW-FGD-18-2023Q1			Proje	ct:	DMNN0010)1	
	Sample ID:	615220003			Clien	t ID:	DMNN001		
	Matrix:	GW							
	Collect Date:	20-MAR-23 16:10							
	Receive Date:	22-MAR-23							
	Collector:	Client							
Parameter	Quali	fier Result	DL	RL	Units 1	PF DF	Analyst Dat	e Time Batch	Method
Ion Chrom	atography								
EPA 300.0	Anions Liquid "As I	Received"							
Chloride		1410	8.38	25.0	mg/L	125	JLD1 03/23/	23 2152 2402854	1
Sulfate		60.2	16.6	50.0	mg/L	125	ILD1 02/22	22 1452 2402854	
Solide Ana	lycic	0.011	0.0330	0.100	mg/L	1	JLD1 05/25/	23 1455 2402854	+ Z
SM2540C	TDS "As Received"								
Total Dissolv	ed Solids	2560	23.8	100	mg/L		CH6 03/23/	23 1132 2402709) 3
The follow	ving Analytical Meth	ods were performed:							
Method	Descri	ption			An	alyst Co	mments		
1	EPA 30	0.0							
2	EPA 30	0.0							

2 3 SM 2540C

Notes:

> Column headers are defined as follows: DF: Dilution Factor Lc/LC: Critical Level **DL:** Detection Limit PF: Prep Factor RL: Reporting Limit MDA: Minimum Detectable Activity MDC: Minimum Detectable Concentration

SQL: Sample Quantitation Limit

				v						Rep	ort Date:	A	pril 4, 20	023
	Company : Address :	Don 120	ninion Energy Se Tredegar Street	rvices, Ind	с.									
		Rich	mond Virginia	23219										
	Contact:	Kell	v Hicks	25217										
	Project:	CCF	R Groundwater N	Ionitoring	- Level	1 Package								
	Client Sample ID:	MW	-FGD-19D-2023	01		8-	Pro	niect:		DMN	N00101			
	Sample ID:	6150	-10D-17D-2023	QI			Client ID: DMNN00101							
	Sample ID.	CW	220004				CI		•	DIVIN	1001			
			AD 22 15:00											
	Collect Date:	20-N	AR-23 15:00											
	Receive Date:	22-N	AAR-23											
	Collector:	Clie	nt											
Darameter	Quali	fior	Docult			PI	Unite	DE	DE	Anals	ret Data	Time	Datah	Mathad
	Quan	nei	Kesuit		DL	KL	Units	L L.	DI	Anary	si Dale	1 11110	Datch	Method
Ion Chroma	atography													
EPA 300.0	Anions Liquid "As I	Receiv	ved"											
Chloride			645		8.38	25.0	mg/L		125	JLD1	03/23/23	2351	2402854	1
Fluoride			0.453		0.0330	0.100	mg/L		1	JLD1	03/23/23	1523	2402854	2
Sullate	Noio		38.1		0.005	2.00	mg/L		5	JLDI	03/24/23	0121	2402854	3
SULUS ALLA	IYSIS FDS "As Deseived"													
Total Dissolve	d Solids		1060		23.8	100	mg/L			CH6	03/23/23	1132	2402709	4
The follow	ing Analytical Meth	ods u	ere performed		2010	100	ing 2			0110	00/20/20	1102	2102707	·
Mathod	Docori	ntion	ere performed.					Anoluo	t Cor	nmont	0			
1	EPA 30	0.0					1	Analys		mient	3			
2	EPA 30	0.0												
3	EPA 30	0.0												
4	SM 254	OC												

Notes:

Column headers are defined as follows: DF: Dilution Factor Lc/LC: Critical Level PF: Prep Factor DL: Detection Limit MDA: Minimum Detectable Activity RL: Reporting Limit MDC: Minimum Detectable Concentration

SQL: Sample Quantitation Limit

				U	0 0				Rep	ort Date:	Α	pril 4, 2	023
	Company :	Dom	inion Energy Service	s, Inc.									
	Address :	120	Fredegar Street										
		Rich	mond, Virginia 2321	9									
	Contact:	Kelly	v Hicks										
	Project:	CCR	Groundwater Monito	oring - Level	1 Package								
	Client Sample ID:	MW	FGD-20AR-2023Q1			Pro	oject:		DMN	N00101			
	Sample ID:	6152	20005			Cli	ient II):	DMN	N001			
	Matrix:	GW											
	Collect Date:	20-M	IAR-23 16:31										
	Receive Date:	22-M	[AR-23										
	Collector:	Clier	t										
		<u> </u>	D		DI	TT •	DE		. 1		—		
Parameter	Quali	fier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time	e Batch	Method
Ion Chroma	atography												
EPA 300.0	Anions Liquid "As	Receiv	ed"										
Chloride			563	13.4	40.0	mg/L		200	JLD1	03/24/23	0251	2402854	1
Sulfate			160	26.6	80.0	mg/L		200					
Fluoride		J	0.0906	0.0330	0.100	mg/L		1	JLD1	03/23/23	1823	2402854	2
Solids Ana	lysis												
SM2540C	TDS "As Received"												

The following Analytical Methods were performed: Method Description Analyst Comments 1 EPA 300.0 2 EPA 300.0 SM 2540C 3

23.8

100

mg/L

CH6 03/23/23 1132 2402709

3

Notes:

Total Dissolved Solids

Column headers are defined as follows: DF: Dilution Factor Lc/LC: Critical Level **DL:** Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity **RL:** Reporting Limit MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

1280

				5	5	2				Rep	ort Date:	Aj	pril 4, 20)23
Compa Addres	any : ss :	Domin 120 Tr	nion Energy Services redegar Street	, Inc.						-				
		Richm	ond, Virginia 23219)										
Contac	et:	Kelly	Hicks											
Project	t:	CCR	Groundwater Monitor	ring - Level	1 Package									
Client	Sample ID:	MW-F	FGD-21-2023Q1				Pro	ject:		DMN	N00101			
Sample	e ID:	61522	0006				Clie	nt ID:	:	DMN	N001			
Matrix	:	GW												
Collect	Date:	21-M/	AR-23 11:10											
Receiv	e Date:	22-MA	AR-23											
Collect	or:	Client												
Parameter	Qualit	ier	Result	DL	RL	Un	nits	PF	DF	Analy	yst Date	Time	Batch	Method
lon Chromatograph	у													
EPA 300.0 Anions	Liquid "As I	Receive	d"											
Chloride	-		3.27	0.0670	0.200	n	ng/L		1	JLD1	03/23/23	1852	2402854	1
Fluoride		U	ND	0.0330	0.100	n	ng/L		1		0.0 10 1 10 0			
Sulfate			85.0	1.33	4.00	n	ng/L		10	JLDI	03/24/23	0320	2402854	2
Solius Alialysis	Dessived"													
SIMI2340C TDS AS	s Received		238	2 38	10.0	n	nα/I			СН6	03/23/23	1132	2402709	3
The following Ana	lytical Meth	ods wei	e performed	2.50	10.0	11	iig/L			CHO	03/23/23	1152	2402707	5
Method	Descri	ntion	e performed.				Δ	nalvet	Cor	nment	¢			
1	EPA 30	0.0						maryst		mient	3			
2	EPA 30	0.0												
3	SM 254	0C												
Notes:														

Column headers are defined as follows:DF: Dilution FactorLc/LC: Critical LevelDL: Detection LimitPF: Prep FactorMDA: Minimum Detectable ActivityRL: Reporting LimitMDC: Minimum Detectable ConcentrationSQL: Sample Quantitation Limit

				v	0	2			Rep	port Date:	April 4, 2	2023
	Company :	Dominion Energy Services, Inc.										
	Address :	120	Tredegar Street									
		Ricl	nmond, Virginia 2321	9								
	Contact:	Kell	ly Hicks									
	Project:	CCR Groundwater Monitoring - Level 1 Package										
	Client Sample ID:	FBI	FBLK-WMS-FGD-23101				Project:			IN00101		
	Sample ID: 615220007				Client ID			D: DMNN001				
	Matrix:	AQ										
	Collect Date:	20-1	MAR-23 15:15									
	Receive Date:	22-1	MAR-23									
	Collector:	Clie	nt									
Parameter	Quali	fier	Result	DI	L RL	Units	PF	DF	Anal	yst Date	Time Batch	Method
Ion Chrom	atography											
EPA 300.0	Anions Liquid "As	Recei	ved"									
Chloride	-	U	ND	0.0670	0.200	mg/L	,	1	JLD1	03/23/23	1922 2402854	↓ 1
Fluoride		U	ND	0.0330	0.100	mg/L	,	1				
Sulfate	1.2.	U	ND	0.133	3 0.400	mg/L	,	1				
Solids Ana	IIYSIS											
SM2540C	TDS "As Received"		ND	2.20	10.0	σ			CUL	02/22/22	1122 240270	
Total Dissolv	ed Solids	U	ND	2.38	3 10.0	mg/L	,		CH6	03/23/23	1132 2402709	2
The follow	ving Analytical Meth	ods v	vere performed:									
Method	Descri	ption				Analys	st Co	mment	ts			
1	EPA 30	0.0										
2	SM 254	UC										

Notes:

Column headers are defined as follows: DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity RL: Reporting Limit MDC: Minimum Detectable Concentration

SQL: Sample Quantitation Limit

				0	0 0				Rep	ort Date:	April 4, 2	2023
	Company : Address :	Dominion Energy Services, Inc. 120 Tredegar Street										
		Ric	hmond, Virginia 2321	9								
	Contact:	Kel	ly Hicks									
	Project:	CCI	R Groundwater Monito									
	Client Sample ID:FBLK-WMS-FGD-23102Sample ID:615220008Matrix:AQ					Project:			DMN	N00101		
					Clie			ent ID: DMN		N001		
	Collect Date:	21-1	MAR-23 10:10									
	Receive Date:	22-1	MAR-23									
	Collector:	Clie	ent									
Parameter	Quali	fier	Result	DL	RL	Units	PF	DF	Analy	yst Date	Time Batch	Method
Ion Chroma	atography											
EPA 300.0	Anions Liquid "As	Recei	ved"									
Chloride		U	ND	0.0670	0.200	mg/L		1	JLD1	03/23/23	1952 240285	4 1
Fluoride		U	ND	0.0330	0.100	mg/L		1				
Sulfate	lucio	U	ND	0.133	0.400	mg/L		1				
SUIUS AIIa	TDC "A a Dession d"											
SIM2540C	ad Solids	п	ND	2 38	10.0	mg/I			СН6	03/23/23	1132 240270	0 2
The fellow	ving Applytical Math	odo -	ND wana manfammadu	2.30	10.0	mg/L			CHO	03/23/23	1132 240270	9 2
The follow		ous v	vere performed:				1					
Iviethod	EDA 20	analyst Comments										
2	SM 254	0.0 0C										

Notes:

Page 51 of 56

I

٦

Column headers are defined as follows: DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity RL: Reporting Limit MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

SDG: 615220
Certificate of Analysis

			-		-j;	,			Rep	ort Date:	Α	pril 4, 2	023
	Company : Address :	Dor 120	ninion Energy Servio Tredegar Street	ces, Inc.									
		Ricl	nmond, Virginia 232	219									
	Contact:	Kel	ly Hicks										
	Project:	CCI	R Groundwater Mon	itoring - Level	1 Package								
	Client Sample ID:	DU	-WMS-FGD-23101			Pro	oject:		DMN	N00101			
	Sample ID:	615	220009			Cli	ient ID):	DMN	N001			
	Matrix:	GW	,										
	Collect Date:	20-1	MAR-23 12:00										
	Receive Date:	22-1	MAR-23										
	Collector:	Clie	ent										
Parameter	Quali	fier	Result	DL	RL	Units	PF	DF	Analy	yst Date	Time	e Batch	Method
Ion Chroma	atography												
EPA 300.0	Anions Liquid "As	Recei	ved"										
Fluoride			0.453	0.0330	0.100	mg/L		1	JLD1	03/23/23	2022	2402854	1
Chloride			110	3.35	10.0	mg/L		50	JLD1	03/24/23	0350	2402854	2
Sulfate			47.6	6.65	20.0	mg/L		50					
Solids Anal	lysis TDC "A a Daasiaa d"												
SIM2340C	AS Received		002	176	20.0	ma/I			СЦ6	02/22/22	1121	2402712	2
The follow	ving Analytical Met	ode v	902 vere performed:	4.70	20.0	mg/L			СПО	03/23/23	1121	2402712	5
Mathad	Deser	intion	vere performed.				1 m a 1	t Car					
	EPA 3	101011 000				I	Anarys	t Co	mnem	.5			
2	EPA 3	0.0											
3	SM 254	40C											

Notes:

> Column headers are defined as follows: DF: Dilution Factor Lc/LC: Critical Level **DL:** Detection Limit PF: Prep Factor RL: Reporting Limit MDA: Minimum Detectable Activity MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 52 of 56 SDG: 615220

Quality Control Summary

GEL LABORATORIES LLC 2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC	Summary
----	---------

Report Date: April 4, 2023

Page 1 of 3

Dominion Energy Services, Inc.
120 Tredegar Street
Richmond, Virginia
Kelly Hicks

Workorder: 615220

Contact:

Parmname	NOM Sample Qual QC		QC	Units	RPD% R	EC%	Range Anlst	Date Time		
Ion Chromatography Batch 2402854										
QC1205354407 615220004 DUP Chloride		645	645	mg/L	0.0155		(0%-20%) JLD1	03/24/23 00:21		
Fluoride		0.453	0.501	mg/L	10.1 ^		(+/-0.100)	03/23/23 17:23		
Sulfate		38.1	38.2	mg/L	0.134		(0%-20%)	03/24/23 01:51		
QC1205354406 LCS Chloride	5.00		4.94	mg/L	9	8.9	(90%-110%)	03/23/23 13:24		
Fluoride	2.50		2.54	mg/L	1	101	(90%-110%)			
Sulfate	10.0		10.1	mg/L	1	101	(90%-110%)			
QC1205354405 MB Chloride		U	ND	mg/L				03/23/23 12:54		
Fluoride		U	ND	mg/L						
Sulfate		U	ND	mg/L						
QC1205354408 615220004 PS Chloride	5.00	5.16	10.3	mg/L	1	103	(90%-110%)	03/24/23 00:51		
Fluoride	2.50	0.453	2.94	mg/L	9	9.5	(90%-110%)	03/23/23 17:53		
Sulfate	10.0	7.62	17.6	mg/L	1	100	(90%-110%)	03/24/23 02:21		

GEL LABORATORIES LLC

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 615220			~		-					Page 2 of 3
Parmname		NOM	Sample Qual	QC	Units	RPD%	REC%	Range	Anlst	Date Time
Solids Analysis Batch 2402709										
QC1205354123 615214003 Total Dissolved Solids	B DUP		5230	5370	mg/L	2.64		(0%-5%)	CH6	03/23/23 11:32
QC1205354124 615220004 Total Dissolved Solids	DUP		1060	1260	mg/L	17.2*		(0%-5%)		03/23/23 11:32
QC1205354122 LCS Total Dissolved Solids		300		304	mg/L		101	(95%-105%)		03/23/23 11:32
QC1205354121 MB Total Dissolved Solids			U	ND	mg/L					03/23/23 11:32
Batch 2402712										
QC1205354133 615230001 Total Dissolved Solids	DUP		81.0	80.0	mg/L	1.24		(0%-5%)	CH6	03/23/23 11:21
QC1205354134 615298001 Total Dissolved Solids	DUP		203	204	mg/L	0.491		(0%-5%)		03/23/23 11:21
QC1205354135 615312006 Total Dissolved Solids	5 DUP		34.0	31.0	mg/L	9.23 ^		(+/-10.0)		03/23/23 11:21
QC1205354132 LCS Total Dissolved Solids		300		302	mg/L		101	(95%-105%)		03/23/23 11:21
QC1205354131 MB Total Dissolved Solids			U	ND	mg/L					03/23/23 11:21

Notes:

The Qualifiers in this report are defined as follows:

- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.
- J Value is estimated
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- H Analytical holding time was exceeded

GEL LABORATORIES LLC

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workor	Page 3 of
Parmnar	e NOM Sample Qual QC Units RPD% REC% Range Anlst Date Time
<	Result is less than value reported
>	Result is greater than value reported
h	Preparation or preservation holding time was exceeded
R	Sample results are rejected
Z	Paint Filter TestParticulates passed through the filter, however no free liquids were observed.
d	5-day BODThe 2:1 depletion requirement was not met for this sample
^	RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL. Qualifier Not Applicable for Radiochemistry.
N/A	RPD or %Recovery limits do not apply.
ND	Analyte concentration is not detected above the detection limit
NJ	Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
Е	General ChemistryConcentration of the target analyte exceeds the instrument calibration range
Q	One or more quality control criteria have not been met. Refer to the applicable narrative or DER.
N1	See case narrative
R	Per section 9.3.4.1 of Method 1664 Revision B, due to matrix spike recovery issues, this result may not be reported or used for regulatory compliance purposes.
В	The target analyte was detected in the associated blank.
e	5-day BODTest replicates show more than 30% difference between high and low values. The data is qualified per the method and can be used for eporting purposes
J	See case narrative for an explanation
N/A ind ^ The Re five time RL is us * Indica	ates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more or % RPD not applicable. ative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria when the sample is greater than (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/- the d to evaluate the DUP result. s that a Quality Control parameter was not within specifications.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

This quality assurance (QA) review is based upon an examination of the data generated from the analyses of the samples collected as part of:

Williams Power Station Groundwater Sampling Samples Collected between: 3/20/2023 and 3/23/2023

This review was performed with guidance from the associated US EPA data validation guidelines and in accordance with the Quality Assurance Program Plan. These validation guidance documents specifically address analyses performed in accordance with the Contract Laboratory Program (CLP) analytical methods and are not completely applicable to the type of analyses and analytical protocols performed for the US EPA, SW-846, and Standard Methods utilized by the laboratory for these samples. Environmental Standards, Inc. (Environmental Standards) used professional judgment to determine the usability of the analytical results and compliance relative to the US EPA, SW-846, and Standard Methods utilized by the laboratory. This QA review was performed on the data associated with Job Number:

615220

The findings offered in this report are based on a review of holding times and preservation, method blank results, field blank results, filter blank results, equipment blank results, tubing blank results, matrix spike/matrix spike duplicate recoveries and precision, laboratory control sample/laboratory control sample duplicate recoveries and precision, laboratory and field duplicate precision, total and dissolved results comparisons, and/or positive results between the method detection limit and quantitation limit.

The following results were qualified based on the data verification effort:

Sample	Location	Sample Type	Method	Anayte	T/D	Result	Qual	Reason Code(s)	MDL	QL	Uncertainty	Unit
MW-FGD-20AR-2023Q1	MW-FGD- 20AR	N	EPA 300.0	Fluoride	N	0.0906	J	RL	0.0330	0.100		mg/L

Data Qualifiers	
U	The analyte was not detected above the level of the sample reporting limit.
J	Quantitation is approximate due to limitations identified during data validation.
J+	The result is an estimated quantity; the result may be biased high.
J-	The result is an estimated quantity; the result may be biased low.
UJ	The analyte was not detected; the reporting limit is approximate and may be inaccurate or imprecise.
R	Unreliable positive result; analyte may or may not be present in sample.
Reason Codes	and Explanations
BE	Equipment blank contamination.
BF	Field blank contamination.
BL	Laboratory blank contamination.
BN	Negative laboratory blank contamination.
FD	Field duplicate imprecision.
FG	Total versus Dissolved Imprecision.
Н	Holding time exceeded.
L	LCS and LCSD recoveries outside of acceptance limits
LD	Laboratory duplicate imprecision.
LP	LCS/LCSD imprecision.
М	MS and MSD recoveries outside of acceptance limits
MP	MS/MSD imprecision.
Q	Chemical Preservation issue.
RL	Reported Results between the MDL and QL.
S	Radium-226+228 flagged due to reporting protocol for combined results

Т	Temperature preservation issue.
х	Percent solids < 50%.
Υ	Chemical yield outside of acceptance limits
ZZ	Other

				Lab Sample ID	615220001												
				Sys Sample Code	MW-FGD-16-2023Q1												
				Sample Name	MW-FGD-16-2023Q1												
				Sample Date	3/21/2023 10:05:00 AM												
				Location	WMS-MW-FGD-16 / MW-FGD-16												
				Sample Type	N												
				Matrix	GW												
Parent Sample																	
Analytic Method	Chemical Name	CAS Rn	Fraction	Result Unit	Final Result	Final Qual	Reason code	Uncertainty	Final MDL	Final RL	Final QL	Final Detect	Final Report	DF	Basis		
EPA 200.8	Boron	7440-42-8	Т	ug/L	37.4				4.00	4.00	15.0	Y	Yes	1	NA		
	Calcium	7440-70-2	Т	ug/L	15200				30.0	30.0	100	Y	Yes	1	NA		
EPA 300.0	Fluoride	16984-48-8	N	mg/L	0.193				0.0330	0.0330	0.100	Y	Yes	1	NA		
EPA 300.0	Chloride	16887-00-6	N	mg/L	28.4				0.335	0.335	1.00	Y	Yes	5	NA		
	Sulfate	14808-79-8	N	mg/L	57.4				0.665	0.665	2.00	Y	Yes	5	NA		
SM 2540C	Total Dissolved Solids	TDS	N	mg/L	184				2.38	2.38	10.0	Y	Yes	1	NA		

				Lab Sample ID	615220002												
				Sys Sample Code	MW-FGD-17-2023Q1												
				Sample Name	MW-FGD-17-2023Q1												
				Sample Date	3/20/2023 2:56:00 PM												
				Location	WMS-MW-FGD-17 / MW-FGD-17												
				Sample Type	N												
				Matrix	GW												
Parent Sample																	
Analytic Method	Chemical Name	CAS Rn	Fraction	Result Unit	Final Result	Final Qual	Reason code	Uncertainty	Final MDL	Final RL	Final QL	Final Detect	Final Report	DF	Basis		
EPA 200.8	Boron	7440-42-8	Т	ug/L	146				4.00	4.00	15.0	Y	Yes	1	NA		
	Calcium	7440-70-2	Т	ug/L	167000				300	300	1000	Y	Yes	10	NA		
EPA 300.0	Fluoride	16984-48-8	N	mg/L	0.526				0.0330	0.0330	0.100	Y	Yes	1	NA		
EPA 300.0	Chloride	16887-00-6	N	mg/L	110				1.68	1.68	5.00	Y	Yes	25	NA		
	Sulfate	14808-79-8	Ν	mg/L	48.6				3.33	3.33	10.0	Y	Yes	25	NA		
SM 2540C	Total Dissolved Solids	TDS	N	mg/L	896				4.76	4.76	20.0	Y	Yes	1	NA		

				Lab Sample ID	615220003												
				Sys Sample Code	MW-FGD-18-2023Q1												
				Sample Name	MW-FGD-18-2023Q1												
				Sample Date	3/20/2023 4:10:00 PM												
				Location	WMS-MW-FGD-18 / MW-FGD-18												
				Sample Type	N												
				Matrix	GW												
Parent Sample																	
Analytic Method	Chemical Name	CAS Rn	Fraction	Result Unit	Final Result	Final Qual	Reason code	Uncertainty	Final MDL	Final RL	Final QL	Final Detect	Final Report	DF	Basis		
EPA 200.8	Boron	7440-42-8	Т	ug/L	3620				200	200	750	Y	Yes	50	NA		
	Calcium	7440-70-2	Т	ug/L	236000				1500	1500	5000	Y	Yes	50	NA		
EPA 300.0	Fluoride	16984-48-8	N	mg/L	0.611				0.0330	0.0330	0.100	Y	Yes	1	NA		
EPA 300.0	Chloride	16887-00-6	N	mg/L	1410				8.38	8.38	25.0	Y	Yes	125	NA		
	Sulfate	14808-79-8	Ν	mg/L	60.2				16.6	16.6	50.0	Y	Yes	125	NA		
SM 2540C	Total Dissolved Solids	TDS	N	mg/L	2560				23.8	23.8	100	Y	Yes	1	NA		

				Lab Sample ID	615220004										
				Sys Sample Code	MW-FGD-19D	-2023Q	1								
				Sample Name	MW-FGD-19D	-2023Q	1								
				Sample Date	3/20/2023 3:00	0:00 PM									
				Location	WMS-MW-FGD-19 / MW-FGD-19										
				Sample Type	N										
				Matrix	GW										
				Parent Sample											
Analytic Method	Chemical Name	CAS Rn	Fraction	Result Unit	Final Result	Final Qual	Reason code	Uncertainty	Final MDL	Final RL	Final QL	Final Detect	Final Report	DF	Basis
EPA 200.8	Boron	7440-42-8	Т	ug/L	2080				200	200	750	Y	Yes	50	NA
	Calcium	7440-70-2	Т	ug/L	134000				1500	1500	5000	Y	Yes	50	NA
EPA 300.0	Chloride	16887-00-6	N	mg/L	645				8.38	8.38	25.0	Y	Yes	125	NA
	Sulfate	14808-79-8	N	mg/L	38.1				0.665	0.665	2.00	Y	Yes	5	NA
EPA 300.0	Fluoride	16984-48-8	N	mg/L	0.453				0.0330	0.0330	0.100	Y	Yes	1	NA
SM 2540C	Total Dissolved Solids	TDS	N	mg/L	1060				23.8	23.8	100	Y	Yes	1	NA

				Lab Sample ID	615220005												
				Sys Sample Code	MW-FGD-20AR-2023Q1												
				Sample Name	MW-FGD-20A	R-20230	ג2										
				Sample Date	3/20/2023 4:3	1:00 PM											
				Location	WMS-MW-FG	D-20AR	/ MW-FGD-20	٩R									
				Sample Type	Ν												
				Matrix	GW												
				Parent Sample													
Analytic Method	Chemical Name	CAS Rn	Fraction	Result Unit	Final Result	Final Qual	Reason code	Uncertainty	Final MDL	Final RL	Final QL	Final Detect	Final Report	DF	Basis		
EPA 200.8	Boron	7440-42-8	Т	ug/L	3410				200	200	750	Y	Yes	50	NA		
	Calcium	7440-70-2	Т	ug/L	280000				1500	1500	5000	Y	Yes	50	NA		
EPA 300.0	Fluoride	16984-48-8	Ν	mg/L	0.0906	J	RL		0.0330	0.0330	0.100	Y	Yes	1	NA		
EPA 300.0	Chloride	16887-00-6	Ν	mg/L	563				13.4	13.4	40.0	Y	Yes	200	NA		
	Sulfate	14808-79-8	Ν	mg/L	160				26.6	26.6	80.0	Y	Yes	200	NA		
SM 2540C	Total Dissolved	TDS	N	ma/L	1280				23.8	23.8	100	Y	Yes	1	NA		

				Lab Sample ID	615220006											
				Sys Sample Code	MW-FGD-21-2	2023Q1										
				Sample Name	MW-FGD-21-2	2023Q1										
				Sample Date	3/21/2023 11:1	10:00 AN	Л									
				Location	//MS-MW-FGD-21 / MW-FGD-21											
				Sample Type	N											
				Matrix	GW											
			Parent Sample													
Analytic Method	Chemical Name	CAS Rn	Fraction	Result Unit	Final Result	Final Qual	Reason code	Uncertainty	Final MDL	Final RL	Final QL	Final Detect	Final Report	DF	Basis	
EPA 200.8	Boron	7440-42-8	Т	ug/L	20.0				4.00	4.00	15.0	Y	Yes	1	NA	
	Calcium	7440-70-2	Т	ug/L	45600				300	300	1000	Y	Yes	10	NA	
EPA 300.0	Chloride	16887-00-6	N	mg/L	3.27				0.0670	0.0670	0.200	Y	Yes	1	NA	
	Fluoride	16984-48-8	N	mg/L		U			0.0330	0.0330	0.100	Ν	Yes	1	NA	
EPA 300.0	Sulfate	14808-79-8	Ν	mg/L	85.0				1.33	1.33	4.00	Y	Yes	10	NA	
SM 2540C	Total Dissolved Solids	TDS	N	mg/L	238				2.38	2.38	10.0	Y	Yes	1	NA	

				Lab Sample ID	D 615220007											
				Sys Sample Code	FBLK-WMS-F	GD-231	01									
				Sample Name	FBLK-WMS-F	GD-231	01									
				Sample Date	3/20/2023 3:15:00 PM											
				Location	WMS-FB / Fie	WMS-FB / Field Blank										
				Sample Type	FB											
				Matrix	AQ											
				Parent Sample												
Analytic Method	Chemical Name	CAS Rn	Fraction	Result Unit	Final Result	Final Qual	Reason code	Uncertainty	Final MDL	Final RL	Final QL	Final Detect	Final Report	DF	Basis	
EPA 200.8	Boron	7440-42-8	Т	ug/L		U			4.00	4.00	15.0	N	Yes	1	NA	
	Calcium	7440-70-2	Т	ug/L		U			30.0	30.0	100	N	Yes	1	NA	
EPA 300.0	Chloride	16887-00-6	Ν	mg/L		U			0.0670	0.0670	0.200	N	Yes	1	NA	
	Fluoride	16984-48-8	Ν	mg/L		U			0.0330	0.0330	0.100	N	Yes	1	NA	
	Sulfate	14808-79-8	Ν	mg/L		U			0.133	0.133	0.400	N	Yes	1	NA	
SM 2540C	Total Dissolved Solids	TDS	N	mg/L		U			2.38	2.38	10.0	N	Yes	1	NA	

				Lab Sample ID	D 615220008													
				Sys Sample Code	FBLK-WMS-F	GD-231	02											
				Sample Name	FBLK-WMS-F	GD-231	02											
				Sample Date	3/21/2023 10:	10:00 Al	N											
				Location	WMS-FB / Fie	MMS-FB / Field Blank												
				Sample Type	FB	B												
				Matrix	AQ													
				Parent Sample														
Analytic Method	Chemical Name	CAS Rn	Fraction	Result Unit	Final Result	Final Qual	Reason code	Uncertainty	Final MDL	Final RL	Final QL	Final Detect	Final Report	DF	Basis			
EPA 200.8	Boron	7440-42-8	Т	ug/L		U			4.00	4.00	15.0	N	Yes	1	NA			
	Calcium	7440-70-2	Т	ug/L		U			30.0	30.0	100	Ν	Yes	1	NA			
EPA 300.0	Chloride	16887-00-6	N	mg/L		U			0.0670	0.0670	0.200	Ν	Yes	1	NA			
	Fluoride	16984-48-8	Ν	mg/L		U			0.0330	0.0330	0.100	N	Yes	1	NA			
	Sulfate	14808-79-8	Ν	mg/L		U			0.133	0.133	0.400	Ν	Yes	1	NA			
SM 2540C	Total Dissolved Solids	TDS	N	mg/L		U			2.38	2.38	10.0	N	Yes	1	NA			

				Lab Sample ID	615220009													
				Sys Sample Code	DU-WMS-FG	D-23101												
				Sample Name	DU-WMS-FG	D-23101												
				Sample Date	3/20/2023 12:00:00 PM													
				Location	WMS-MW-FG	D-17 / N	IW-FGD-17											
				Sample Type	FD													
				Matrix	GW													
				Parent Sample	MW-FGD-17-2	2023Q1												
Analytic Method	Chemical Name	CAS Rn	Fraction	Result Unit	Final Result	Final Qual	Reason code	Uncertainty	Final MDL	Final RL	Final QL	Final Detect	Final Report	DF	Basis			
EPA 200.8	Boron	7440-42-8	Т	ug/L	145				4.00	4.00	15.0	Y	Yes	1	NA			
	Calcium	7440-70-2	Т	ug/L	151000				300	300	1000	Y	Yes	10	NA			
EPA 300.0	Fluoride	16984-48-8	N	mg/L	0.453				0.0330	0.0330	0.100	Y	Yes	1	NA			
EPA 300.0	Chloride	16887-00-6	Ν	mg/L	110				3.35	3.35	10.0	Y	Yes	50	NA			
	Sulfate	14808-79-8	Ν	mg/L	47.6				6.65	6.65	20.0	Y	Yes	50	NA			
SM 2540C	Total Dissolved Solids	TDS	N	mg/L	902				4.76	4.76	20.0	Y	Yes	1	NA			

Appendix D Second Semiannual Detection Monitoring Program Event Field Data Sheets, Laboratory Reports, and Data Validation Forms

Dominion Groundwater Level Measurement Log For Williams Generating Station

Program: CCR		Project	Number: 416559.6.0	
Date: 2023-10-03		Sampler	• Name(s): Jason Yonts	
Notes: Gauged going ir	nto high tide (12:24)	•		
Well ID	Time	Depth to GW (btoc, ft)	Depth to Bottom (btoc, ft)	Notes
WMS-MW-FGD-16	09:30	8.64		
WMS-GW-09	09:36	6.16		
WMS-GW-04A	09:39	10.28		
WMS-GW-06R	09:41	10.30		
WMS-GW-07R	09:44	11.77		
WMS-GW-08	09:47	11.36		
WMS-GW-01R	09:49	10.60		
WMS-GW-02R	09:51	11.30		
WMS-MW-FGD-18	09:59	8.65		
WMS-MW-FGD-17	10:01	7.56		
Pond E	10:04	4.93		
Pond D	10:07	3.65		
Pond B	10:11	2.97		
WMS-MW-FGD-23	10:14	7.99		
WMS-MW-FGD-24	10:17	8.12		
WMS-MW-FGD-19D	10:20	9.03		
WMS-MW-FGD-20AR	10:22	6.06		
WMS-MW-FGD-22	10:24	7.79		
Pond A	10:30	4.54		
WMS-MW-FGD-21	14:38	9.66		
Field Team Leader Sig	nature:		Signature Date	e: 2023-10-03

WATER SAMPLE LOG: MW-FGD-18-2023Q4 WILLIAMS GENERATING STATION

PREPARED BY	CHECKED BY
BY: Sam Thorsland	BY: David Szynal
DATE: 2023-10-03	DATE: 2023-10-10

	WELL ID: WMS-MW-FGD-18	
TASK CODE: WMS-GW-2023-10	WELL TYPE: Monitoring Well	WELL DIAMETER (IN.): 2
INITIAL DEPTH TO WATER (FT): 7.98	TOTAL DEPTH TO WATER (FT): 18.26	TOTAL WATER COLUMN (FT): 10.28
TOP OF SCREEN (FT): 8.26	BOTTOM OF SCREEN (FT): 18.26	METHOD OF PURGING: Low Flow
PUMP TYPE: Peristaltic	PUMP START TIME: 13:17	PUMP INTAKE DEPTH/SAMPLE DEPTH (FT): 13

PURGING

METHOD: Low Flow

MEASURE POINT: Top of Casing

PUMP INTAKE/SAMPLE DEPTH (FT): 13

PUMP TYPE: Peristaltic

PURGE AND STABILIZATION NOTES:

				PURGE	MEASU	JRES			
ТІМЕ	PURGE RATE (ML/MIN)	PH (SU)	CONDUCTIVITY (US/CM)	ORP (MV)	DO (MG/L)	TURDIDITY (NTU)	TEMPERATURE (C)	WATER LEVEL	COMMENTS
13:20	150	6.72	4434.9	-108.8	0.5	2.69	26.37	7.82	
13:35	150	6.61	4795.9	-118	0.1	1.62	25.42	7.94	
13:40	150	6.6	4887.6	-117	0.1	0.59	25.23	7.96	
13:45	150	6.59	5064.2	-115.8	0.09	0.4	25.05	7.96	
13:50	150	6.57	5270.6	-115	0.09	0.26	25.29	7.96	
13:53	150	6.54	5477.9	-114.6	0.09	0.36	25.28	7.96	
13:56	150	6.52	5735.4	-115.1	0.09	0.32	25.22	7.96	
13:59	150	6.51	5856.6	-114.4	0.1	0.44	25.33	7.94	
14:02	150	6.5	5884.7	-113.5	0.12	0.43	25.33	7.93	

SAN	IPLE
TIME: 14:02	METHOD OF SAMPLING: Low Flow
TOTAL VOL. PURGED (ML): 6750	TIME POST SAMPLE: 14:15
WATER LEVEL POST-SAMPLE: 7.94	FLOW RATE POST-SAMPLE (ML/MIN): 150
TURBIDITY POST-SAMPLE (NTU): 0.7	COLOR POST SAMPLE: Clear
ODOR POST-SAMPLE: None	STABILITY REACHED: Y
SAMPLE COMMENTS:	

SAMPLE QA												
ТҮРЕ		ID		TIME		TYPE	E	ID	TIME			
FIELD BLANK	FBLK-	WMS-FGD-23401		14:00	FIELD	DUPLICA	TE					
EQUIPMENT BLANK					FILTE	R BLANK						
EQUIPMENT BLANK					FILTE LOT:	R BLANK						
TUBING BLANK LOT:	MS/MSD				SD			NO				
		BOTTL	ES									
BOTTLE LOT NUMBER		BOTTLE COUNT		SIZE (M	1L)	TYPE	PRESE	RVA	TIVE			

250

250

125

HDPE

HDPE

HDPE

HNO3

UNPRESERVED

UNPRESERVED

1

1

1

-
7

0130801H

WATER SAMPLE LOG: MW-FGD-19D-2023Q4 WILLIAMS GENERATING STATION

PREPARED BY	CHECKED BY				
BY: Jason Yonts DATE: 2023-10-03	BY: David Szynal DATE: 2023-10-10				

	WELL ID: WMS-MW-FGD-19D	
TASK CODE: WMS-GW-2023-10	WELL TYPE: Monitoring Well	WELL DIAMETER (IN.): 2
INITIAL DEPTH TO WATER (FT): 8.68	TOTAL DEPTH TO WATER (FT): 28.16	TOTAL WATER COLUMN (FT): 19.48
TOP OF SCREEN (FT): 18	BOTTOM OF SCREEN (FT): 28	METHOD OF PURGING: Low Flow
PUMP TYPE: Peristaltic	PUMP START TIME: 12:07	PUMP INTAKE DEPTH/SAMPLE DEPTH (FT): 23.5

PURGING

METHOD: Low Flow

MEASURE POINT: Top of Casing

PUMP INTAKE/SAMPLE DEPTH (FT): 23.5

PUMP TYPE: Peristaltic

PURGE AND STABILIZATION NOTES:

	PURGE MEASURES								
ТІМЕ	PURGE RATE (ML/MIN)	PH (SU)	CONDUCTIVITY (US/CM)	ORP (MV)	DO (MG/L)	TURDIDITY (NTU)	TEMPERATURE (C)	WATER LEVEL	COMMENTS
12:11	100	6.98	2508.7	-93.3	0.66	19.1	26.65	8.75	ORANGE PARTICULATE IN WATER
12:16	100	7.01	2554.9	-94.4	0.11	14.05	25.01	8.75	
12:21	100	7.02	2555.6	-95.8	0.06	11.38	24.78	8.73	
12:26	100	7.01	2566.1	-96.1	0.07	8.49	24.69	8.71	WATER LEVEL INCREASING AT SAME PURGE RATE
12:31	100	7.01	2638.3	-99.9	0.04	6.55	24.71	8.69	
12:36	100	7.02	2670.9	-105.2	0.05	4.51	24.69	8.68	
12:41	100	7.08	2739.5	-120.4	0.05	2.86	24.62	8.66	
12:46	100	7.1	2762.1	-130.5	0.04	2.41	24.41	8.64	
12:51	100	7.12	2774.4	-133.4	0.04	1.82	24.51	8.62	
12:56	100	7.11	2781.1	-133.5	0.04	3.41	24.46	8.6	
13:01	100	7.11	2783.5	-134.7	0.04	1.45	24.48	8.58	

SAMPLE					
TIME: 13:01	METHOD OF SAMPLING: Low Flow				
TOTAL VOL. PURGED (ML): 5400	TIME POST SAMPLE: 13:09				
WATER LEVEL POST-SAMPLE: 8.57	FLOW RATE POST-SAMPLE (ML/MIN): 100				
TURBIDITY POST-SAMPLE (NTU): 0.99	COLOR POST SAMPLE: Clear				
ODOR POST-SAMPLE: None	STABILITY REACHED: Y				
SAMPLE COMMENTS:					

SAMPLE QA									
ТҮРЕ	ID	TIME	TYPE ID TI				TIME		
FIELD BLANK			FIELD D	UPLICATE					
EQUIPMENT BLANK			FILTER E	BLANK					
EQUIPMENT BLANK			FILTER BLANK LOT:						
TUBING BLANK LOT:			MS/MSD NO				NO		
	BOTTLES								
BOTTLE LOT NUMBER	BOTT	LE COUNT	SI	ZE (ML)	TYPE	PF	RESER	VATIVE	
	1			250 HDPE			HNO3		
	1			250 HDPE U		U	UNPRESERVED		
		1		125	HDPE	U	NPRES	ERVED	

WATER SAMPLE LOG: MW-FGD-20AR-2023Q4 WILLIAMS GENERATING STATION

PREPARED BY			CHECKED BY		
BY: Jason Yonts DATE: 2023-10-03		BY: David Szynal DATE: 2023-10-10			
WELL ID: WMS-MW-FGD-20AR					
TASK CODE: WMS-GW-2023-10	WELL TYPE: Moni	toring Well	WELL DIAMETER (IN.): 2		
INITIAL DEPTH TO WATER (FT): 5.99	TOTAL DEPTH TO	WATER (FT): 22.53	TOTAL WATER COLUMN (FT): 16.54		
TOP OF SCREEN (FT): 10	BOTTOM OF SCR	EEN (FT): 20	METHOD OF PURGING: Low Flow		
PUMP TYPE: Peristaltic	PUMP START TIM	E: 10:53	PUMP INTAKE DEPTH/SAMPLE DEPTH (FT): 17		
		L. 10.55	DEPTH (FT): 17		

PURGING

METHOD: Low Flow

MEASURE POINT: Top of Casing

PUMP INTAKE/SAMPLE DEPTH (FT): 17

PUMP TYPE: Peristaltic

PURGE AND STABILIZATION NOTES: Water level increasing

	PURGE MEASURES								
ТІМЕ	PURGE RATE (ML/MIN)	PH (SU)	CONDUCTIVITY (US/CM)	ORP (MV)	DO (MG/L)	TURDIDITY (NTU)	TEMPERATURE (C)	WATER LEVEL	COMMENTS
11:16	150	6.77	2986.2	-120.8	0.06	1.11	23.78	5.98	
11:26	150	6.79	2971.5	-124.2	0.06	1.07	24.01	5.91	
11:31	150	6.78	2967.3	-124.9	0.05	3.03	24.06	5.88	
11:36	150	6.79	2952.1	-125.3	0.05	0.54	54.35	5.86	
11:41	150	6.79	2958.2	-125.7	0.05	0.64	24.54	5.84	
11:46	150	6.78	2961.9	-125.7	0.05	0.46	24.73	5.83	

SAMPLE					
TIME: 11:46	METHOD OF SAMPLING: Low Flow				
TOTAL VOL. PURGED (ML): 7950	TIME POST SAMPLE: 11:59				
WATER LEVEL POST-SAMPLE: 5.68	FLOW RATE POST-SAMPLE (ML/MIN): 150				
TURBIDITY POST-SAMPLE (NTU): 0.35	COLOR POST SAMPLE: Clear				
ODOR POST-SAMPLE: None	STABILITY REACHED: Y				
SAMPLE COMMENTS:					

SAMPLE QA								
ТҮРЕ	ID	TIME	TYPE				ID	TIME
FIELD BLANK			FIEL	D DUPLICATE				
EQUIPMENT BLANK			FILTER BLANK					
EQUIPMENT BLANK			FILTER BLANK LOT:					
TUBING BLANK LOT:			MS/MSD YES				YES	
BOTTLES								
BOTTLE LOT NUMBER	BOTT	LE COUNT		SIZE (ML)	TYPE	PF	RESER	VATIVE
	2			250 HDPE			HN	03
	2			250 HDPE U		U	JNPRESERVED	
	2			125	HDPE	U	NPRES	ERVED

WATER SAMPLE LOG: MW-FGD-23-2023Q4 WILLIAMS GENERATING STATION

PREPARED BY	CHECKED BY				
BY: Sam Thorsland DATE: 2023-10-03	BY: David Szynal DATE: 2023-10-10				

WELL ID: WMS-MW-FGD-23							
TASK CODE: WMS-GW-2023-10	WELL TYPE: Monitoring Well	WELL DIAMETER (IN.): 2					
INITIAL DEPTH TO WATER (FT): 7.93	TOTAL DEPTH TO WATER (FT): 15.16	TOTAL WATER COLUMN (FT): 7.23					
TOP OF SCREEN (FT): 15.16	BOTTOM OF SCREEN (FT): 25.16	METHOD OF PURGING: Low Flow					
PUMP TYPE: Peristaltic	PUMP START TIME: 12:16	PUMP INTAKE DEPTH/SAMPLE DEPTH (FT): 20					

PURGING

METHOD: Low Flow

MEASURE POINT: Top of Casing

PUMP INTAKE/SAMPLE DEPTH (FT): 20

PUMP TYPE: Peristaltic

PURGE AND STABILIZATION NOTES:

	PURGE MEASURES									
ТІМЕ	PURGE RATE (ML/MIN)	PH (SU)	CONDUCTIVITY (US/CM)	ORP (MV)	ORP DO TURDIDITY TEM (MV) (MG/L) (NTU)		TEMPERATURE (C)	WATER LEVEL	COMMENTS	
12:20	280	6.31	3732.2	-112.4	0.11	0.89	26.7	8.01		
12:35	280	6.2	8210.6	-113.9	0.05	0.77	25.97	8.03		
12:40	280	6.16	9555.9	-109.4	0.05	0.63	25.95	8.03		
12:45	280	6.15	9937.1	-107.8	0.05	0.86	25.92	8.03		
12:50	280	6.16	10265	-106.7	0.05	0.32	25.83	8.03		
12:53	280	6.16	10427	-106.1	0.04	0.35	25.78	8.03		
12:56	280	6.16	10545	-105.8	0.04	0.58	25.79	8.03		

SAMPLE							
TIME: 12:56	METHOD OF SAMPLING: Low Flow						
TOTAL VOL. PURGED (ML): 11200	TIME POST SAMPLE: 13:03						
WATER LEVEL POST-SAMPLE: 8.03	FLOW RATE POST-SAMPLE (ML/MIN): 280						
TURBIDITY POST-SAMPLE (NTU): 0.86	COLOR POST SAMPLE: Clear						
ODOR POST-SAMPLE: None	STABILITY REACHED: Y						
SAMPLE COMMENTS:							

		SAMPL	ΕQ)A				
ТҮРЕ	ID	TIME		ТҮРЕ				TIME
FIELD BLANK			FIE	ELD DUPLICATE				
EQUIPMENT BLANK			FIL	TER BLANK				
EQUIPMENT BLANK			FILTER BLANK LOT:					
TUBING BLANK LOT:			MS/MSD				NO	
		BOTTI	LES	5				
BOTTLE LOT NUMBER	BOTT	LE COUNT		SIZE (ML)	TYPE	PF	PRESERVATIVE	
0130801H	1			250	HDPE		HNO3	
		1	250 HDPE U			U	JNPRESERVED	
		1		125	HDPE UNPRESERVED			ERVED

WATER SAMPLE LOG: MW-FGD-24-2023Q4 WILLIAMS GENERATING STATION

PREPARED BY	CHECKED BY
BY: Sam Thorsland	BY: David Szynal
DATE: 2023-10-03	DATE: 2023-10-10

	WELL ID: WMS-MW-FGD-24	
TASK CODE: WMS-GW-2023-10	WELL TYPE: Monitoring Well	WELL DIAMETER (IN.): 2
INITIAL DEPTH TO WATER (FT): 8.18	TOTAL DEPTH TO WATER (FT): 25.02	TOTAL WATER COLUMN (FT): 16.84
TOP OF SCREEN (FT): 15.02	BOTTOM OF SCREEN (FT): 25.02	METHOD OF PURGING: Low Flow
PUMP TYPE: Peristaltic	PUMP START TIME: 11:13	PUMP INTAKE DEPTH/SAMPLE DEPTH (FT): 20

PURGING

METHOD: Low Flow

MEASURE POINT: Top of Casing

PUMP INTAKE/SAMPLE DEPTH (FT): 20

PUMP TYPE: Peristaltic

PURGE AND STABILIZATION NOTES:

PURGE MEASURES									
ТІМЕ	PURGE RATE (ML/MIN)	PH (SU)	CONDUCTIVITY (US/CM)	ORP (MV)	DO (MG/L)	TURDIDITY (NTU)	TEMPERATURE (C)	WATER LEVEL	COMMENTS
11:20	200	5.27	13757	-13.4	0.18	6.62	26.73	8.22	
11:35	200	5.68	11859	-96.4	0.06	1.37	25.81	8.25	
11:40	200	5.75	11539	-101.4	0.06	1.15	25.74	8.25	
11:45	200	5.83	11430	-104.9	0.05	0.77	25.69	8.25	
11:50	200	5.87	11404	-106.2	0.05	0.63	25.6	8.25	

SAMPLE							
TIME: 11:50	METHOD OF SAMPLING: Low Flow						
TOTAL VOL. PURGED (ML): 7400	TIME POST SAMPLE: 12:05						
WATER LEVEL POST-SAMPLE: 8.25	FLOW RATE POST-SAMPLE (ML/MIN): 200						
TURBIDITY POST-SAMPLE (NTU): 0.39	COLOR POST SAMPLE: Clear						
ODOR POST-SAMPLE: None	STABILITY REACHED: Y						
SAMPLE COMMENTS:							

			SAMPLE Q	Α						
TYPE	ID	TIME	TYPE	TYPE			ID			
FIELD BLANK			FIELD DUPLICAT	E	DU-V					
EQUIPMENT BLANK			FILTER BLANK							
EQUIPMENT BLANK			FILTER BLANK LOT:							
TUBING BLANK LOT:			MS/MSD		NO					
			BOTTLES	;						
BOTTLE LOT NUMBER		BOT	TTLE COUNT	SIZE (N	IL)	TYPE	PRESERVA	SERVATIVE		
0130801H	0130801H 2		250		HDPE	HNO3				
			2 250		250 HDPE		UNPRESER	VED		
	2		125	25 HDPE		UNPRESERVED				

PAGE 1 OF 1

TRC

WATER QUALITY METER CALIBRATION LOG

PROJECT NAME:	Williams Station	MODEL: Agua troll 400	SAMPLER: JY / 5
PROJECT NO.:	416559.0006.0000	SERIAL #: 909 268	DATE: 10/3/23

PH CALIBRATION CHECK SPECIFIC CONDUCTIVITY CALIBRATION CHECK pH 7 pH 4 / 🛈 CAL. READING TEMPERATURE (LOT #): 22((0150 (LOT #): 22290139 (LOT #): 240000 44 CAL. CAL. TIME TIME 4/14 RANGE (EXP. DATE): RANGE (EXP. DATE): 4/24(EXP. DATE): 5/24 (°CELSIUS) PRE-CAL, READING / STANDARD PRE-CAL, READING / STANDARD PRE-CAL. READING / STANDARD WITHIN WITHIN 1 10.00 1102 7.00 \square 4415.11 4490 6.62 / 9.76 1057 24.20 WITHIN RANGE 4484.0 14490 1 4.00 4.54 10 24.10 1103 7.00 1 7.00 WITHIN 10.01 / 10.00 1100 RANGE WITHIN 3.99 1 4.00 1/03 **ORP CALIBRATION CHECK** D.O. CALIBRATION CHECK CAL. READING TEMPERATURE CALIBRATION READING (LOT #): 24002255 CAL. CAL. (°CELSIUS) TIME TIME (EXP. DATE): 6/24 RANGE RANGE (mg/L) PRE-CAL. READING / STANDARD Baro: 766.28 24.24 WITHIN 229.11 228 Π 101 1055 RANGE TEMP: 24.07 WITHIN - WITHIN 228.01 228 24,20 105 RANGE WITHIN Calc: 8.4 WITHIN 1 RANGE WITHIN WITHIN 1 Act: 8.49 RANGE RANGE TURBIDITY CALIBRATION CHECK COMMENTS AUTOCAL SOLUTION CALIBRATION READING (NTU) STANDARD SOLUTION (S) (LOT #): N X (LOT #): NA (LOT #): 24000044 CAL. LIST LOT NUMBERS AND EXPIRATION DATES TIME RANGE (EXP. DATE): 524 UNDER CALIBRATION CHECK (EXP. DATE): (EXP. DATE): CALIBRATED PARAMETERS PRE-CAL, READING / STANDARD POST-CAL. READING / STANDARD CALIBRATION RANGES (1) 1107 +/- 0.2 S.U. 0.00 / pН 0.08 10.00 0.00 У pH; N 6.94 1 1.00 0.96 1 COND COND: +/- 1% OF CAL. STANDARD 1107 1.00 10.00 1 ORP 1 108 ORP: +/- 25 mV 8.21 10:00 10.00 RANGE WITHIN 1 D.O. VARIES D.O.: RANGE TURB TURB: +/- 5% OF CAL. STANDARD NOTES ⁽¹⁾ CALIBRATION RANGES ARE SPECIFIC TO THE MODEL OF THE WATER QUALITY METER

PROBLEMS ENCOUNTERED		CORRECTIVE ACTIONS					
None		None					
		1					
Sunn then wel	10/3/23	DITI	10/9/23				
SIGNED	DATE	CHECKED BY	DATE				

WATER QUALITY METER CALIBRATION LOG

PROJECT NAME:	Williams Station			MODEL:	Aara	Troll 40	Ø	SAMPLER:		J?) / ST	
PROJECT NO.:	416559.0006.0000			SERIAL #	# \$51	425	<u> </u>		312	23	<u> </u>
PH	CALIBRATION CHECK	(0)			S		ONDU				HECK
pH 7 (LOT #): 2229639 (EXP. DATE): 4 24 PRE-CAL. READING / STANDARD	PH 4 / 10 (LOT #): 221) D/ 39 (EXP. DATE): 4 24 PRE-CAL. READING / STANDARD	CAL. RANGE	TIME		CA (LOT #): (EXP. DATE PRE-CAL	AL. READING AUTOCOL) E): READING / STAN	idard	TEMPERAT	S)	CAL. RANGE	TIME
3.98 14.00	1		1102] [4481	.6/440	<i>D</i>	15.22			1106
9.91 / 10.00	1		1104			/					
6.68/7.00	6.99 17.00		1105			1					
/	1	WITHIN RANGE				1				WITHIN RANGE	
ORP	CALIBRATION CHECK	-		,		D.0	. CALI	BRATION	CHEC	K	
CAL. READING (LOT #): 24022.5-8 (EXP. DATE): 624 PRE-CAL. READING / STANDARD	(°CELSIUS)	CAL. RANGE	TIME			CALIBRAT	ION RE	ADING		CAL. RANGE	TIME
228.4 /228.D /	22.86		1108		Baroi Tempi Colci	766.41 22.43 27. Me) mm °C 4 L	Hg		WITHIN RANGE WITHIN RANGE	1058
1					Adra	V. R.Ido	— ار (مصر	1.		WITHIN	
TURBID	ITY CALIBRATION CHEC	K .			1000	1. 0.00			s	RANGE	
CALIBRATION	READING (NTU)			1		CAL SOLUTIO	N		ARD	SOLUTION (S	S) .
(LOT #): N/A (EXP. DATE):	(LOT #):	CAL. RANGE	TIME	0	(LOT #): 240000 44 (EXP. DATE): 524 UNDER CALI		BERS A	ND EXPIRATIO	ON DATES CK		
PRE-CAL. READING / STANDARD	POST-CAL. READING / STANDARD				CALIBRA	ATED PARAMET	ERS	CALIE	BRATIO	N RANGES (1)	
0.00 / 0.00	1		1054		Ø	pН		рН: +/- (0.2 S.U	J.	
0.95 / 1.00	1		1055		Ŕ	COND		COND: +/- ^	1% OF	CAL. STANE	DARD
10.10 / 10.00	/		1056			ORP	ì	ORP: +/- 2	25 mV		
/	/					D.O.	I	D.O.: VAF	RIES		
	NOTES					TURB		TURB: +/- 5	5% OF	CAL. STANE	DARD
								⁽¹⁾ CALIBRATIO THE MODEL OF	N RANG THE W	GES ARE SPE /ATER QUALI	CIFIC TO IY METER
PI	ROBLEMS ENCOUNTERED					COF	RECTIV	EACTIONS			
None					No	one					
	103	23 DATE			CHEC		Á.			101	9/2 DATE

October 18, 2023

Kelly Hicks Dominion Energy Services, Inc. 120 Tredegar Street Richmond, Virginia 23219

Re: CCR Groundwater Monitoring - Level 1 Package Work Order: 639969

Dear Kelly Hicks:

GEL Laboratories, LLC (GEL) appreciates the opportunity to provide the enclosed analytical results for the sample(s) we received on October 05, 2023. This original data report has been prepared and reviewed in accordance with GEL's standard operating procedures.

Test results for NELAP or ISO 17025 accredited tests are verified to meet the requirements of those standards, with any exceptions noted. The results reported relate only to the items tested and to the sample as received by the laboratory. These results may not be reproduced except as full reports without approval by the laboratory. Copies of GEL's accreditations and certifications can be found on our website at www.gel.com.

Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at (843) 556-8171, ext. 1648.

Sincerely, Boddiford

Meredith Boddiford Project Manager

Purchase Order: 50149867 Chain of Custody: 202303211 Enclosures

Table of Contents

Case Narrative1
Chain of Custody and Supporting Documentation.4
Laboratory Certifications
Metals Analysis9
Case Narrative10
Sample Data Summary14
Quality Control Summary
General Chem Analysis33
Case Narrative
Sample Data Summary40
Quality Control Summary

Receipt Narrative for Dominion Energy (50149867) SDG: 639969

October 18, 2023

Laboratory Identification:

GEL Laboratories LLC 2040 Savage Road Charleston, South Carolina 29407 (843) 556-8171

Summary:

Sample receipt: The samples arrived at GEL Laboratories LLC, Charleston, South Carolina on October 05, 2023 for analysis. The samples were delivered with proper chain of custody documentation and signatures. All sample containers arrived without any visible signs of tampering or breakage. There are no additional comments concerning sample receipt.

Sample Identification: The laboratory received the following samples:

<u>Laboratory ID</u>	<u>Client ID</u>
639969001	MW-FGD-18-2023Q4
639969002	MW-FGD-19D-2023Q4
639969003	MW-FGD-20AR-2023Q4
639969004	MW-FGD-23-2023Q4
639969005	MW-FGD-24-2023Q4
639969006	FBLK-WMS-FGD-23401
639969007	DU-WMS-FGD-23401

Case Narrative:

Sample analyses were conducted using methodology as outlined in GEL's Standard Operating Procedures. Any technical or administrative problems during analysis, data review, and reduction are contained in the analytical case narratives in the enclosed data package.

The enclosed data package contains the following sections: Case Narrative, Chain of Custody, Cooler Receipt Checklist, Data Package Qualifier Definitions and data from the following fractions: General Chemistry and Metals.

M Boddiford

Meredith Boddiford Project Manager

Chain of Custody and Supporting Documentation
Project # <u>416559 6 0.6.2</u> GEL Quote #: COO Number ⁽¹⁾ . 202303211				DOLAT Istry I Radioct	COLIC:	S LLC diobioassay	VI Specia	O UIII Analy	Tics C	, allo	_	2040 Sava Charleston,	ge Road , SC 29407	
PO Number: PO 50149867	GEL Work Order Numbe	r: 23225	8		GEL Pr	pject Ma	nager:	Merea	ith Bo	ddiford		Fax: (843)	1/10-000 (ct	
Client Name: Dominion Energy		Phone # 80.	3-258-152	8		S	ample	Analy	sis Re	quested ⁽⁵⁾ (F	ill in th	e number	of containers for	r each test)
Project/Site Name: Williams Station New FGD	CCR 2023Q4	Fax #			Shot	ald this	s.			IN			V	Preservative Type (6)
Address: Goose Creek, South Carolina					san cons	iple be idered:	19nistı 1	V. D		SIRI				
Collected By: J. Yonts / S. Thorsland	Send Results To: AReed@	envstd.com			Alqq H)	span	100 JO .	04-FP	0				Z	Comments lote: extra sample is
Sample ID * For composites - indicate start and stop a	*Date Collected date/time (mm-dd-yy)	*Time Collected (Military) (hhmm)	QC Code ⁽³⁾ Fil	Field Samp	ع ق ک ق بر عطان عدان ک بر علم المرد بر مارد المرد بر مارد المرد بر مارد المرد بر مارد المرد بر مارد بر مارد ب بر مارد بر مارد ب بر مارد ب بر مارد ب بر مارد ب ب بر مارد ب ب ب بر مارد ب ب ب ب ب ب ب ب ب ب ب ب ب ب ب ب ب ب ب	(7) Known or romowy (7) romowy (7)	nədmun lıstoT	LDS-SQL	005	44A IBJ01				required for sample specific QC
MW-FGD-18-2023Q4	10323	2017(N	N GW	N N		3	2	X				EPA	200.8 - Boron, Calcium
MW-FGD-19D-2023Q4	10 3 23	130)	N	N GW	N		3	X		~				~
MW-FGD-20AR-2023Q4 * MS M-	50 10323	1146	N	N GW	N N		2	×	X X					
MW-FGD-23-2023Q4	10/3/23	1266	N	N GW	N N		3	X	X					
MW-FGD-24-2023Q4	10 3 23	1150	N	N GW	N 1		3	×	X					
FBLK-WMS-FGD-23401	10325	0011	FB	N AÇ	N		3	×	< v	~			see	attached work
DU-WMS-FGD-23401	103 23	I	FD	N GW	N N		3	X	X				orde	er for details
	-													
	Chain of Custody Signatures							TAT	Real	sted: Norms	X	Ruch-	Snerify.	
Relinquished By (Signed) Date T	Time Received by (sig	gned) Da	ite	Time		Eav Dag	oulter T	1 Vac	NI AJ		I		- funda	
honoral that and to 15/23	oseo Dunas	na Jodh	01 m	523	920	Select E	Jeliverat	ble: []	C of A	[] QC Sumn	nary [level 1	[] Level 2 []]	Level 3 X Level 4
	2)				Addition	nal Rem	arks:						
3	3					For Lat	h Receiv	ing Us	e Only:	Custody Seal	Intact?	Yes] No Cooler Te	Do Signa
> For sample shipping and delivery details, see	Sample Receipt & Review form	(SRR.)			Sample	Collection	n Time.	Zone:	[X] Ea	stern [] Pac	cific [] Central	[] Mountain	[] Other:
 Chain of Custody Number = Client Determined QC Codes: N = Normal Sample, TB = Trip Blank, FD = Field Filtered: For liquid matrices, indicate with a - Y - 	= Field Duplicate, EB = Equipment Blank for yes the sample was field filtered or - n	, MS = Matrix S 4 - for sample we	pike Sample is not field fi	, MSD = Matri tered.	x Spike Dupl	icate Sample	s, G = Gra	ıb, C = C	omposite					
 Matrix Codes: DW=Drinking Water, GW=Groundwate Sample Analysis Requested: Analytical method request Domentions transmitted and the detections of an N1 - Nitro 	r, SW=Surface Water, WW=Waste Wate ed (i.e. 82608, 60108/7470A) and numbe	r, W=Water, MI er of containers p	- Misc Ligu	id, SO=Soil, SI ach (i.e. 8260) aid HV - Har	D=Sediment, 3 - 3, 6010B/.	SL=Sludge, 7470.4 - 1).	SS=Solid	Waste, ()=0il, F=	Filter, P=Wipe, U	=Urine, F	=Fecal, N=Na	asal	
7) KNOWN OR POSSIBLE HAZARDS	Characteristic Hazards	Listed V	Vaste	volu, HA - 110		Other		- in breser		auca - Icave Ileia	DIAIIK		Please provide an	y additional details
RCRA Metals As = Arsenic Hg= Mercury Ba = Barium Se= Selenium	r L = riammaolevignitable CO = Corrosive RE = Reactive	LW = LIS (F,K,P a) Waste co	sted waste nd U-liste de(s):	ł wastes.)		(i.e.: Hi misc. he. Descript	ner / UI gh/low J alth haz 'ion:	nknown pH, asb ards, ei	estos, b 'c.)	eryllium, irrita.	nts, othe		below regarding I concerns. (i.e.: O of site collected fr	handling and/or disposa. hrigin of sample(s), type om, odd matrices, etc.)
Cd = Cadmium Ag= Silver Cr = Chromium MR= Misc. RCRA metals Pb = Lead	TSCA Regulated PCB = Polychlorinated biphenyls				E I									

Breechved By: QG Date Received: UP Construction Construction Regetted Bloard Information 2 2 *10/41 Courses > 100 Copro on samples on marked "redicative", costast the Rudation Suffey Comp for further investigation. NShipped as DOT Handdon? 1 2 *10/41 Courses > 100 Copro on samples on marked "redicative", costast the Rudation Suffey Comp for further investigation. NShipped as DOT Handdon? 1 Handboard Cost Strappet: UN4: Did the file designes the samples are to be control of samples on marked "redicative", costast the Rudation Suffey Complex? Yes No No Did the file documents inductive? Midnings Net Chart Chart Relation Control Control. UN4: Obstar file documents inductive? Midnings Net Chart Chart Relation Control Control. UN4: Obstar file documents inductive? Midnings Net Chart Chart Relation of samples are inductive? UN4: Did the file documents inductive? Midnings Net Chart Chart Relation of samples are inductive? UN4: Did the file documents inductive 2 2 2 Constrained Chart Relative Biology Numple Receipt Charts 2 2 2 Constrained Chart Relative Biology Numple Receipt Charts 2 2 2 Constrained Chart Relative Biology Numple Receipt Charts 2 2 2 Chart Aprecinte: See backed C			_ s	DG/AR/COC/Work Order: 10 RD D L D
Carrier and Tracking Number PedEx Express PedEx Express PedEx Express PedEx Express Double Stands Services Outer Suspected Hazard Information \$ 2 ************************************	Received By: QG			ate Received: 14123
Stopected Hazard Information \$ 2 If the Course > 100cpm on samples not marked "indicative" contact we Rediation Safety Group for hetter investigation. AlShipped at a DOT Hazardon? If the Course > 100cpm on samples not marked "indicative" contact we Rediation Safety Group for hetter investigation. B) Dot he clean designee the samples are to be constructed as indicative signame. Survey Completel Yes No	Carrier and Tracking Number			FedEx Express FedEx Ground UPS Field Services Jourier Other
Simple requiring characterist inducted Set Applicable: Considered and consister Consister invalidation 2 Obt the RSO description Mathematicable in a DOT Haracterist UNE: UNE: UNE: B) Did the client designate the samples as and one in a DOT Haracterist Did the client designate the samples as a distance in a Robert of Dotations required and motion of a Society of Courses - Area Background Courses: CPM / mR/Hr C) Did the client designate the samples as a distance in a Robert of Dotations required and motion of a Society of Courses - Area Background Courses: CPM / mR/Hr D) Did the client designate the samples as a distance in a Robert of Dotation of a Society of Courses - Area Background Courses: CPM / mR/Hr D) Did the client designate as barredow? Did in a Course The Dotation of The Dotation of Dotation of Courses - Area Background Courses: CPM / mR/Hr B) Did the client designate as barredow? Did in a Course of Dotation of The Dotation of Do	Suspected Hazard Information	5	2 *1	Over Counts > 100 cm on semple and main du lin du li
B) Did the client designate the samplex are to be exceived an analoscive? Open induction or induces on containers equal client designation C) Did the RSO classify the samplex are to be induced or induces of induced or	A)Shipped as a DOT Hazardous?		H	vard Class Shipped: UN#: If UN2910, Is the Radioactive Shipment Survey Complicat? Yes
C) Did the RSO dassify the samples as analose: Mpkinum Net Counts Observed' (Observed Counts - Arts Background Counts): CPM / mR/Hr 2) Did the client designate samples are hazardout; If D or E is yes, select Hard 1 Rad 2 Rad 3 Conduction of beauti designate requires and hazardout; CPM / mR/Hr 3) Did the RSO thentify possible hazards? If D or E is yes, select Hards below; PCE is Finanzade Forcipionia Comments/Qualifiers (Required for Non-Conforming terms) 3) Subject containers received intact and sealed? Select Applicable: Contracted and provided COC COC created upon receipt 3) Samples requiring containers received intact and sealed? Chick Applicable: Contracted and provided COC COC created upon receipt 4) with didyment? Chick Applicable: Contracted and provided COC COC created upon receipt 7) all protection of and passed on IR Chick Applicable: South techen Damaged container: Lasking container 3) Samples requiring chernical preservation Remperature Device Serial # (If Applicable): TEMP: 3 C 4) Coch Applicable: South techen Damaged container Data of container 5) Samples requiring chernical preservation Remperature Device Serial # (If Applicable): TEMP: 3 C 5) Samples requiring chernical preservation Sample Dio ac Comains add passervation Yes_No, NA_ (If whonown, select No) Ma_ (If applicable): </td <td>3) Did the client designate the samples are to be eccived as radioactive?</td> <td></td> <td>X</td> <td>C notation or radioactive suckers on containers equal client designation.</td>	3) Did the client designate the samples are to be eccived as radioactive?		X	C notation or radioactive suckers on containers equal client designation.
D) Did the client designate samples are huzardon? DOC indialing or huzard balance caust client designation. 2) Did the RSO itentify possible bazards? II'D or E is yes cleent floating being: Sample Receipt Criteria 2 1 Shipping containers received intact and select dia interment below. Sample Receipt Criteria 2 2 2 China of custody documents included with signment? Crice Applicable: Seale backer Damaged container Leaking container received intact and sealed? 2 China of custody documents included with signment? Crice Applicable: Seale broken Damaged container Leaking container 3 Sample requiring cold preservation within of custody documents included with signment? Crice Applicable: Seale broken Damaged container Leaking container TEMP: 3 °C. 3 Sample requiring cold preservation within (0 ≤ 6 deg. C)?* Preservation Method: Wei let the Packs ab troken Damaged container Leaking container TEMP: 3 °C. 5 Sample requiring chemical preservation an Paper region and sead on IR Crice Applicable: Seale broken Damaged container Leaking container Leaking container Casing container 5 Sample requiring chemical preservation Applicable: Seale broken Damaged container Leaking container Casing container Casing container	2) Did the RSO classify the samples as adioactive?		M	fximunt Net Counts Observed* (Observed Counts - Area Background Counts);CPM / mR/Hr Classified as: Rad 1 Rad 2 Rod 3
2) Did the RSO identify possible hazards? PCB's Flammable Foreign Soil RCRA Asketos Beryllium Other: 3) Sumple Receipt Criteria 2 2 Commenta/Qualifiers (Required for Non-Conforming Items) 1 Shipping containers received intact and sealed? 2 Circle Applicable: Seals boken Damaged continer Lesking contailer Other (describe) 2 Chain of cuzody documents included with adjuncer? Circle Applicable: Client contacted and provided COC COC created upon receipt 3 Samples requiring cold preservation within (0.5 deg. C)? Circle Applicable: Client contacted and provided COC COC created upon receipt 4 Daily check performed and passed on IR Preservation Methody Wie Lier (Lescribe) Temperature Device Serial # (If Applicable): 5 Samples requiring chemical preservation at provided COC Circle Applicable: Seals troken Damaged container Lasking container Other (describe) 4 topoper pH? Circle Applicable: Seals troken Damaged container Lasking container Other (describe) 5 Samples requiring chemical preservation at prover pH? Sample in the seal troken in preservation at proper pH? If "pageration addet, Load: If "pageration addet, Load: If "pageration addet, Load: If "pageration addet, Load: If "pageration addet topicable? Yes	b) Did the client designate samples are hazardous?			C notation or hazard labels on containers equal client designation.
Sample Receipt Criteria 2 2 Comments/Qualifiers (Required for Non-Conforming Items) 1 Stipping containers received intact and sealed? Circle Applicable: Seale backen Damaged container Laking container Laking container 2 Chain of custody documents included Circle Applicable: Clear contacted and provided COC CDC created upon receips 3 Samples requiring cold preservation Preservation Method: Weiller to Packs Dry ice None Other (describe) 4 Daily check performed and passed on IR Circle Applicable: Secondary Temperature Device Serial # (II:Applicable); 5 Sample sequiring chemical preservation at proper partice Device Serial # (II:Applicable); Circle Applicable: Seale backen Damaged container Data check performed and passed on IR Circle Applicable: Seale backen Damaged container Laking container Other (describe) 5 Samples requiring chemical preservation at proper pH? Circle Applicable: Seale backen Damaged container Laking container Other (describe) 6 Samples requiring chemical preservation Sample ID's and containers Affected! If preservation added! Circle Applicable: No and containers affected! 1 Do any samples require Volatile Antipsis? Anthys) Did the RSO identify possible hazards?			PCB's Flammable Foreign Soil RCRA Asbestos Beryllium Other:
1 Simpling containers received intact and sealed? Circle Applicable: Seale booker. Demaged container: Detrive Continuers included 2 Chain of custody documents included Circle Applicable: Cience contacted and provided COC COC created upon receipt 3 Samples requiring cold preservation Preservation Method: Weth style New Other: TEMP: 3°C 4 Daily check performed and passed on IR Circle Applicable: Icerperature Serial 47: IEE22 Secondary Temperature Device Serial 47: IEE22 5 Samples requiring chemical preservation Sample to added. Log: Device Serial 47: IEE22 Secondary Temperature Device Serial 47: IEE22 5 Samples requiring chemical preservation Sample D's and Containers Affected: If Preservation added. Log: 5 Samples requiring chemical preservation Sample ID's and containers affected: No	Sample Receipt Criteria	N N	/2	Comments/Qualifiers (Required for Non-Conforming Items)
2 Chain of custody documents included Circle Applicable: Client contacted and provided COC COC created upon receipt 3 Samples requiring cold preservation within (0 ≤ 6 deg. C)?* Preservation Method: We Lier tee Packs Dry ice None Other: TEMP: 3 °C. 4 Daily check performed and passed on IR Temperature Device Serial # (If Applicable: Scale troken Damaged container Lasking container) TEMP: 3 °C. 5 Sample containers intact and scaled? Circle Applicable: Scale troken Damaged container Lasking container Other (describe) 5 Samples requiring chemical preservation at provide IO C and Containers Affected: If Ppervation added. Load? Simple ID's and Containers Affected: If Ppervation added. Load? 7 Do any samples requiring chemical preservation at proper pH? If Ppervation added. Load? NA	1 Supping containers received intact and sealed?			Circle Applicable: Seals broken Damaged container Leaking container Other (describe)
3 Samples requiring cold preservation Preservation Method Wé Let lee Packs Dry ice None Other: TEMP: 3 2 4 Daily check performed and passed on IR Temperature and fectored in Celsius Temperature and fectored in Celsius 5 Sample containers intact and scaled? Check applicable: Scals broken Damaged container Leaking container Other (describe) 6 Samples requiring chemical preservation at proper pH? Sample ID's and Containers Affected: 7 Do any samples require Volatile Analysis? Sample ID's and containers affected: 8 If Preservation added. Lod? ID's and containers affected: 9 Dainy samples requiring chemical preservation Sample ID's and containers affected: 9 Do any samples require Volatile Analysis? Do liquid VOA vials free of headspace? Yes	2 Chain of custody documents included with shipment?	1		Circle Applicable: Client contacted and provided COC COC created upon receipt
4 Daily check porformed and passed on IR tomperature gun? Fermperature Device Serial #: <u>IK1-23</u> 5 Sample containers intact and sealed? Circle Applicable: Seals broken Damaged container Leaking container Other (describe) 5 Samples requiring chemical preservation at proper pH? Sample ID's and Containers Affected: If Pp&rvation added, Lout: If Pp&rvation added, Pp&rvation added, Lout: If Pp&rvation added, P	Samples requiring cold preservation within $(0 \le 6 \text{ deg. C})$?*	1		Preservation Method, Wei Lee Ice Packs Dry ice None Other: *all temperatures are recorded in Celsius TEMP: 32
5 Sample containers intact and sealed? Circle Applicable: Seals broken Damaged container Leaking container Other (describe) 5 Samples requiring chemical preservation at proper pH? Sample ID's and Containers Affected: 7 Do any samples require Volatile Analysis? Sample ID's and Containers Affected: 7 Do any samples require Volatile Analysis? Do liquid VOA vials free of headspace? YesNoNA(If unknown, select No) 8 Analysis? ID's and tests affected: 9 Sample ID's on COC match ID's on bottles? ID's and containers affected: 0 ID's and containers affected: ID's and containers affected: 0 ID's and containers affected: ID's and containers affected: 0 ID's and containers affected: ID's and containers affected: 0 ID's and containers affected: ID's and containers affected: 0 ID's and containers affected: ID's and containers affected: 0 ID's and containers affected: ID's and containers affected: 0 ID's and containers affected: ID's and containers affected: 0 ID's and containers affected: ID's and containers affected: 0 ID's and containers cout on COC ID's and containers aff	Daily check performed and passed on IR temperature gun?	✓ 🕺	\leq	Temperature Device Serial #: <u>IR1-23</u> Secondary Temperature Device Serial # (If Applicable):
Samples requiring chemical preservation at proper pH? Sample ID's and Contaluers Affected: If Ppdervation added, Lot#: If Ppdervation added, Lot#: Sample ID's and containers of fleeted: Sample ID's and containers affected: ID's and containers affected: ID's and containers affected: ID's and containers affected: Circle Applicable: No dates on containers No times on containers COC missing info Other (describe) Number of containers received match number indicated on COC? Circle Applicable: No container count on COC Other (describe) Are sample containers identifiable as GEL provided by use of GEL labels? Circle Applicable: Not relinquished Other (describe) Circle Applicable: Not relinquished Other (describe) Circle Applicable: Not relinquished Other (describe)	Sample containers intact and scaled?	•		Circle Applicable: Scals broken Damagod container Leaking container Other (describe)
Do any samples require Volatile Analysis? If es, are Encores or Soll Kits present for solids? YesNoNA(If yes, take to VOA Freezer) Do input dVOA vials free of beadspace? YesNoNA(If unknown, select No) Are tiquid VOA vials free of beadspace? YesNoNA Samples received within holding time? ID's and containers affected: Sample ID's on COC match ID's on bottles? Date & time on COC match date & time on bottles? Number of containers received match number indicated on COC? Are sample containers received match number indicated on COC? Are sample containers identifiable as GEL provided by use of GEL tabels? Corcle Applicable: Not relinquished Other (describe) Are sample containers? Corcle Applicable: Not relinquished Other (describe) aments (Use Continuation Form if needed):	Samples requiring chemical preservation at proper pH?	1		Sample ID's and Containers Affected:
Samples received within holding time? ID's and tests affected: Sample ID's on COC match ID's on bottles? ID's and containers affected: Date & time on COC match date & time on COC match date & time on bottles? Circle Applicable: No dates on containers No times on containers COC missing info Other (describe) Number of containers received match number indicated on COC? Circle Applicable: No container count on COC Other (describe) Are sample containers identifiable as GEL provided by use of GEL labet? Circle Applicable: Not relinquished Other (describe) COC form is properly signed in relinquished/received sections? Circle Applicable: Not relinquished Other (describe)	Do any samples require Volatile Analysis?			Mes, are Encores or Soil Kits present for solids? YesNoNA(If yes, take to VOA Freezer) Do liquid VOA vials contain acid preservation? YesNoNA(If unknown, select No) Are liquid VOA vials free of headspace? YesNoNA(If unknown, select No) Sample ID's and containers affected:
Sample ID's on COC match ID's on bottles? ID's and containers affected: Date & time on COC match date & time on bottles? Circle Applicable: No dates on containers No times on containers COC missing info Other (describe) Number of containers received match number indicated on COC? Circle Applicable: No container count on COC Other (describe) Are sample containers identifiable as GEL provided by use of GEL labets? Circle Applicable: Not relinquished Other (describe) COC form is properly signed in relinquished/received sections? Circle Applicable: Not relinquished Other (describe)	Samples received within holding time?		Ż	D's and tests affected:
Date & time on COC match date & time on bottles? Circle Applicable: No dates on containers No times on containers COC missing info Other (describe) Number of containers received match number indicated on COC? Circle Applicable: No container count on COC Other (describe) Are sample containers identifiable as GEL provided by use of GEL labets? Circle Applicable: Not relinquished Other (describe) COC form is properly signed in relinquished/received sections? Circle Applicable: Not relinquished Other (describe)	Sample ID's on COC match ID's on bottles?			D's and containers affected:
Number of containers received match number indicated on COC? Circle Applicable: No container count on COC Other (describe) Are sample containers identifiable as GEL provided by use of GEL labels? Circle Applicable: No container count on COC Other (describe) COC form is properly signed in relinquished/received sections? Circle Applicable: Not relinquished Other (describe)	Date & time on COC match date & time on bottles?	1		Sircle Applicable: No dates on containers No times on containers COC missing info Other (describe)
Are sample containers identifiable as GEL provided by use of GEL labets? COC form is properly signed in relinquished/received sections? nments (Use Continuation Form if needed):	Number of containers received match number indicated on COC?		7	Trele Applicable: No container count on COC Other (describe)
COC form is properly signed in relinquished/received sections? Circle Applicable: Not relinquished Other (describe)	GEL provided by use of GEL labels?		ſ	
Intents (Use Continuation Form if needed):	COC form is properly signed in		đ	ircle Applicable: Not relinquished Other (describe)
	relinquished/received sections? ments (Use Continuation Form if needed):			
		<u> </u>	· <u> </u>	

GL-CHL-SR-001 Rev 7

Laboratory Certifications

Certification
42200
17-018
SC00012
88-00651
42D0904046
2940
SC00012
PH-0169
2567.01
E87156
P330-15-00283, P330-15-00253
SC00012
967
SC00012
SC00012
200029
C-SC-01
E-10332
KY90129
KY90129
LA024
03046 (AI33904)
2023019
270
M-SC012
Letter
9976
SC00012
NE-OS-26-13
SC000122024-04
2054
SC002
SC00012
11501
233
45709
R-158
2022-160
68-00485
SC00012
10120002
9255651
10120001
TN 02934
T104704235-23-21
SC000122022-37
VT87156
460202
C780

List of current GEL Certifications as of 18 October 2023

Metals Technical Case Narrative Dominion Energy SDG #: 639969

Product: Determination of Metals by ICP-MS Analytical Method: EPA 200.8 SC_NPDES **Analytical Procedure:** GL-MA-E-014 REV# 36 **Analytical Batch:** 2504262

Preparation Method: EPA 200.2 **Preparation Procedure:** GL-MA-E-016 REV# 18 **Preparation Batch:** 2504261

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
639969001	MW-FGD-18-2023Q4
639969002	MW-FGD-19D-2023Q4
639969003	MW-FGD-20AR-2023Q4
639969004	MW-FGD-23-2023Q4
639969005	MW-FGD-24-2023Q4
639969006	FBLK-WMS-FGD-23401
639969007	DU-WMS-FGD-23401
1205538522	Method Blank (MB)ICP-MS
1205538523	Laboratory Control Sample (LCS)
1205538526	639969003(MW-FGD-20AR-2023Q4L) Serial Dilution (SD)
1205538524	639969003(MW-FGD-20AR-2023Q4D) Sample Duplicate (DUP)
1205538525	639969003(MW-FGD-20AR-2023Q4S) Matrix Spike (MS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Calibration Information

ICSA/ICSAB Statement

For the ICP-MS analysis, the ICSA solution contains analyte concentrations which are verified trace impurities indigenous to the purchased standard.

Technical Information

Sample Dilutions

Dilutions may be required for many reasons, including to minimize matrix interferences or to bring over range target analyte concentrations into the linear calibration range. Samples 639969001 (MW-FGD-18-2023Q4), 639969002 (MW-FGD-19D-2023Q4), 639969003 (MW-FGD-20AR-2023Q4), 639969004 (MW-FGD-23-2023Q4), 639969005

(MW-FGD-24-2023Q4) and 639969007 (DU-WMS-FGD-23401) were diluted to ensure that the analyte concentrations were within the linear calibration range of the instrument.

A			63	39969		
Analyte	001	002	003	004	005	007
Boron	50X	50X	50X	200X	200X	200X
Calcium	50X	50X	50X	200X	200X	200X

Miscellaneous Information

Additional Comments

All method-driven specifications are followed for these analyses except where client-specific SOW requirements are required to be met.

Certification Statement

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

GEL LABORATORIES LLC

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Qualifier Definition Report for

DMNN001 Dominion Energy (50149867)

Client SDG: 639969 GEL Work Order: 639969

The Qualifiers in this report are defined as follows:

- * A quality control analyte recovery is outside of specified acceptance criteria
- B Either presence of analyte detected in the associated blank, or MDL/IDL < sample value < PQL
- J Value is estimated

N/A RPD or %Recovery limits do not apply.

U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

Review/Validation

GEL requires all analytical data to be verified by a qualified data reviewer. In addition, all CLP-like deliverables receive a third level review of the fractional data package.

The following data validator verified the information presented in this data report:

Signature: -

Date: 18 OCT 2023

Name: Alan Stanley Title: Analyst II/Team Leader

SDG No:	639969	CONTRACT: DMNN00101	METHOD TYPE:	EPA
SAMPLE ID:	639969001	LEVEL: Low	DATE COLLECTED:	03-OCT-23
CLIENT ID:	MW-FGD-18-2023Q4	%SOLIDS: 0	DATE RECEIVED:	05-OCT-23

MATRIX: GW

BASIS: As Received

CAS	Analyte	Result	Units	Qual	MDL	PQL	CRDL	DF	M*	Analyst	Run Date	Analytical Run	Analytical Batch
7440-42-8	Boron	5470	ug/L		200	750	750	50	MS	PRB	10/16/23 15:31	231016-1	2504262
7440-70-2	Calcium	334000	ug/L		1500	5000	5000	50	MS	PRB	10/16/23 15:31	231016-1	2504262

Prep Information:

Analytical Batch	Prep Batch	Prep Method	Initial wt./vol.	Units	Final wt./vol.	Units	Date	Analyst
2504262	2504261	EPA 200.2	50	mL	50	mL	10/06/23	JD2

*Analytical Methods:

SDG No:	639969	CONTRACT: DMNN00101	METHOD TYPE:	EPA
SAMPLE ID:	639969002	LEVEL: Low	DATE COLLECTED:	03-OCT-23
CLIENT ID:	MW-FGD-19D-2023Q4	%SOLIDS: 0	DATE RECEIVED:	05-OCT-23

MATRIX: GW

BASIS: As Received

CAS	Analyte	Result	Units	Qual	MDL	PQL	CRDL	DF	M*	Analyst	Run Date	Analytical Run	Analytical Batch
7440-42-8	Boron	2280	ug/L		200	750	750	50	MS	PRB	10/16/23 15:33	231016-1	2504262
7440-70-2	Calcium	168000	ug/L		1500	5000	5000	50	MS	PRB	10/16/23 15:33	231016-1	2504262

Prep Information:

Analytical Batch	Prep Batch	Prep Method	Initial wt./vol.	Units	Final wt./vol.	Units	Date	Analyst
2504262	2504261	EPA 200.2	50	mL	50	mL	10/06/23	JD2

*Analytical Methods:

SDG No:	639969	CONTRACT: DMNN00101	METHOD TYPE:	EPA
SAMPLE ID:	639969003	LEVEL: Low	DATE COLLECTED:	03-OCT-23
CLIENT ID:	MW-FGD-20AR-2023Q4	%SOLIDS: 0	DATE RECEIVED:	05-OCT-23

MATRIX: AQ

BASIS: As Received

CAS	Analyte	Result	Units	Qual	MDL	PQL	CRDL	DF	M*	Analyst	Run Date	Analytical Run	Analytical Batch
7440-42-8	Boron	3950	ug/L		200	750	750	50	MS	PRB	10/16/23 15:35	231016-1	2504262
7440-70-2	Calcium	328000	ug/L		1500	5000	5000	50	MS	PRB	10/16/23 15:35	231016-1	2504262

Prep Information:

Analytical Batch	Prep Batch	Prep Method	Initial wt./vol.	Units	Final wt./vol.	Units	Date	Analyst
2504262	2504261	EPA 200.2	50	mL	50	mL	10/06/23	JD2

*Analytical Methods:

SDG No:	639969	CONTRACT: DMNN00101	METHOD TYPE:	EPA
SAMPLE ID:	639969004	LEVEL: Low	DATE COLLECTED:	03-OCT-23
CLIENT ID:	MW-FGD-23-2023Q4	%SOLIDS: 0	DATE RECEIVED:	05-OCT-23

MATRIX: GW

BASIS: As Received

CAS	Analyte	Result	Units	Qual	MDL	PQL	CRDL	DF	M*	Analyst	Run Date	Analytical Run	Analytical Batch
7440-42-8	Boron	23500	ug/L		800	3000	3000	200	MS	PRB	10/16/23 15:48	231016-1	2504262
7440-70-2	Calcium	1630000	ug/L		6000	20000	20000	200	MS	PRB	10/16/23 15:48	231016-1	2504262

Prep Information:

Analytical Batch	Prep Batch	Prep Method	Initial wt./vol.	Units	Final wt./vol.	Units	Date	Analyst
2504262	2504261	EPA 200.2	50	mL	50	mL	10/06/23	JD2

*Analytical Methods:

SDG No:	639969	CONTRACT: DMNN00101	METHOD TYPE:	EPA
SAMPLE ID:	639969005	LEVEL: Low	DATE COLLECTED:	03-OCT-23
CLIENT ID:	MW-FGD-24-2023Q4	%SOLIDS: 0	DATE RECEIVED:	05-OCT-23

MATRIX: GW

BASIS: As Received

CAS	Analyte	Result	Units	Qual	MDL	PQL	CRDL	DF	M*	Analyst	Run Date	Analytical Run	Analytical Batch
7440-42-8	Boron	24400	ug/L		800	3000	3000	200	MS	PRB	10/16/23 15:50	231016-1	2504262
7440-70-2	Calcium	1760000	ug/L		6000	20000	20000	200	MS	PRB	10/16/23 15:50	231016-1	2504262

Prep Information:

Analytical Batch	Prep Batch	Prep Method	Initial wt./vol.	Units	Final wt./vol.	Units	Date	Analyst
2504262	2504261	EPA 200.2	50	mL	50	mL	10/06/23	JD2

*Analytical Methods:

SDG No:	639969	CONTRACT: DMNN00101	METHOD TYPE:	EPA
SAMPLE ID:	639969006	LEVEL: Low	DATE COLLECTED:	03-OCT-23
CLIENT ID:	FBLK-WMS-FGD-23401	%SOLIDS: 0	DATE RECEIVED:	05-OCT-23

MATRIX: AQ

BASIS: As Received

CAS	Analyte	Result	Units	Qual	MDL	PQL	CRDL	DF	M*	Analyst	Run Date	Analytical Run	Analytical Batch
7440-42-8	Boron	4.00	ug/L	U	4.00	15.0	15.0	1	MS	PRB	10/16/23 15:52	231016-1	2504262
7440-70-2	Calcium	30.0	ug/L	U	30.0	100	100	1	MS	PRB	10/16/23 15:52	231016-1	2504262

Prep Information:

Analytical Batch	Prep Batch	Prep Method	Initial wt./vol.	Units	Final wt./vol.	Units	Date	Analyst
2504262	2504261	EPA 200.2	50	mL	50	mL	10/06/23	JD2

*Analytical Methods:

SDG No:	639969	CONTRACT: DMNN00101	METHOD TYPE:	EPA
SAMPLE ID:	639969007	LEVEL: Low	DATE COLLECTED:	03-OCT-23
CLIENT ID:	DU-WMS-FGD-23401	%SOLIDS: 0	DATE RECEIVED:	05-OCT-23

MATRIX: GW

BASIS: As Received

CAS	Analyte	Result	Units	Qual	MDL	PQL	CRDL	DF	M*	Analyst	Run Date	Analytical Run	Analytical Batch
7440-42-8	Boron	24200	ug/L		800	3000	3000	200	MS	PRB	10/16/23 15:57	231016-1	2504262
7440-70-2	Calcium	1740000	ug/L		6000	20000	20000	200	MS	PRB	10/16/23 15:57	231016-1	2504262

Prep Information:

Analytical Batch	Prep Batch	Prep Method	Initial wt./vol.	Units	Final wt./vol.	Units	Date	Analyst
2504262	2504261	EPA 200.2	50	mL	50	mL	10/06/23	JD2

*Analytical Methods:

Quality Control Summary

METALS -2a-Initial and Continuing Calibration Verification

SDG No: 639969

Contract: DMNN00101 Lab Code: GEL

Instrument ID: ICPMS15

Sample ID	Analyte	Result	Units	True Value	Units	% Recovery	Acceptance Window (%R)	M *	Analysis Date/Time	Run Number
ICV01										
	Boron	97.6	ug/L	100	ug/L	97.6	90.0 - 110.0	MS	16-OCT-23 15:07	231016-1
	Calcium	5060	ug/L	5000	ug/L	101.2	90.0 - 110.0	MS	16-OCT-23 15:07	231016-1
CCV01										
	Boron	97.7	ug/L	100	ug/L	97.7	90.0 - 110.0	MS	16-OCT-23 15:17	231016-1
	Calcium	5100	ug/L	5000	ug/L	102.1	90.0 - 110.0	MS	16-OCT-23 15:17	231016-1
CCV02										
	Boron	99.9	ug/L	100	ug/L	99.9	90.0 - 110.0	MS	16-OCT-23 15:23	231016-1
	Calcium	5110	ug/L	5000	ug/L	102.3	90.0 - 110.0	MS	16-OCT-23 15:23	231016-1
CCV03										
	Boron	98.2	ug/L	100	ug/L	98.2	90.0 - 110.0	MS	16-OCT-23 15:44	231016-1
	Calcium	5110	ug/L	5000	ug/L	102.1	90.0 - 110.0	MS	16-OCT-23 15:44	231016-1
CCV04										
	Boron	97	ug/L	100	ug/L	97	90.0 - 110.0	MS	16-OCT-23 16:05	231016-1
	Calcium	5070	ug/L	5000	ug/L	101.4	90.0 - 110.0	MS	16-OCT-23 16:05	231016-1

*Analytical Methods:

METALS -2b-CRDL Standard for ICP & ICPMS

SDG No: 639969

Contract: DMNN00101 Lab Code: GEL

Instrument ID: ICPMS15

Sample ID	Analyte	Result	Units	True Value	Units	% Recovery	Advisory Limits (%R)	<i>M</i> *	Analysis Date/Time	Run Number
CRDL01										
	Boron	14.4	ug/L	15	ug/L	96.2	70.0 - 130.0	MS	16-OCT-23 15:11	231016-1
	Calcium	233	ug/L	200	ug/L	116.5	70.0 - 130.0	MS	16-OCT-23 15:11	231016-1
CRDL02										
	Boron	12.1	ug/L	15	ug/L	80.8	70.0 - 130.0	MS	16-OCT-23 15:59	231016-1
	Calcium	236	ug/L	200	ug/L	118	70.0 - 130.0	MS	16-OCT-23 15:59	231016-1

*Analytical Methods:

Metals -3a-Initial and Continuing Calibration Blank Summary

SDG No.: 639969

Contract: DMNN00101

Lab Code: GEL

Sample ID	<u>Analyte</u>	<u>Result</u> <u>ug/L</u>	Acceptance	<u>Conc</u> Qual	<u>MDL</u>	<u>RDL</u>	<u>Matrix</u>	<u>M*</u>	<u>Analysis</u> Date/Time	<u>Run</u>
ICB01										
	Boron	4.0	+/-7.5	U	4.0	15.0	LIQ	MS	16-OCT-23 15:09	231016-1
	Calcium	30.0	+/-50	U	30.0	100	LIQ	MS	16-OCT-23 15:09	231016-1
CCB01										
	Boron	4.0	+/-7.5	U	4.0	15.0	LIQ	MS	16-OCT-23 15:19	231016-1
	Calcium	30.0	+/-50	U	30.0	100	LIQ	MS	16-OCT-23 15:19	231016-1
CCB02										
	Boron	4.0	+/-7.5	U	4.0	15.0	LIQ	MS	16-OCT-23 15:25	231016-1
	Calcium	30.0	+/-50	U	30.0	100	LIQ	MS	16-OCT-23 15:25	231016-1
CCB03										
CCD05	Boron	4.0	+/-7.5	U	4.0	15.0	LIQ	MS	16-OCT-23 15:46	231016-1
	Calcium	30.0	+/-50	U	30.0	100	LIQ	MS	16-OCT-23 15:46	231016-1
CCBM										
CCDO4	Boron	4.0	+/-7.5	U	4.0	15.0	LIQ	MS	16-OCT-23 16:07	231016-1
	Calcium	30.0	+/-50	U	30.0	100	LIQ	MS	16-OCT-23 16:07	231016-1

*Analytical Methods:

METALS -3b-PREPARATION BLANK SUMMARY

 SDG NO.
 639969

 Contract:
 DMNN00101

Matrix: GW

Acceptance Conc Sample ID Analyte Result <u>Units</u> **M*** MDL <u>RDL</u> Window Qual 1205538522 Calcium 30.0 30.0 100 ug/L +/-50 U MS Boron 4.00 ug/L +/-7.5 U MS 4.00 15.0

*Analytical Methods:

METALS -4-Interference Check Sample

SDG No: 639969

Contract: DMNN00101

Lab Code: GEL

Instrument: ICPMS15

Sample ID	Analyte	<u>Result</u>	<u>Units</u>	<u>True</u> Value	<u>Units</u>	<u>%</u> <u>Recovery</u>	<u>Acceptance</u> <u>Window (%R)</u>	<u>Analysis</u> Date/Time	<u>Run</u> <u>Number</u>
ICSA01									
	Boron	1.58	ug/L					16-OCT-23 15:13	231016-1
	Calcium	95100	ug/L	100000	ug/L	95.1	80.0 - 120.0	16-OCT-23 15:13	231016-1
ICSAB01									
	Boron	20.7	ug/L	20	ug/L	104	80.0 - 120.0	16-OCT-23 15:15	231016-1
	Calcium	95100	ug/L	100000	ug/L	95.1	80.0 - 120.0	16-OCT-23 15:15	231016-1
ICSA02									
	Boron	0.339	ug/L					16-OCT-23 16:01	231016-1
	Calcium	95300	ug/L	100000	ug/L	95.3	80.0 - 120.0	16-OCT-23 16:01	231016-1
ICSAB02									
	Boron	19.4	ug/L	20	ug/L	97	80.0 - 120.0	16-OCT-23 16:03	231016-1
	Calcium	95100	ug/L	100000	ug/L	95.2	80.0 - 120.0	16-OCT-23 16:03	231016-1

GEL Laboratories LLC

METALS

-5a-

Matrix Spike Summary

SDG NO.	639969	Client ID:	MV	V-FGD-20AI	R-2023	3Q4S				
Contract:	DMNN00101	DMNN00101		Low						
Matrix:	GROUND WATER		% Solids:							
Sample ID:	639969003		Spike ID:	12055	538525					
<u>Analyte</u>	Units	<u>Acceptance</u> <u>Limit</u>	<u>Spiked</u> <u>Result</u>	<u>C</u>	<u>Sample</u> <u>Result</u>	<u>C</u>	<u>Spike</u> Added	<u>%</u> <u>Recovery</u>	Qual	<u>M*</u>
Boron	ug/L		4020		3950		100	71.5	N/A	MS

328000

328000

2000

-23.6

N/A

MS

*Analytical Methods:

Calcium

MS EPA 200.8 SC_NPDES

ug/L

Metals -6-Duplicate Sample Summary

SDG No.:	639969			Lab Code: GEL								
Contract:	DMNN0010)1		(Client II	:MW-FGD-20	AR-202	23Q4D				
Matrix:	GROUND W	VATER	Level:	Low								
Sample ID: 639969003			Duplicate	Duplicate ID: 1205538524 Percent S					olids for Dup: N/A			
Ana	llyte	Units	Acceptance Limit	Sample Result	С	Duplicate Result	С	RPD	Qual	M *		
Boron		ug/L	+/-20%	395	0	3980		.686		MS		

*Analytical Methods:

METALS -7-Laboratory Control Sample Summary

SDG NO. 639969

Contract: DMNN00101

Aqueous LCS Source: Environmental Express

<u>Sample ID</u> 1205538523	<u>Analyte</u>	Units	<u>True</u> Value	<u>Result</u>	<u>C</u>	<u>%</u> Recovery	<u>Acceptance</u> <u>Limit</u>	<u>M*</u>
	Calcium	ug/L	2000	2120		106	85-115	MS
	Boron	ug/L	100	99.1		99.1	85-115	MS

Solid LCS Source:

*Analytical Methods:

METALS -9-Serial Dilution Sample Summary

SDG NO.	639969			Client ID	MW-FGI	D-20AR-2023Q4I			
Contract:	DMNN0010)1							
Matrix:	LIQUID			Level: I	LOW				
Sample ID:	639969003			Serial Dilution	on ID: 12	05538526			
Analyte		<u>Initial</u> Value ug/L	<u>C</u>	<u>Serial</u> Value ug/L	<u>C</u>	<u>%</u> Difference	Qual	<u>Acceptance</u> <u>Limit</u>	<u>M*</u>
Boron		79.1		72.7	В	8.049			MS
Calcium		6560		7080		7.91		10	MS

*Analytical Methods:

METALS -13-SAMPLE PREPARATION SUMMARY

SDG No:	639969		Metho	d Type: MS		
Contract:	DMNN00101		Lab C	ode: GEL		
<u>Sample ID</u> Batch Numb	<u>Client ID</u> er 2504261	<u>Sample</u> <u>Type</u>	Matrix	<u>Prep</u> Date	<u>Initial</u> <u>Sample</u> <u>Size</u>	<u>Final</u> <u>Sample</u> <u>Percent</u> <u>Volume</u> <u>Solids</u>
1205538522	MB for batch 2504261	MB	G	06-OCT-23	50mL	50mL
1205538523	LCS for batch 2504261	LCS	G	06-OCT-23	50mL	50mL
1205538525	MW-FGD-20AR-2023Q4S	MS	G	06-OCT-23	50mL	50mL
1205538524	MW-FGD-20AR-2023Q4D	DUP	G	06-OCT-23	50mL	50mL
639969001	MW-FGD-18-2023Q4	SAMPLE	G	06-OCT-23	50mL	50mL
639969002	MW-FGD-19D-2023Q4	SAMPLE	G	06-OCT-23	50mL	50mL
639969003	MW-FGD-20AR-2023Q4	SAMPLE	G	06-OCT-23	50mL	50mL
639969004	MW-FGD-23-2023Q4	SAMPLE	G	06-OCT-23	50mL	50mL
639969005	MW-FGD-24-2023Q4	SAMPLE	G	06-OCT-23	50mL	50mL
639969006	FBLK-WMS-FGD-23401	SAMPLE	W	06-OCT-23	50mL	50mL
639969007	DU-WMS-FGD-23401	SAMPLE	G	06-OCT-23	50mL	50mL

General Chemistry Technical Case Narrative Dominion Energy SDG #: 639969

Product: Ion Chromatography Analytical Method: EPA 300.0 **Analytical Procedure:** GL-GC-E-086 REV# 33 **Analytical Batches:** 2504243 and 2504593

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
639969001	MW-FGD-18-2023Q4
639969002	MW-FGD-19D-2023Q4
639969003	MW-FGD-20AR-2023Q4
639969004	MW-FGD-23-2023Q4
639969005	MW-FGD-24-2023Q4
639969006	FBLK-WMS-FGD-23401
639969007	DU-WMS-FGD-23401
1205538473	Method Blank (MB)
1205538474	Laboratory Control Sample (LCS)
1205538475	639967012(NonSDG) Post Spike (PS)
1205538476	639967013(NonSDG) Sample Duplicate (DUP)
1205538477	639967013(NonSDG) Post Spike (PS)
1205538483	639967012(NonSDG) Sample Duplicate (DUP)
1205539079	Method Blank (MB)
1205539080	Laboratory Control Sample (LCS)
1205539088	639969003(MW-FGD-20AR-2023Q4) Sample Duplicate (DUP)
1205539090	639969003(MW-FGD-20AR-2023Q4) Post Spike (PS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Quality Control (QC) Information

Matrix Spike (MS)/Post Spike (PS) Recovery Statement

The percent recoveries (%R) obtained from the spike analyses are evaluated when the sample concentration is less than four times (4X) the spike concentration added. The matrix spike recovered outside of the established acceptance limits due to matrix interference and/or non-homogeneity.

Analyte	Sample	Value		
Chloride	1205538475 (Non SDG 639967012PS)	114* (90%-110%)		
	1205538477 (Non SDG 639967013PS)	111* (90%-110%)		
	1205539090 (MW-FGD-20AR-2023Q4PS)	115* (90%-110%)		

Technical Information

Sample Dilutions

The following samples 639969001 (MW-FGD-18-2023Q4), 639969002 (MW-FGD-19D-2023Q4), 1205539088 (MW-FGD-20AR-2023Q4DUP), 1205539090 (MW-FGD-20AR-2023Q4PS), 639969003 (MW-FGD-20AR-2023Q4), 639969004 (MW-FGD-23-2023Q4), 639969005 (MW-FGD-24-2023Q4) and 639969007 (DU-WMS-FGD-23401) were diluted because target analyte concentrations exceeded the calibration range. Samples 639969001 (MW-FGD-18-2023Q4), 639969002 (MW-FGD-19D-2023Q4), 639969004 (MW-FGD-23-2023Q4), 639969005 (MW-FGD-23-2023Q4), 639969007 (DU-WMS-FGD-23401) were diluted based on historical data. Samples 639969004 (MW-FGD-23-2023Q4), 639969005 (MW-FGD-24-2023Q4) and 639969007 (DU-WMS-FGD-23401) were diluted based on historical data. Samples 639969004 (MW-FGD-23-2023Q4), 639969005 (MW-FGD-24-2023Q4) and 639969007 (DU-WMS-FGD-24-2023Q4) and 639969007 (DU-WMS-FGD-23-2023Q4) and 639969007 (DU-WMS-FGD-24-2023Q4) and 639969007 (DU-WMS-FGD-23-2023Q4) and 639969007 (DU-WMS-FGD-23401) were diluted to minimize matrix effects on instrument performance. Dilutions may be required for many reasons, including to minimize matrix interferences or to bring over range target analyte concentrations into the linear calibration range.

A	639969					
Analyte	001	002	003	004	005	007
Chloride	400X	200X	100X	1000X	1000X	1000X
Fluoride	2X	2X	1X	5X	5X	5X
Sulfate	20X	10X	100X	20X	1000X	1000X

Sample Re-analysis

Sample 639969006 (FBLK-WMS-FGD-23401) was re-analyzed due to (its) proximity to an overrange sample. The results from the reanalysis are reported.

Miscellaneous Information

Manual Integrations

Samples 639969004 (MW-FGD-23-2023Q4), 639969005 (MW-FGD-24-2023Q4) and 639969007 (DU-WMS-FGD-23401) were manually integrated to correctly position the baseline as set in the calibration standards.

Additional Comments

All method-driven specifications are followed for these analyses except where client-specific SOW requirements are required to be met.

Product: Solids, Total Dissolved <u>Analytical Method:</u> SM 2540C <u>Analytical Procedure:</u> GL-GC-E-001 REV# 21 <u>Analytical Batch:</u> 2504466

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
639969001	MW-FGD-18-2023Q4
639969002	MW-FGD-19D-2023Q4
639969003	MW-FGD-20AR-2023Q4
639969004	MW-FGD-23-2023Q4
639969005	MW-FGD-24-2023Q4
639969006	FBLK-WMS-FGD-23401
639969007	DU-WMS-FGD-23401
1205538844	Method Blank (MB)
1205538845	Laboratory Control Sample (LCS)
1205538846	639967013(NonSDG) Sample Duplicate (DUP)
1205538847	639969003(MW-FGD-20AR-2023Q4) Sample Duplicate (DUP)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Quality Control (QC) Information

Consecutive Weight Checks

In order to meet consecutive weight check criteria, weight events must be within 0.0005g of each other. After initial weight checks failed this criteria, the analyst performed two additional weight events. After four weight events, the analyst was unable to get the samples to conform to the criteria. The failure to meet weigh back criteria is attributed to the matrix of the samples. 639969007 (DU-WMS-FGD-23401).

Duplicate Relative Percent Difference (RPD) Statement

The Relative Percent Difference (RPD) between the sample and duplicate falls outside of the established acceptance limits because of the heterogeneous matrix of the sample:

Analyte	Sample	Value
Total Dissolved Solids	1205538847 (MW-FGD-20AR-2023Q4DUP)	18.9* (0%-5%)

Miscellaneous Information

Additional Comments

A TDS meter was used to check the samples for interference prior to analysis. 1205538847 (MW-FGD-20AR-2023Q4DUP), 639969001 (MW-FGD-18-2023Q4), 639969002 (MW-FGD-19D-2023Q4),

639969003 (MW-FGD-20AR-2023Q4), 639969004 (MW-FGD-23-2023Q4), 639969005 (MW-FGD-24-2023Q4) and 639969007 (DU-WMS-FGD-23401). All method-driven specifications are followed for these analyses except where client-specific SOW requirements are required to be met.

<u>Certification Statement</u>

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

GEL LABORATORIES LLC

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Qualifier Definition Report for

DMNN001 Dominion Energy (50149867)

Client SDG: 639969 GEL Work Order: 639969

The Qualifiers in this report are defined as follows:

- * A quality control analyte recovery is outside of specified acceptance criteria
- J Value is estimated
- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

Review/Validation

GEL requires all analytical data to be verified by a qualified data reviewer. In addition, all CLP-like deliverables receive a third level review of the fractional data package.

The following data validator verified the information presented in this data report:

risten Muzell Signature:

Name: Kristen Mizzell

Date: 19 OCT 2023

Title: Group Leader

Report Date: October 19, 2023

	Company :	Dominion Energy Service	es, Inc.						
	Address :	120 Tredegar Street							
	Contact:	Richmond, Virginia 2321 Kelly Hicks	9	Deslages					
	Project.	CCR Groundwater Month	oring - Level I	Раскаде	P	• .	DIDDIO0101		
	Client Sample ID:	MW-FGD-18-2023Q4			Pro	ject:	DMNN00101		
	Sample ID:	639969001			Clie	ent ID:	DMNN001		
	Matrix:	GW							
	Collect Date:	03-OCT-23 14:02							
	Receive Date:	05-OCT-23							
	Collector:	Client							
Parameter	Quali	fier Result	DL	RL	Units	PF DF	Analyst Date	Time Batch	Method
Ion Chroma	atography								
EPA 300.0	Anions Liquid "As	Received"							
Sulfate		86.3	2.66	8.00	mg/L	20	LXA2 10/07/23	0419 2504243	1
Fluoride		0.670	0.0660	0.200	mg/L	2	LXA2 10/06/23	1259 2504243	2
Chloride	•	1550	26.8	80.0	mg/L	400	LXA2 10/07/23	0348 2504243	3
Solids Anal	ysis								
SM2540C 7	TDS "As Received"								
Total Dissolve	ed Solids	3420	23.8	100	mg/L		CH6 10/06/23	1447 2504466	4
The follow	ing Analytical Meth	ods were performed:							
Method	Descr	iption			А	nalyst Cor	nments		
1	EPA 30	00.0							
2	EPA 30	00.0							
3	EPA 30	00.0							
4	SM 254	HOC .							

Notes:

Column headers are defined as follows:DF: Dilution FactorLc/LC: Critical LevelDL: Detection LimitPF: Prep FactorMDA: Minimum Detectable ActivityRL: Reporting LimitMDC: Minimum Detectable ConcentrationSQL: Sample Quantitation Limit

Report Date: October 19, 2023

Richmond, Virginia 23219 Contact: Kelly Hicks Project: CCR Groundwater Monitoring - Level 1 Package Client Sample ID: MW-FGD-19D-2023Q4 Project: DMNN00101 Sample ID: 639969002 Client ID: DMNN001 Matrix: GW Client ID: DMNN001 Matrix: GW Collect Date: 03-OCT-23 13:01 Receive Date: 05-OCT-23 Collect Date: 05-OCT-23 Collector: Client DL RL Units PF DF Analyst Date Method Ion Chromatography EPA 300.0 Anions Liquid "As Received" Sulfate 46.3 1.33 4.00 mg/L 10 LXA2 1007/23 0521 2504243 1 Chloride 684 1.34 40.0 mg/L 2 LXA2 1006/23 1330 2504243 2 Solids Analysis SM240C TDS "As Received" 3 1330 23.8 100 mg/L CH6 1006/23 1447 2504466 4 The following Analytical Methods were performed: Method		Company : Address :	Don 120	ninion Energy Services Tredegar Street	, Inc.									
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		Contact: Project:	Rich Kell CCI	nmond, Virginia 23219 y Hicks & Groundwater Monito) ring - Level	1 Package								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Client Sample ID	: MW	-FGD-19D-2023Q4			Pro	oject:		DMN	N00101			
Marix: GW Collect Date: 03-OCT-23 13:01 Receive Date: 05-OCT-23 Collector: Client Parameter Qualifier Result DL RL Units PF DF Analyst Date Time Batch Method Ion Chromatography EPA 300.0 Anions Liquid "As Received" 3 1.33 4.00 mg/L 10 LXA2 10/07/23 0521 2504243 1 Sulfate 46.3 1.34 40.0 mg/L 200 LXA2 10/07/23 0521 2504243 2 Fluoride 684 13.4 40.0 mg/L 2 LXA2 10/06/23 1330 2504243 3 Solids Analysis S S S S S 3 S		Sample ID:	639	969002			Cli	ient ID):	DMN	N001			
Collect Date: 03-OCT-23 13:01 Receive Date: 05-OCT-23 Collector: Client Parameter Qualifier Result DL RL Units PF DF Analyst Date Time Batch Method Ion Chromatography EPA 300.0 Anions Liquid "As Received" Sulfate 46.3 1.33 4.00 mg/L 10 LXA2 10/07/23 0521 2504243 1 Sulfate 684 13.4 40.0 mg/L 200 LXA2 10/07/23 0450 2504243 2 Fluoride 684 13.4 40.0 mg/L 20 LXA2 10/07/23 0450 2504243 2 Fluoride 0.612 0.0660 0.200 mg/L 2 LXA2 10/06/23 1330 2504243 3 Solids Analysis State 1330 23.8 100 mg/L CH6 10/06/23 1447 2504466 4 The following Analytical Methods were performed: Method Description Analyst Comments 1 EPA 300.0 <th< th=""><th></th><th>Matrix:</th><th>GW</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>		Matrix:	GW											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Collect Date:	03-0	DCT-23 13:01										
Collector: Client Parameter Qualifier Result DL RL Units PF DF Analyst Date Time Batch Method Ion Chromatography EPA 300.0 Anions Liquid "As Received" 46.3 1.33 4.00 mg/L 10 LXA2 10/07/23 0521 2504243 1 Chloride 684 13.4 40.0 mg/L 200 LXA2 10/07/23 0450 2504243 2 Fluoride 0.612 0.0660 0.200 mg/L 2 LXA2 10/06/23 1330 2504243 3 Solids Analysis SM2540C TDS "As Received" 7 2 LXA2 10/06/23 1447 2504466 4 The following Analytical Methods were performed: 1330 23.8 100 mg/L CH6 10/06/23 1447 2504466 4 1 EPA 300.0 23.8 100 mg/L VH6 10/06/23 1447 2504466 4 The following Analytical Methods were performed:		Receive Date:	05-0	DCT-23										
Parameter Qualifier Result DL RL Units PF DF Analyst Date Time Batch Method Ion Chromatography EPA 300.0 Anions Liquid "As Received" 46.3 1.33 4.00 mg/L 10 LXA2 10/07/23 0521 2504243 1 Chloride 684 13.4 40.0 mg/L 200 LXA2 10/07/23 0521 2504243 2 Fluoride 0.612 0.0660 0.200 mg/L 2 LXA2 10/06/23 1330 2504243 3 Solids Analysis SM2540C TDS "As Received" 330 23.8 100 mg/L CH6 10/06/23 1447 2504466 4 The following Analytical Methods were performed:		Collector:	Clie	nt										
Parameter Qualifier Result DL RL Units PF DF Analyst Date Time Batch Method Ion Chromatography EPA 300.0 Anions Liquid "As Received" 46.3 1.33 4.00 mg/L 10 LXA2 10/07/23 0521 2504243 1 Chloride 684 13.4 40.0 mg/L 200 LXA2 10/07/23 0450 2504243 2 Fluoride 0.612 0.0660 0.200 mg/L 2 LXA2 10/06/23 130 2504243 3 Solids Analysis 0.612 0.0660 0.200 mg/L 2 LXA2 10/06/23 143 2504243 3 Solids Analysis S 1330 23.8 100 mg/L 2 LXA2 10/06/23 1447 250446 4 The following Analytical Methods were performed:														
Ion Chromatography EPA 300.0 Anions Liquid "As Received" Sulfate 46.3 1.33 4.00 mg/L 10 LXA2 10/07/23 0521 2504243 1 Chloride 684 13.4 40.0 mg/L 200 LXA2 10/07/23 0450 2504243 2 Fluoride 0.612 0.0660 0.200 mg/L 2 LXA2 10/06/23 1330 2504243 3 Solids Analysis SM2540C TDS "As Received" Total Dissolved Solids 1330 23.8 100 mg/L CH6 10/06/23 1447 2504466 4 Method Description Analyst Comments 1 EPA 300.0 EPA 300.0 2 EPA 300.0 EPA 300.0 3 EPA 300.0 EPA 300.0	Parameter	Qua	lifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time	Batch	Method
EPA 300.0 Anions Liquid "As Received" Sulfate 46.3 1.33 4.00 mg/L 10 LXA2 10/07/23 0521 2504243 1 Chloride 684 13.4 40.0 mg/L 200 LXA2 10/07/23 0450 2504243 2 Fluoride 0.612 0.0660 0.200 mg/L 2 LXA2 10/06/23 1330 2504243 3 Solids Analysis S S 1330 23.8 100 mg/L CH6 10/06/23 1447 2504466 4 The following Analytical Methods were performed: Analyst Comments 1 EPA 300.0 EPA 300.0 2 EPA 300.0 EPA 300.0 3 EPA 300.0 EPA 300.0	Ion Chroma	atography												
Sulfate 46.3 1.33 4.00 mg/L 10 LXA2 10/07/23 0521 2504243 1 Chloride 684 13.4 40.0 mg/L 200 LXA2 10/07/23 0450 2504243 2 Fluoride 0.612 0.0660 0.200 mg/L 2 LXA2 10/06/23 1330 2504243 3 Solids Analysis S S 1330 23.8 100 mg/L CH6 10/06/23 1447 2504466 4 Total Dissolved Solids 1330 23.8 100 mg/L CH6 10/06/23 1447 2504466 4 Method Description Analyst Comments V	EPA 300.0	Anions Liquid "A	s Recei	ved"										
Chloride 684 13.4 40.0 mg/L 200 LXA2 10/07/23 0450 2504243 2 Fluoride 0.612 0.0660 0.200 mg/L 2 LXA2 10/06/23 1330 2504243 3 Solids Analysis S SM2540C TDS "As Received" nmg/L 2 LXA2 10/06/23 1447 2504266 4 Total Dissolved Solids 1330 23.8 100 mg/L CH6 10/06/23 1447 2504466 4 The following Analytical Methods were performed:	Sulfate			46.3	1.33	4.00	mg/L		10	LXA2	10/07/23	0521	2504243	1
Filtonde 0.612 0.0660 0.200 mg/L 2 LXA2 10/06/23 1330 2504243 3 Solids Analysis SM2540C TDS "As Received" Total Dissolved Solids 1330 23.8 100 mg/L CH6 10/06/23 1447 2504466 4 The following Analytical Methods were performed: Analyst Comments Method Description Analyst Comments 1 EPA 300.0 2 EPA 300.0 3 EPA 300.0	Chloride			684	13.4	40.0	mg/L		200	LXA2	10/07/23	0450	2504243	2
Solus Analysis SM2540C TDS "As Received" Total Dissolved Solids 1330 23.8 100 mg/L CH6 10/06/23 1447 2504466 4 The following Analytical Methods were performed:	Fluoride Solida Anal			0.612	0.0660	0.200	mg/L		2	LXA2	10/06/23	1330	2504243	3
SM2540C TDS As Received Total Dissolved Solids 1330 23.8 100 mg/L CH6 10/06/23 1447 2504466 4 The following Analytical Methods were performed: Analyst Comments Method Description Analyst Comments 1 EPA 300.0 EPA 300.0 5	SUIUS Alla	IYSIS FDC "A a Daasimad												
Method Description Analyst Comments 1 EPA 300.0 2 EPA 300.0 3 EPA 300.0	SM2540C	IDS AS Received	l	1220	22.8	100	ma/I			СЦ6	10/06/22	1447	2504466	4
Method Description Analyst Comments 1 EPA 300.0 2 EPA 300.0 3 EPA 300.0	The fellers		41	1550	23.8	100	mg/L			СПО	10/00/23	1447	2304400	4
MethodDescriptionAnalyst Comments1EPA 300.02EPA 300.03EPA 300.0	I ne follow	ing Analytical Me	thods v	ere performed:										
I EPA 300.0 2 EPA 300.0 3 EPA 300.0	Method	Desc	cription				1	Analys	t Cor	nments	5			
2 EPA 500.0 3 EPA 300.0	1	EPA	300.0											
	2 3	EPA EDA	300.0											
4 SM 2540C	4	SM 2	540C											

Notes:

Column headers are defined as follows:DF: Dilution FactorLc/LC: Critical LevelDL: Detection LimitPF: Prep FactorMDA: Minimum Detectable ActivityRL: Reporting LimitMDC: Minimum Detectable ConcentrationSQL: Sample Quantitation Limit

Report Date: October 19, 2023

	Company : Address :	Dominion Energy Services 120 Tredegar Street	, Inc.							
	Contact: Project:	Richmond, Virginia 23219 Kelly Hicks CCR Groundwater Monitor	ring - Level 1	Package						
	Client Sample ID: Sample ID: Matrix: Collect Date: Receive Date: Collector:	MW-FGD-20AR-2023Q4 639969003 AQ 03-OCT-23 11:46 05-OCT-23 Client			Pro Cli	oject: ient ID:	DMNI DMNI	N00101 N001		
Parameter	Quali	fier Result	DL	RL	Units	PF DF	Analy	st Date	Time Batch	Method
Ion Chroma	tography									
EPA 300.0	Anions Liquid "As	Received"								
Fluoride	1	0.331	0.0330	0.100	mg/L	1	HXC1	10/06/23	2200 2504593	1
Chloride		671	6.70	20.0	mg/L	100	HXC1	10/09/23	1413 2504593	2
Sulfate Solids Anal	vsis	232	13.3	40.0	mg/L	100				
SM2540C 1	TDS "As Received"									
Total Dissolve	d Solids	1390	23.8	100	mg/L		CH6	10/06/23	1447 2504466	i 3
The follow	ing Analytical Meth	nods were performed:			U					
Method	Descr	iption			A	Analyst Co	mments	5		
1	EPA 30	00.0								
2	EPA 30	00.0								
3	SM 254	40C								
Notes:										

Column headers are defined as follows: DF: Dilution Factor Lc/LC: Critical Level **DL:** Detection Limit PF: Prep Factor RL: Reporting Limit MDA: Minimum Detectable Activity MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Report Date: October 19, 2023

	Company : Address :	Don 120	ninion Energy Services Tredegar Street	, Inc.									
		Rich	mond, Virginia 23219)									
	Contact:	Kell	y Hicks										
	Project:	CCF	R Groundwater Monito	ring - Level 1	Package								
	Client Sample ID:	MW	-FGD-23-2023Q4			Pro	oject:		DMN	N00101			
	Sample ID:	6399	969004			Cli	ient ID:		DMN	N001			
	Matrix:	GW											
	Collect Date:	03-0	DCT-23 12:56										
	Receive Date:	05-0	DCT-23										
	Collector:	Clie	nt										
Parameter	Quali	fier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time	e Batch	Method
Ion Chroma	atography												
EPA 300.0	Anions Liquid "As	Receiv	ved"										
Sulfate			289	2.66	8.00	mg/L		20	HXC1	10/09/23	1616	2504593	1
Fluoride		J	0.379	0.165	0.500	mg/L		5	HXC1	10/06/23	2332	2504593	2
Solids Anal	lysis		3300	67.0	200	mg/L		1000	HXCI	10/09/23	1546	2504593	3
SM2540C	TDS "As Received"												
Total Dissolve	ed Solids		7290	23.8	100	mg/L			CH6	10/06/23	1447	2504466	4
The follow	ring Analytical Meth	nods w	vere performed:										
Method	Descr	iption				A	Analyst	Cor	nment	5			
1	EPA 30	0.00					-						
2	EPA 30	0.00											
3	EPA 30	0.0											
4	SM 254	40C											
NT 4													

Notes:

Column headers are defined as follows:DF: Dilution FactorLc/LC: Critical LevelDL: Detection LimitPF: Prep FactorMDA: Minimum Detectable ActivityRL: Reporting LimitMDC: Minimum Detectable ConcentrationSQL: Sample Quantitation Limit

Report Date: October 19, 2023

	Company :	Don	ninion Energy Services	, Inc.									
	Address :	120	Tredegar Street										
		Diak	mond Virginia 2221)									
	Contact	Kici Kali	u Hieles	,									
	Draiaati		y flicks		Deslesse								
	Project.	CCr	K Groundwater Monito	ring - Level I	Раскаде								
	Client Sample ID:	MW	-FGD-24-2023Q4			Pro	oject:	Ι	DMN	N00101			
	Sample ID:	6399	969005			Cli	ient ID:	Ι	DMN	N001			
	Matrix:	GW											
	Collect Date:	03-0	DCT-23 11:50										
	Receive Date:	05-0	DCT-23										
	Collector:	Clie	nt										
Parameter	Quali	fier	Result	DL	RL	Units	PF I	DF A	Analy	st Date	Time	Batch	Method
Ion Chroma	atography												
FPA 300.0	Anions Liquid "As	Receiv	ved"										
Chloride	Tunons Elquid Tis		3390	67.0	200	mø/L	1	000 F	HXC1	10/09/23	1647	2504593	1
Sulfate			503	133	400	mg/L	1	000	mer	10/07/25	1017	2001000	-
Fluoride		J	0.440	0.165	0.500	mg/L		5 I	HXC1	10/07/23	0003	2504593	2
Solids Anal	lysis					÷							
SM2540C	TDS "As Received"												
Total Dissolve	ed Solids		6560	23.8	100	mg/L		(CH6	10/06/23	1447	2504466	3
The follow	ving Analytical Meth	ods w	vere performed:										
Method	Descr	ption				A	Analyst (Com	ments	5			
1	EPA 30	0.0					-						
2	EPA 30	0.0											
3	SM 254	0C											
Notes:													

Column headers are defined as follows: DF: Dilution Factor Lc/LC: Critical Level **DL:** Detection Limit PF: Prep Factor RL: Reporting Limit MDA: Minimum Detectable Activity MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Report Date: October 19, 2023

	Company :	Dor	ninion Energy Services,	Inc.								
	Address :	120	Tredegar Street									
	Contact: Project:	Ric Kel CC	hmond, Virginia 23219 ly Hicks R Groundwater Monitori	ng - Level 1	Package							
	Client Sample ID:	FBI	K-WMS-FGD-23401			Pro	oject:		DMN	N00101		
	Sample ID:	639	969006			Cli	ent ID	:	DMN	N001		
	Matrix:	AO										
	Collect Date:	03-0	OCT-23 14:00									
	Receive Date:	05-0	OCT-23									
	Collector:	Clie	ent									
Parameter	Qual	ifier	Result	DL	RL	Units	PF	DF	Analy	vst Date	Time Batch	Method
Ion Chroma	atography											
EPA 300.0	Anions Liquid "As	Recei	ved"									
Fluoride			0.126	0.0330	0.100	mg/L		1	HXC1	10/07/23	0034 2504593	1
Sulfate		U	ND	0.133	0.400	mg/L		1				
Chloride Solids Anal	vsis	U	ND	0.0670	0.200	mg/L		1	HXC1	10/09/23	1718 2504593	2
SM2540C 1	TDS "As Received"											
Total Dissolve	ed Solids	U	ND	2.38	10.0	mg/L			CH6	10/06/23	1447 2504466	3
The follow	ing Analytical Metl	hods v	vere performed:									
Method	Descr	iption				A	Analyst	t Cor	nment	s		
1	EPA 3	0.00					-					
2	EPA 3	0.00										
3	SM 25	40C										
Notes:												

Column headers are defined as follows: DF: Dilution Factor Lc/LC: Critical Level **DL:** Detection Limit PF: Prep Factor RL: Reporting Limit MDA: Minimum Detectable Activity MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Report Date: October 19, 2023

	Company : Address :	Don 120	ninion Energy Services Tredegar Street	s, Inc.									
	Contact: Project:	Rich Kell CCF	umond, Virginia 2321 y Hicks & Groundwater Monito	9 pring - Level 1	Package								
	Client Sample ID:	DU-	WMS-FGD-23401			Pro	oject:		DMN	N00101			
	Sample ID:	6399	969007			Cli	ent IL):	DMN	N001			
	Matrix:	GW											
	Collect Date:	03-0	DCT-23 12:00										
	Receive Date:	05-0	DCT-23										
	Collector:	Clie	nt										
Parameter	Quali	fier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time	Batch	Method
Ion Chroma	atography												
EPA 300.0	Anions Liquid "As]	Receiv	ved"										
Chloride			3510	67.0	200	mg/L		1000	HXC1	10/09/23	1749 2	2504593	1
Sulfate		_	527	133	400	mg/L		1000					
Fluoride	: -	J	0.439	0.165	0.500	mg/L		5	HXCI	10/07/23	0339 2	2504593	2
SM2540C T	TDS "As Received"												
Total Dissolve	d Solids		6710	23.8	100	mg/L			CH6	10/06/23	1447 2	2504466	3
The follow	ing Analytical Meth	ods w	vere performed:										
Method	Descri	ption				I	Analys	t Cor	nment	5			
1	EPA 30	0.0					-						
2	EPA 30	0.0											
3	SM 254	OC											
Notes:													

Column headers are defined as follows: DF: Dilution Factor Lc/LC: Critical Level **DL:** Detection Limit PF: Prep Factor RL: Reporting Limit MDA: Minimum Detectable Activity MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Quality Control Summary

GEL LABORATORIES LLC 2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC	Summary
----	---------

Report Date: October 19, 2023

Page 1 of 4

Dominion Energy Services, Inc.
120 Tredegar Street
Richmond, Virginia
Kelly Hicks

Workorder: 639969

Contact:

Parmname		NOM	Sample	Qual	QC	Units	RPD%	REC%	Range Anl	st Date Time
Ion Chromatography Batch 2504	4243									
QC1205538476 Chloride	639967013 E	DUP	5.87		5.90	mg/L	0.486		(0%-20%) LX	XA2 10/06/23 11:58
Fluoride			0.104		0.150	mg/L	36.4	^	(+/-0.100)	
Sulfate			0.583		0.587	mg/L	0.753	٨	(+/-0.400)	
QC1205538483 Chloride	639967012 E	DUP	9.25		9.26	mg/L	0.102		(0%-20%)	10/06/23 10:25
Fluoride			0.319		0.315	mg/L	1.14	٨	(+/-0.100)	
Sulfate			3.02		3.13	mg/L	3.65		(0%-20%)	
QC1205538474 Chloride	LCS	5.00			4.56	mg/L		91.3	(90%-110%)	10/05/23 23:37
Fluoride		2.50			2.36	mg/L		94.3	(90%-110%)	
Sulfate		10.0			9.40	mg/L		94	(90%-110%)	
QC1205538473 Chloride	MB			U	ND	mg/L				10/05/23 23:06
Fluoride				U	ND	mg/L				
Sulfate				U	ND	mg/L				
QC1205538475 Chloride	639967012 P	PS 5.00	9.25		15.0	mg/L		114*	(90%-110%)	10/06/23 10:56

GEL LABORATORIES LLC 2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 639969								Page 2 of 4
Parmname	NOM	Sample Qual	QC	Units	RPD% R	EC% Rang	e Anlst	Date Time
Ion ChromatographyBatch2504243								
Fluoride	2.50	0.319	2.70	mg/L	9	5.2 (90%-110	0%) LXA2	10/06/23 10:56
Sulfate	10.0	3.02	12.9	mg/L	9	8.6 (90%-110	9%)	
QC1205538477 639967013 PS Chloride	5.00	5.87	11.4	mg/L	1	11* (90%-110	9%)	10/06/23 12:29
Fluoride	2.50	0.104	2.53	mg/L	9	7.2 (90%-110	0%)	
Sulfate	10.0	0.583	10.3	mg/L	9	7.5 (90%-110	9%)	
Batch 250/1593								
QC1205539088 639969003 DUP Chloride		671	680	mg/L	1.4	(0%-20	9%) HXC1	10/09/23 14:44
Fluoride		0.331	0.289	mg/L	13.4 ^	(+/-0.1	00)	10/06/23 22:31
Sulfate		232	230	mg/L	1.25	(0%-20	9%)	10/09/23 14:44
QC1205539080 LCS Chloride	5.00		4.67	mg/L	9	3.4 (90%-110)%)	10/07/23 03:09
Fluoride	2.50		2.40	mg/L	9	6.1 (90%-110)%)	
Sulfate	10.0		9.59	mg/L	9	5.9 (90%-110	0%)	
QC1205539079 MB Chloride		U	ND	mg/L				10/07/23 02:38
Fluoride		U	ND	mg/L				
Sulfate		U	ND	mg/L				

GEL LABORATORIES LLC

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

workorder: 639969										Page 3 of 4
Parmname	NOM	Sample	Qual	QC	Units	RPD%	REC%	Range	Anlst	Date Time
Ion Chromatography Batch 2504593										
QC1205539090 639969003 PS										
Chloride	5.00	6.71		12.4	mg/L		115*	(90%-110%)	HXC1	10/09/23 15:15
Fluoride	2.50	0.331		2.62	mg/L		91.6	(90%-110%)		10/06/23 23:02
Sulfate	10.0	2.32		12.2	mg/L		98.5	(90%-110%)		10/09/23 15:15
Solids Analysis Batch 2504466 ——										
QC1205538846 639967013 DUP Total Dissolved Solids	1	3.00	J	7.00	mg/L	80 ^		(+/-10.0)	CH6	10/06/23 14:47
QC1205538847 639969003 DUP Total Dissolved Solids		1390		1680	mg/L	18.9*		(0%-5%)		10/06/23 14:47
QC1205538845 LCS Total Dissolved Solids	300			303	mg/L		101	(95%-105%)		10/06/23 14:47
QC1205538844 MB Total Dissolved Solids			U	ND	mg/L					10/06/23 14:47

Notes:

(200 (0

The Qualifiers in this report are defined as follows:

- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.
- J Value is estimated
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- H Analytical holding time was exceeded
- < Result is less than value reported
- > Result is greater than value reported
- h Preparation or preservation holding time was exceeded
- R Sample results are rejected
- Z Paint Filter Test--Particulates passed through the filter, however no free liquids were observed.
- d 5-day BOD--The 2:1 depletion requirement was not met for this sample
- ^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL. Qualifier Not Applicable for Radiochemistry.

GEL LABORATORIES LLC

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workor	der:	639969										Pag	e 4 of 4
Parmnai	me		NOM	Sample	Qual	QC	Units	RPD%	REC%	Range	Anlst	Date	Time
N/A	RPD or	%Recovery limits of	lo not apply.										
ND	Analyte	concentration is no	t detected above the	detection lin	nit								
NJ	Consult	Case Narrative, Da	ta Summary package	e, or Project l	Manager c	oncerning t	his qualifi	er					
Е	General	ChemistryConce	ntration of the target	analyte exce	eds the ins	strument ca	libration ra	ange					
Q	One or n	nore quality contro	l criteria have not be	en met. Refe	r to the ap	plicable nai	rative or I	DER.					
N1	See case	narrative											
R	Per secti purposes	on 9.3.4.1 of Meth	nod 1664 Revision B	due to matri	ix spike re	covery issu	es, this res	sult may not	be reported of	or used for a	regulatory	^v complia	nce
В	The targ	et analyte was dete	cted in the associated	l blank.									
e	5-day Boreporting	ODTest replicates g purposes	s show more than 309	% difference	between ł	nigh and lov	v values. 7	The data is qu	alified per t	he method a	and can be	e used for	•
J	See case	narrative for an ex	planation										
N/A ind ^ The Re five time RL is us * Indica	icates tha elative Pe es (5X) th sed to eva- tes that a	t spike recovery lin recent Difference (F le contract required luate the DUP resu Quality Control pa	nits do not apply whe RPD) obtained from t detection limit (RL) lt. rameter was not with	en sample co he sample du . In cases wh in specificat	ncentratio uplicate (l nere either ions.	n exceeds s DUP) is eva the sample	pike conc. luated aga or duplica	by a factor of inst the acce te value is le	of 4 or more ptance criter ess than 5X t	or %RPD n ia when the he RL, a co	ot applica e sample i ntrol limi	able. s greater t of +/- th	than le
For PS,	PSD, and	SDILT results, the	values listed are the	measured ar	nounts, no	ot final conc	entrations						

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

This quality assurance (QA) review is based upon an examination of the data generated from the analyses of the samples collected as part of:

Williams Power Station Groundwater Sampling Samples Collected between: 10/3/2023 and 10/4/2023

This review was performed with guidance from the associated US EPA data validation guidelines and in accordance with the Quality Assurance Program Plan. These validation guidance documents specifically address analyses performed in accordance with the Contract Laboratory Program (CLP) analytical methods and are not completely applicable to the type of analyses and analytical protocols performed for the US EPA, SW-846, and Standard Methods utilized by the laboratory for these samples. Environmental Standards, Inc. (Environmental Standards) used professional judgment to determine the usability of the analytical results and compliance relative to the US EPA, SW-846, and Standard Methods utilized by the laboratory. This QA review was performed on the data associated with Job Number:

639969

The findings offered in this report are based on a review of holding times and preservation, method blank results, field blank results, filter blank results, equipment blank results, tubing blank results, matrix spike/matrix spike duplicate recoveries and precision, laboratory control sample/laboratory control sample duplicate recoveries and precision, laboratory and field duplicate precision, total and dissolved results comparisons, and/or positive results between the method detection limit and quantitation limit.

The following results were qualified based on the data verification effort:

Sample	Location	Sample Type	Method	Analyte	T/D	Result	Qual	Reason Code(s)	MDL	QL	Uncertainty	Unit
MW-FGD-18-2023Q4	MW-FGD- 18	N	EPA 300.0	Fluoride	N		U	BF	0.670	0.670		mg/L
MW-FGD-19D-2023Q4	MW-FGD- 19D	N	EPA 300.0	Fluoride	N		U	BF	0.612	0.612		mg/L
MW-FGD-20AR-2023Q4	MW-FGD- 20AR	N	EPA 300.0	Fluoride	N		U	BF	0.331	0.331		mg/L
MW-FGD-23-2023Q4	MW-FGD- 23	N	EPA 300.0	Fluoride	N		U	BF	0.379	0.500		mg/L
MW-FGD-24-2023Q4	MW-FGD- 24	N	EPA 300.0	Fluoride	N		U	BF	0.440	0.440		mg/L
DU-WMS-FGD-23401	MW-FGD- 24	FD	EPA 300.0	Fluoride	N		U	BF	0.439	0.500		mg/L

Data Qualifiers	
U	The analyte was not detected above the level of the sample reporting limit.
J	Quantitation is approximate due to limitations identified during data validation.
J+	The result is an estimated quantity; the result may be biased high.
J-	The result is an estimated quantity; the result may be biased low.
UJ	The analyte was not detected; the reporting limit is approximate and may be inaccurate or imprecise.
R	Unreliable positive result; analyte may or may not be present in sample.
Reason Codes	and Explanations
BE	Equipment blank contamination.
BF	Field blank contamination.
BL	Laboratory blank contamination.
BN	Negative laboratory blank contamination.
FD	Field duplicate imprecision.
FG	Total versus Dissolved Imprecision.
Н	Holding time exceeded.
L	LCS and LCSD recoveries outside of acceptance limits
LD	Laboratory duplicate imprecision.

LP	LCS/LCSD imprecision.
М	MS and MSD recoveries outside of acceptance limits
MP	MS/MSD imprecision.
Q	Chemical Preservation issue.
RL	Reported Results between the MDL and QL.
S	Radium-226+228 flagged due to reporting protocol for combined results
Т	Temperature preservation issue.
Х	Percent solids < 50%.
Y	Chemical yield outside of acceptance limits
ZZ	Other

				Lab Sample ID	ple ID 639969001										
				Sys Sample Code	MW-FGD-18-2	2023Q4									
				Sample Name	MW-FGD-18-2	2023Q4									
				Sample Date	10/3/2023 2:02	2:00 PM									
				Location	WMS-MW-FG	D-18 / N	IW-FGD-18								
				Sample Type	N										
				Matrix	GW										
	Parent Sample														
Analytic Method	Chemical Name	CAS Rn	Fraction	Result Unit	Final Result	Final Qual	Reason code	Uncertainty	Final MDL	Final RL	Final QL	Final Detect	Final Report	DF	Basis
EPA 200.8	Boron	7440-42-8	Т	ug/L	5470				200	200	750	Y	Yes	50	NA
	Calcium	7440-70-2	Т	ug/L	334000				1500	1500	5000	Y	Yes	50	NA
EPA 300.0	Chloride	16887-00-6	N	mg/L	1550				26.8	26.8	80.0	Y	Yes	400	NA
	Fluoride	16984-48-8	Ν	mg/L		U	BF		0.670	0.670	0.670	Ν	Yes	2	NA
	Sulfate	14808-79-8	Ν	mg/L	86.3				2.66	2.66	8.00	Y	Yes	20	NA
SM 2540C	Total Dissolved Solids	TDS	N	mg/L	3420				23.8	23.8	100	Y	Yes	1	NA

				Lab Sample ID	le ID 639969002										
				Sys Sample Code	MW-FGD-19D)-2023Q4	4								
				Sample Name	MW-FGD-19D)-2023Q4	4								
				Sample Date	10/3/2023 1:0	1:00 PM									
				Location	WMS-MW-FG	D-19D /	MW-FGD-19D								
				Sample Type	Ν										
				Matrix	GW										
				Parent Sample											
Analytic Method	Chemical Name	CAS Rn	Fraction	Result Unit	Final Result	Final Qual	Reason code	Uncertainty	Final MDL	Final RL	Final QL	Final Detect	Final Report	DF	Basis
EPA 200.8	Boron	7440-42-8	Т	ug/L	2280				200	200	750	Y	Yes	50	NA
	Calcium	7440-70-2	Т	ug/L	168000				1500	1500	5000	Y	Yes	50	NA
EPA 300.0	Chloride	16887-00-6	Ν	mg/L	684				13.4	13.4	40.0	Y	Yes	200	NA
	Fluoride	16984-48-8	Ν	mg/L		U	BF		0.612	0.612	0.612	N	Yes	2	NA
	Sulfate	14808-79-8	Ν	mg/L	46.3				1.33	1.33	4.00	Y	Yes	10	NA
SM 2540C	Total Dissolved	TDS	Ν	mg/L	1330				23.8	23.8	100	Y	Yes	1	NA

				Lab Sample ID	e ID 639969003										
				Sys Sample Code	MW-FGD-20A	R-2023	Q4								
				Sample Name	MW-FGD-20A	R-2023	Q4								
				Sample Date	10/3/2023 11:	46:00 Al	Л								
				Location	WMS-MW-FG	D-20AR	/ MW-FGD-20	٩R							
				Sample Type	Ν										
				Matrix	GW										
				Parent Sample											
Analytic Method	Chemical Name	CAS Rn	Fraction	Result Unit	Final Result	Final Qual	Reason code	Uncertainty	Final MDL	Final RL	Final QL	Final Detect	Final Report	DF	Basis
EPA 200.8	Boron	7440-42-8	Т	ug/L	3950				200	200	750	Y	Yes	50	NA
	Calcium	7440-70-2	Т	ug/L	328000				1500	1500	5000	Y	Yes	50	NA
EPA 300.0	Fluoride	16984-48-8	Ν	mg/L		U	BF		0.331	0.331	0.331	N	Yes	1	NA
EPA 300.0	Chloride	16887-00-6	Ν	mg/L	671				6.70	6.70	20.0	Y	Yes	100	NA
	Sulfate	14808-79-8	Ν	mg/L	232				13.3	13.3	40.0	Y	Yes	100	NA
SM 2540C	Total Dissolved	TDS	N	mg/L	1390				23.8	23.8	100	Y	Yes	1	NA

				Lab Sample ID	ble ID 639969004										
				Sys Sample Code	MW-FGD-23-2	2023Q4									
				Sample Name	MW-FGD-23-2	2023Q4									
				Sample Date	10/3/2023 12:	56:00 PI	Л								
				Location	WMS-MW-FG	D-23 / N	IW-FGD-23								
				Sample Type	Ν										
				Matrix	GW										
	Parent Sample														
Analytic Method	Chemical Name	CAS Rn	Fraction	Result Unit	Final Result	Final Qual	Reason code	Uncertainty	Final MDL	Final RL	Final QL	Final Detect	Final Report	DF	Basis
EPA 200.8	Boron	7440-42-8	Т	ug/L	23500				800	800	3000	Y	Yes	200	NA
	Calcium	7440-70-2	Т	ug/L	1630000				6000	6000	20000	Y	Yes	200	NA
EPA 300.0	Chloride	16887-00-6	Ν	mg/L	3300				67.0	67.0	200	Y	Yes	100	NA
	Fluoride	16984-48-8	Ν	mg/L		U	BF		0.379	0.379	0.500	Ν	Yes	5	NA
	Sulfate	14808-79-8	Ν	mg/L	289				2.66	2.66	8.00	Y	Yes	20	NA
SM 2540C	Total Dissolved Solids	TDS	N	mg/L	7290				23.8	23.8	100	Y	Yes	1	NA

				Lab Sample ID	e ID 639969005											
				Sys Sample Code	MW-FGD-24-2	2023Q4										
				Sample Name	MW-FGD-24-2	2023Q4										
				Sample Date	10/3/2023 11:	50:00 A l	Л									
				Location	WMS-MW-FG	D-24 / N	IW-FGD-24									
				Sample Type	N											
				Matrix	GW											
				Parent Sample												
Analytic Method	Chemical Name	CAS Rn	Fraction	Result Unit	Final Result	Final Qual	Reason code	Uncertainty	Final MDL	Final RL	Final QL	Final Detect	Final Report	DF	Basis	
EPA 200.8	Boron	7440-42-8	Т	ug/L	24400				800	800	3000	Y	Yes	200	NA	
	Calcium	7440-70-2	Т	ug/L	1760000				6000	6000	20000	Y	Yes	200	NA	
EPA 300.0	Chloride	16887-00-6	N	mg/L	3390				67.0	67.0	200	Y	Yes	100	NA	
	Fluoride	16984-48-8	N	mg/L		U	BF		0.440	0.440	0.440	N	Yes	5	NA	
	Sulfate	14808-79-8	N	mg/L	503				133	133	400	Y	Yes	100	NA	
SM 2540C	Total Dissolved Solids	TDS	N	mg/L	6560				23.8	23.8	100	Y	Yes	1	NA	

				Lab Sample ID	ple ID 639969006												
				Sys Sample Code	FBLK-WMS-F	GD-234	01										
				Sample Name	FBLK-WMS-F	GD-234	01										
				Sample Date	10/3/2023 2:0	0:00 PM											
				Location	WMS-FB / Fie	eld Blank											
				Sample Type	FB												
				Matrix	AQ												
				Parent Sample													
Analytic Method	Chemical Name	CAS Rn	Fraction	Result Unit	Final Result	Final Qual	Reason code	Uncertainty	Final MDL	Final RL	Final QL	Final Detect	Final Report	DF	Basis		
EPA 200.8	Boron	7440-42-8	Т	ug/L		U			4.00	4.00	15.0	N	Yes	1	NA		
	Calcium	7440-70-2	Т	ug/L		U			30.0	30.0	100	N	Yes	1	NA		
EPA 300.0	Chloride	16887-00-6	N	mg/L		U			0.0670	0.0670	0.200	N	Yes	1	NA		
	Fluoride	16984-48-8	N	mg/L	0.126				0.0330	0.0330	0.100	Y	Yes	1	NA		
	Sulfate	14808-79-8	N	mg/L		U			0.133	0.133	0.400	N	Yes	1	NA		
SM 2540C	Total Dissolved Solids	TDS	N	mg/L		U			2.38	2.38	10.0	N	Yes	1	NA		

				Lab Sample ID	le ID 639969007											
				Sys Sample Code	DU-WMS-FG	D-23401										
				Sample Name	DU-WMS-FG	D-23401										
				Sample Date	10/3/2023 12:0	00:00 PN	N									
				Location	WMS-MW-FG	D-24 / N	IW-FGD-24									
				Sample Type	FD											
				Matrix	GW											
				Parent Sample	MW-FGD-24-2023Q4											
Analytic Method	Chemical Name	CAS Rn	Fraction	Result Unit	Final Result	Final Qual	Reason code	Uncertainty	Final MDL	Final RL	Final QL	Final Detect	Final Report	DF	Basis	
EPA 200.8	Boron	7440-42-8	Т	ug/L	24200				800	800	3000	Y	Yes	200	NA	
	Calcium	7440-70-2	Т	ug/L	1740000				6000	6000	20000	Y	Yes	200	NA	
EPA 300.0	Chloride	16887-00-6	N	mg/L	3510				67.0	67.0	200	Y	Yes	100	NA	
	Fluoride	16984-48-8	N	mg/L		U	BF		0.439	0.439	0.500	N	Yes	5	NA	
	Sulfate	14808-79-8	N	mg/L	527				133	133	400	Y	Yes	100	NA	
SM 2540C	Total Dissolved Solids	TDS	N	mg/L	6710				23.8	23.8	100	Y	Yes	1	NA	

Appendix E First Semiannual Detection Monitoring Program Statistical Evaluation

DOMINION ENERGY SOUTH CAROLINA

WILLIAMS STATION NEW FGD POND

SEMIANNUAL DETECTION MONITORING

BERKELEY COUNTY, SOUTH CAROLINA

CCR GROUNDWATER DETECTION MONITORING STATISTICAL ANALYSIS REPORT

For the

March 2023 Sampling Event

June 16, 2023

Joyce/Peterson, P.E. Senior Environmental Engineer

Richard A. Mayer Jr., P.(Project Manager

TRC Environmental Corporation | Dominion Energy South Carolina Williams Station New FGD Pond – Detection Monitoring

\\EMPLOYEES.ROOT.LOCAL\ENV\ECC\GREENVILLE\WPGVL\PJT2\416559\0006 WILLIAMS\R4165590006-027 WILLIAM_STATION_NEW_FGD_POND_CCR DM3.DOCX

Table of Contents

Statistical Analysis Report	1
Groundwater Sampling	1
Statistical Analysis	1

List of Tables

Table 1Background Threshold Values

Table 2 March 2023 Downgradient Results and Potential SSIs

Groundwater Sampling

TRC Environmental Corporation (TRC) is providing this Statistically Significant Increases (SSI) notification for the Williams Station New FGD Pond for the third semiannual detection monitoring event. Samples were collected on March $19^{th} - 21^{st}$, 2023. The final laboratory analytical data packages for the event were received on October 5^{th} , 2022, and the data validation report was received on October 7^{th} , 2022. This report addresses results from Detection Monitoring wells MW-FGD-17, MW-FGD-18, MW-FGD-19D, and MW-FGD-20AR. Background wells for the New FGD Pond include MW-FGD-16 and MW-FGD-21.

Statistical Analysis

Statistically Significant Level (SSL) exceedances above background concentrations include the following:

- MW-FGD-17: boron, calcium, chloride, pH, and total dissolved solids (TDS)
- MW-FGD-18: boron, calcium, chloride, pH, and TDS
- MW-FGD-19D: boron, calcium, chloride, pH, and TDS
- MW-FGD-20AR: boron, calcium, chloride, pH, sulfate, and TDS

An Alternative Source Demonstration (ASD) should be prepared for the potential SSIs.

The New FGD Pond opened in April 2021 in accordance with the CCR Rule requirements. TRC conducted statistical evaluation of eight baseline groundwater sampling events that were collected from the New FGD Pond monitoring wells between April 28, 2021, and September 23, 2021. The samples were analyzed for the CCR Rule Appendix III and Appendix IV parameters. The data from the baseline events were statically evaluated to determine the background threshold values (BTVs) for Appendix III constituents and groundwater protection standards (GWPS) for Appendix IV constituents. A *Baseline Statistical Evaluation Report* presenting the results of the baseline evaluation was prepared by TRC dated January 2022 and included the baseline evaluation in the 2021 Annual Report.

Table 1 presents BTVs calculated based on the background data.**Table 2** presents the data set for thethird detection monitoring event and highlights results that are potential SSIs.

Table 1 Background Threshold Values

TRC Environmental Corporation | Dominion Energy South Carolina Williams Station New FGD Pond – Detection Monitoring

\\EMPLOYEES.ROOT.LOCAL\ENV\ECC\GREENVILLE\WPGVL\PJT2\416559\0006 WILLIAMS\R4165590006-027 WILLIAM_STATION_NEW_FGD_POND_CCR DM3.DOCX

CONSTITUENT	PERCENT DETECTED	DISTRIBUTION	TREND	BACKGROUND THRESHOLD VALUE	BASIS
Boron (mg/L)	100	Normal	None	0.0667	95% UPL (k = 20)
Calcium (mg/L)	100	Nonnormal	None	41.7	95% USL
Chloride (mg/L)	100	Nonnormal	None	33.3	95% USL
Fluoride (mg/L)	100	Normal	None	0.646	95% UPL (k = 20)
pH (s.u.)	100	Nonnormal	None	4.67 - 5.82	Min - Max result
Sulfate (mg/L	100	Nonnormal	None	89.2	95% USL
TDS (mg/L)	100	Normal	None	329	95% UPL (k = 20)

Table 1 Background Threshold Values

mg/L = milligrams per liter. pH expressed in standard units (s.u.). UPL = upper prediction limit.

USL = upper statistical limit.

Table 2 March 2023 Downgradient Results and Potential SSIs

TRC Environmental Corporation | Dominion Energy South Carolina Williams Station New FGD Pond – Detection Monitoring

\\EMPLOYEES.ROOT.LOCAL\ENV\ECC\GREENVILLE\WPGVL\PJT2\416559\0006 WILLIAMS\R4165590006-027 WILLIAM_STATION_NEW_FGD_POND_CCR DM3.DOCX

	CONSTITUENT / BTV / RESULT (mg/L except as noted) ^[1]							
WELL	BORON	CALCIUM	CHLORIDE	FLUORIDE	рН	SULFATE	TDS	
	0.0667	41.7	33.3	0.646	4.67 - 5.82	89.2	329	
BACKGROUND WELLS								
MW-FGD-16	0.0374	15.2	28.4	0.193	5.09	57.4	184	
MW-FGD-21	0.020	45.6	3.27	<0.033	5.82	85.0	238	
DOWNGRADIENT WELLS								
MW-FGD-17	0.146	167	110	0.526	6.46	48.6	896	
MW-FGD-18	3.260	236	1,410	0.611	6.72	60.2	2,560	
MW-FGD-19D	2.08	134	645	0.453	6.79	38.1	1,060	
MW-FGD-20AR	3.41	280	563	0.0906 J	6.53	160	1,280	

Table 2 March 2023 Downgradient Results and Potential SSIs

Shaded cells indicate an SSI.

[1] pH expressed in standard units (s.u.). J Estimated concentration.

Appendix F Second Semiannual Detection Monitoring Program Statistical Evaluation

DOMINION ENERGY SOUTH CAROLINA

WILLIAMS STATION NEW FLUE GAS DESULFURIZATION POND

SEMIANNUAL DETECTION MONITORING

BERKELEY COUNTY, SOUTH CAROLINA

CCR GROUNDWATER DETECTION MONITORING STATISTICAL ANALYSIS REPORT

For the

October 2023 Sampling Event

January 5, 2024

Joyce Peterson, P.E. Senior Environmental Engineer

Margo th.

Richard A. Mayer Jr., P.G Project Manager

TRC Environmental Corporation | Dominion Energy South Carolina Williams Station New FGD Pond – Detection Monitoring

\\EMPLOYEES.ROOT.LOCAL\ENV\ECC\GREENVILLE\WPGVL\PJT2\416559\0006 WILLIAMS\R4165590006-034 WILLIAMS NEW FGD POND CCR DM 252023.DOCX

Table of Contents

Statistical Analysis Report	1
Background	1
Groundwater Sampling	1
Statistical Analysis	1

List of Tables

Table 1	Background Threshold Values
Table 2	October 2023 Downgradient Results and Potential SSIs

List of Appendices

- Appendix A Baseline Statistical Evaluation Report
- Appendix B Background Data Set for October 2023 Semiannual Detection Monitoring Event

Background

In January 2023, Dominion Energy South Carolina (DESC) installed three new groundwater monitoring wells downgradient along the western and southern edge of the Williams Station New Flue Gas Desulfurization (FGD) Pond. The new monitoring wells were sampled from January 2023 through August 2023, to collect eight rounds of background monitoring data. To ensure the groundwater monitoring well network meets the requirements of 40 CFR 257.91, the monitoring well network was revised and certified in September 2023 (TRC, 2023a) to include the following monitoring wells:

- Background monitoring wells MW-FGD-23 and MW-FGD-24.
- Downgradient monitoring wells MW-FGD-18, MW-FGD-19D, and MW-FGD-20AR.

TRC Environmental Corporation (TRC) conducted a baseline statistical evaluation of the CCR Rule Appendix III and Appendix IV constituents in November 2023 for the revised monitoring well network. A copy of the Baseline Statistical Evaluation Report is provided in **Appendix A**.

Groundwater Sampling

TRC Environmental Corporation (TRC) is providing this Statistically Significant Increases (SSI) notification for the Williams Station New FGD Pond for the 2nd Semiannual 2023 Detection Monitoring Program event. Samples were collected on October 3, 2023. The final laboratory analytical data package for the event was received on October 18, 2023, and the data validation report was received on November 3, 2023.

Statistical Analysis

No Statistically Significant Increases (SSI) exceedances were noted for the Williams Station New FGD Pond for the 2nd Semiannual 2023 Detection Monitoring Program event.

In general accordance with the Statistical Analysis Plan (OBG, 2017) for Detection Monitoring, the evaluation of potential SSIs was conducted using prediction limits to compare data from the background set of monitoring wells to the most recent results from the downgradient monitoring wells. The statistical calculations have been conducted using United States Environmental Protection Agency's (USEPA's) ProUCL (v.5.2) software. **Table 1** presents basic statistical information regarding the data sets and the calculated background threshold values (BTVs). **Table 2** presents the data set for the October 2023 Detection Monitoring Program event and highlights results that are potential SSIs. **Appendix B** presents the background data used for the October 2023 Detection Monitoring Program event.

Table 1 Background Threshold Values

TRC Environmental Corporation | Dominion Energy South Carolina Williams Station New FGD Pond – Detection Monitoring

\\EMPLOYEES.ROOT.LOCAL\ENV\ECC\GREENVILLE\WPGVL\PJT2\416559\0006 WILLIAMS\R4165590006-034 WILLIAMS NEW FGD POND CCR DM 252023.DOCX

CONSTITUENT	NUMBER of RESULTS	PERCENT DETECTED	DISTRIBUTION	BACKGROUND THRESHOLD VALUE	BASIS
Boron (µg/L)	16	100	Normal	31,100	95% UPL, k=12
Calcium (µg/L)	16	100	Normal	2,380,000	95% UPL, k=12
Chloride (mg/L)	16	100	Normal	5,290	95% UPL, k=12
Fluoride (mg/L)	16	25	Normal	0.938	95% USL
рН (S.U.)	16	100	Normal	5.3 - 7.1	95% UPL, k=12
Sulfate (mg/L)	16	100	Normal	818	95% UPL, k=12
TDS (mg/L)	16	100	Normal	10,800	95% UPL, k=12

Table 1 Background Threshold Values

pH expressed in standard units (S.U.).

TDS = Total dissolved solids.

 μ g/L = micrograms per liter.

mg/L = milligrams per liter.

N/A = Not applicable.

UPL = Upper prediction limit.

USL = Upper statistical limit.

k = Number of future comparisons.

Table 2 October 2023 Downgradient Results and Potential SSIs

TRC Environmental Corporation | Dominion Energy South Carolina Williams Station New FGD Pond – Detection Monitoring
		CONSTITUENT / BTV / RESULT											
WELL	BORON (µg/L)	CALCIUM (µg/L)	CHLORIDE (mg/L)	FLUORIDE (mg/L)	рН (S.U.)	SULFATE (mg/L)	TDS (mg/L)						
	31,100	2,380,000	5,290	0.938	5.3 – 7.1	818	10,800						
BACKGROUND WELLS													
MW-FGD-23	23,500	1,630,000	3,300	< 0.379	6.16	289	7,290						
MW-FGD-24	24,400	1,760,000	3,390 < 0.440		5.87	503	6,560						
DOWNGRADIENT W	ELLS				·								
MW-FGD-18	5,470	334,000	1,550	< 0.670	6.50	86.3	3,420						
MW-FGD-19D	2,280	168,000	684	< 0.612	7.11	46.3	1,330						
MW-FGD-20AR	3,950	328,000	671	< 0.331	6.78	232	1,390						

Table 2 October 2023 Downgradient Results and Potential SSIs

Shaded cells indicate a statistically significant increase (SSI).

BTV = Background threshold values.

pH expressed in standard units (S.U.).

TDS = Total dissolved solids.

 μ g/L = micrograms per liter.

mg/L = milligrams per liter.

< Result less than the indicated detection limit.

Appendix A Baseline Statistical Evaluation Report

TRC Environmental Corporation | Dominion Energy South Carolina Williams Station New FGD Pond – Detection Monitoring

\\EMPLOYEES.ROOT.LOCAL\ENV\ECC\GREENVILLE\WPGVL\PJT2\416559\0006 WILLIAMS\R4165590006-034 WILLIAMS NEW FGD POND CCR DM 252023.DOCX

DOMINION ENERGY SOUTH CAROLINA

WILLIAMS STATION NEW FLUE GAS DESULFURIZATION (FGD) POND

BERKELEY COUNTY, SOUTH CAROLINA

BASELINE STATISTICAL EVALUATION REPORT

For the

January - August 2023 Baseline Sampling Events

December 15, 2023

Joyce Peterson, P.E. Senior Environmental Engineer

A. Marge /h.

Richard A. Mayer Jr., P.G. Project Manager

TRC Environmental Corporation | Dominion Energy South Carolina Williams Station New FGD Pond – Baseline Statistical Evaluation

\\EMPLOYEES.ROOT.LOCAL\ENV\ECC\GREENVILLE\WPGVL\PJT2\416559\0006 WILLIAMS\R4165590006-033 WILLIAMS STATION NEW FGD POND CCR NEW BASELINE STATS REPORT.DOCX

Table of Contents

1.	Backg	Background1							
	1.1	Site Location	1						
	1.2	Site History	1						
	1.3	Groundwater Monitoring System	1						
2.	Baseli	ne Statistical Evaluation	. 3						
	2.1	Appendix III Results	4						
	2.2	Appendix IV Results	5						
3.	Refere	ences	7						

List of Tables

Table 1	Revised CCR Rule Groundwater Monitoring Well Network
Table 2	Groundwater Quality Monitoring Constituents
Table 3	Appendix III Data Set Details and Background Threshold Values
Table 4	Appendix IV Data Set Details and Preliminary Groundwater Protection Standards

List of Figures

Figure 1	Site Location Map
Figure 2	CCR Rule Compliance Monitoring Wells
Figure 3	Groundwater Potentiometric Map – March 20, 2023

List of Appendices

Appendix A	Baseline Data
Appendix B	Summary of General Statistics
Appendix C	Background Evaluation ProUCL Outputs

Section 1 Background

Dominion Energy South Carolina (DESC) owns and operates the Williams Generating Station (Station) located near Goose Creek, in Berkely County, South Carolina. Coal combustion residuals (CCR) are produced as part of the electrical generation operations and are disposed of in the Flue Gas Desulfurization (FGD) Wastewater Pond (Unit). The Unit is used to manage wastewater generated from the FGD scrubber system at the Station. Management of the CCR in the Unit is performed in accordance with the national criteria established by the United States Environmental Protection Agency (USEPA) per Title 40 CFR, Part 257, Subpart D published in April 2015 (CCR Rule) and subsequent revisions. Pursuant to 40 CFR §257.94(b) of this rule, eight independent samples from each background and downgradient well must be collected and analyzed from the constituents listed in Appendix III and Appendix IV. This Baseline Statistical Evaluation Report (Report) provides information for the baseline data evaluation of the CCR Groundwater Monitoring System for the Unit.

1.1 Site Location

The Station is located at 2242 Bushy Park Road in Berkeley County, South Carolina (**Figure 1**). The Station is located approximately 6 miles northeast of Goose Creek, South Carolina. The Unit is located onsite approximately 2,000 feet north of the generating plant.

1.2 Site History

The facility began operations in 1973 and operates a single 633-mega-watt coal-fired unit. The Station operated both onsite and offsite ash ponds and landfills. The Station also operates a flue gas desulfurization (FGD) air quality control system that produces an FGD wastewater blowdown waste stream that is managed in an on-site FGD Pond. The original FGD Pond was closed in 2021 and reconstructed in the footprint of the original pond to meet the CCR Rule's seismic impact zone location and liner design criteria. A series of eight baseline groundwater samples were collected from the pre-existing groundwater monitoring network for the FGD Pond following reconstruction of the FGD Pond in 2021. The baseline statistical evaluation report (TRC, December 2021) established background threshold values for Appendix III parameters for use in the Detection Monitoring Program.

1.3 Groundwater Monitoring System

Pursuant to 40 CFR §257.91(a)(2), the groundwater monitoring well network should accurately represent the quality of groundwater passing the waste boundary of the Unit and monitor all potential contaminant pathways. From January 2023 through August 2023, TRC conducted an evaluation of the CCR Groundwater Monitoring Well Network to determine if it satisfied the CCR Rule for horizontal and

vertical placements for monitoring groundwater upgradient and at the waste boundary of the Unit. The certified monitoring well network for the Unit consisted of the following:

- Background monitoring wells MW-FGD-16 and MW-FGD-21.
- Downgradient monitoring wells MW-FGD-17, MW-FGD-18, MW-FGD-19D, and MW-FGD-20AR.

In January 2023, DESC installed three new groundwater monitoring wells (MW-FGD-22, MW-FGD-23, and MW-FGD-24) along the western and southern edge of the Unit. The new monitoring well was sampled from January 2023 through August 2023, to collect eight rounds of background monitoring data. To ensure the groundwater monitoring well network meets the requirements of 40 CFR 257.91, the monitoring well network was updated and certified in September 2023 (TRC, 2023) to include the following monitoring wells:

- Background monitoring wells MW-FGD-23, and MW-FGD-24.
- Downgradient monitoring wells MW-FGD-18, MW-FGD-19D, and MW-FGD-20AR.

Details of the CCR Groundwater Monitoring Well Network are provided in **Table 1**. The revised monitoring well network is presented on **Figure 2**: CCR Rule Compliance Monitoring Well Network. A groundwater potentiometric map from March 2023 is included as **Figure 3**: Groundwater Potentiometric Map – March 20, 2023.

LOCATION	RELATIVE LOCATION	WELL DIAMETER (IN.)	BOTTOM OF SCREEN (FT-BGS)	SCREEN LENGTH (FT)
MW-FGD-23	Upgradient	2	25.4	10
MW-FGD-24	Upgradient	2	25.2	10
MW-FGD-18	Downgradient	2	18	10
MW-FGD-19D	Downgradient	2	28	10
MW-FGD-20AR	Downgradient	2	20	10

Table 1 Revised CCR Rule Groundwater Monitoring Well Network

Section 2 Baseline Statistical Evaluation

Groundwater samples were collected from the newly installed downgradient monitoring wells on a monthly basis from January through August 2023, for a total of eight baseline sampling events. The groundwater samples were submitted to GEL Laboratories, LLC in Charleston, South Carolina, for analysis of the CCR Rule Appendix III and Appendix IV constituents. Environmental Standards, Inc., conducted quality assurance reviews of the analytical results and managed the data in an EQuIS database. A summary table of the baseline sampling results is provided in **Appendix A**. **Table 2** lists the Appendix III and Appendix.

APPENDIX III CONSTITUENTS	APPENDIX IV C	CONSTITUENTS
Boron	Antimony	Lead
Calcium	Arsenic	Lithium
Chloride	Barium	Mercury
Fluoride	Beryllium	Molybdenum
Field pH	Cadmium	Radium 226/228
Sulfate	Chromium	Selenium
Total Dissolved Solids (TDS)	Cobalt	Thallium
	Fluoride	

Table 2 Groundwater Quality Monitoring Constituents

The following procedure was conducted to establish new background concentrations for detection monitoring of the Unit. Statistical calculations and evaluations were conducted using US EPA's ProUCL (v.5.2) Software. The evaluation procedures were conducted separately for Appendix III and Appendix IV constituents.

- The data for all wells were observed for detection frequency, potential outliers, and missing data.
- General statistical parameters were evaluated for Appendix III and IV (ProUCL outputs for these are provided in Appendix B).
- The Appendix III data for background wells MW-FGD-23 and MW-FGD-24 were evaluated for underlying data distribution (ProUCL outputs are provided in Appendix C).

- Based on underlying data distribution, ProUCLs Background Threshold Value function was used to calculate background concentrations for use in subsequent statistical evaluations of downgradient groundwater monitoring data.
- Statistical evaluations for Appendix IV constituents were performed for data with more than 50 percent detections.

The preferred statistical method for background comparisons being conducted by DESC is the upper prediction limit (UPL). UPLs are calculated for k=12 future comparisons (three downgradient monitoring wells, four subsequent detection monitoring events) when the data set meets the requirements for parametric statistical evaluation. In accordance with the Statistical Evaluation Plan, statistical calculations for data sets with censored (nondetect) results are conducted as follows:

- For data sets with between 50 and 100 percent detected concentrations, the Kaplan-Meier method is used for statistical calculations.
- For data sets with fewer than 50 percent detected concentrations, nonparametric statistical methods are employed.
- For data sets with 100 percent nondetect values in the background data set, the double quantification rule is employed. A downgradient detection above the practical quantification limit in two consecutive groundwater monitoring events is deemed to be an SSI for that constituent.

Selection of the background threshold value for a background data set with at least 50 percent detected concentrations is based on the following hierarchy:

- Normal
- Gamma
- Lognormal
- Nonnormal (nonparametric)
- When nonparametric statistics are necessary, the upper statistical limit (USL) is used to compensate in part for the lower statistical power of the nonparametric statistical methods.

2.1 Appendix III Results

Six of the Appendix III constituents had 100 percent detections for both monitoring wells; the background data sets had some nondetect results for fluoride. Q-Q plots were generated for the Appendix III constituents, and potential outlier values were observed for boron and calcium. The ProUCL outlier function was used to test whether the potential outlier values were statistically significant at the 1 percent level of significance. Based on the results, two outlier values were removed from both the boron and calcium background data sets before evaluating the background threshold value. The results of these tests are provided in **Appendix C**.

For calculation of background threshold values, the data sets for the two upgradient monitoring wells, MW-FGD-23 and MW-FGD-24 were combined. **Table 3** provides a summary of the statistical results for of the background data sets for Appendix III constituents. The ProUCL outputs are provided in **Appendix C**.

CONSTITUENT	PERCENT DETECTED	DISTRIBUTION	BACKGROUND THRESHOLD VALUE	BASIS
Boron (µg/L)	100	Normal	31,100	95% UPL, k=12
Calcium (µg/L)	100	Normal	2,380,000	95% UPL, k=12
Chloride (mg/L)	100	Normal	5,290	95% UPL, k=12
Fluoride (mg/L)	25	Normal	0.938	95% USL
pH (s.u.)	100	Normal	5.3 – 7.1	95% UPL, k=12
Sulfate (mg/L)	100	Normal	818	95% UPL, k=12
TDS (mg/L)	100	Normal	10,800	95% UPL, k=12

 Table 3

 Appendix III Data Set Details and Background Threshold Values

2.2 Appendix IV Results

Baseline sampling included the 15 constituents included in Appendix IV to the CCR rule. The Appendix IV results for the background wells in the new monitoring well network were used to estimate what GWPS would likely be applied in the event that the Unit were to transition to an assessment monitoring program. As set forth in the CCR rule, GWPS default to values established in the CCR rule unless background concentrations exceed those values. **Appendix A** provides a table of Appendix IV analytical results for both the upgradient and downgradient monitoring wells in the new monitoring well network.

Of the 15 Appendix IV constituents, three were not detected in background baseline samples and another five were detected in fewer than 50 percent of the background samples. For the non-detected constituents, the default GWPS is selected as the GWPS without further evaluation. For the constituents detected in fewer than 50 percent of the analyses, the maximum detected concentration is used for the background concentration (non-parametric background limit). Statistical evaluation was conducted for the remaining seven Appendix IV constituents.

Table 4 provides a summary of the statistical evaluation of the Appendix IV constituents. The same methods were used to evaluate the Appendix IV data as the Appendix III constituents. The UPLs for

Appendix IV parameters were calculated for a single future event. The ProUCL outputs for the two background concentration evaluations are provided in Appendix B and Appendix C.

CONSTITUENT	PERCENT DETECTED	MAXIMUM DETECTED	DEFAULT GWPS ^[1]	BACKGROUND CONCENTRATION	PRELIMINARY GWPS
Antimony	0	NA	6	NC	6
Arsenic	75	8.75	10	9.04	10
Barium	100	722	2000	657	2000
Beryllium	0	NA	4	NC	4
Cadmium	25	0.048 J	5	0.048	5
Chromium	13	2.57 J	100	2.57	100
Cobalt	75	0.458 J	6	0.409	6
Fluoride	25	938 J	4000	938	4000
Lead	0	NA	15	NC	15
Lithium	100	32.5	40	31	40
Mercury	19	0.111 J	2	0.111	2
Molybdenum	63	3.27	100	3.27	100
Radium 226/228	100	14.3	5.0	14.6	14.6
Selenium	100	38	50	38	50
Thallium	6	0.253 J	2	0.253	2

Table 4 Appendix IV Data Set Details and Preliminary Groundwater Protection Standards

Radium 226/288 concentrations expressed in pCi/L (pico-Curies/liter) Background and GWPS concentrations (except Radium 226/228) expressed in μ g/L

J Quantitation is approximate due to limitations identified during data validation.

NA not analyzed

not calculated – 100% nondetect NC

[1] 40 CFR 257.95(h)

TRC Environmental Corporation | Dominion Energy South Carolina

Williams Station New FGD Pond – Baseline Statistical Evaluation

\\EMPLOYEES.ROOT.LOCAL\ENV\ECC\GREENVILLE\WPGVL\P172\416559\0006 WILLIAMS\R416559006-033 WILLIAMS STATION NEW FGD POND CCR NEW BASELINE STATS REPORT.DOCX

Section 3 References

- TRC 2022. Technical Memorandum to DESC. *Evaluation of CCR Well Network Williams Station New FGD Pond.* TRC, August 1, 2022
- TRC 2023. New Flue Gas Desulfurization Wastewater Pond Groundwater Monitoring System Certification per 40 CFR 257.91(f), Williams Generating Station, Goose Creek, South Carolina. TRC, September 29, 2023.

Figures

TRC Environmental Corporation | Dominion Energy South Carolina Williams Station New FGD Pond – Baseline Statistical Evaluation

LEGEND

- ♦ CCR BACKGROUND MONITORING WELL
- CCR DOWNGRADIENT MONITORING WELL
- NPDES MONITORING WELL
- EVENT PIEZOMETER
- ◆ STAFF GAUGE
- NEW FGD POND BOUNDARY
- PROPERTY BOUNDARY
- APPROXIMATE GROUNDWATER FLOW DIRECTION
- WATER TABLE ELEVATION IN FEET ABOVE MEAN SEA LEVEL (0.5' CONTOUR INTERVALS) - DASHED WHERE INFERRED
- 4.31 WATER ELEVATION (FT. MSL)

NOTES:

1. AERIAL IMAGE FROM ESRI WORLD IMAGERY DATED OCTOBER, 2022.

Appendix A Baseline Data

TRC Environmental Corporation | Dominion Energy South Carolina Williams Station New FGD Pond – Baseline Statistical Evaluation

\EMPLOYEES.ROOT.LOCAL\ENV\ECC\GREENVILLE\WPGVL\PJT2\416559\0006 WILLIAMS\R4165590006-033 WILLIAMS STATION NEW FGD POND CCR NEW BASELINE STATS REPORT.DOCX

WELL	DATE	BORON (µg/L)	CALCIUM (µg/L)	CHLORIDE (mg/L)	FLUORIDE (mg/L)	FIELD pH (S.U.)	SULFATE (mg/L)	TDS (mg/L)
N	ew Background	31,145	2,379,469	5,289	0.938	5.4 - 7.1	818	10,768
BACKGROUND W	ELLS							
	1/17/2023	22,500	1,790,000	4,210	< 0.330	6.56	369	7,040
	2/15/2023	25,800	1,900,000	4,150	< 0.660	6.25	604	8,510
	3/21/2023	19,000	1,400,000	3,500	< 0.050	6.52	270	5,600
	4/13/2023	24,000	2,100,000	3,900	0.28	6.00	310	6,100
WW-FGD-23	5/18/2023	25,600	1,940,000	3,830	< 0.660	5.73	330	7,700
	6/15/2023	27,400	1,970,000	4,380	0.938 J	6.09	420	9,850
	7/20/2023	55,500	4,030,000	4,320	< 0.330	5.59	371	8,350
	8/21/2023	25,100	1,700,000	3,790 J+	0.220	5.80	312	7,330
	1/17/2023	23,600	1,680,000	4,460	< 0.660	6.54	719	6,680
	2/15/2023	22,700	1,620,000	3,370	< 0.660	6.29	563	6,930
	3/21/2023	25,000	1,600,000	3,400	< 0.13	6.50	390	5,800
	4/13/2023	19,000	1,400,000	2,700	< 0.13	6.35	360	5,500
IVIVV-FGD-24	5/18/2023	21,600	1,600,000	3,170	< 0.660	6.26	445	5,470
	6/15/2023	22,600	1,580,000	3,660	< 0.660	6.21	543	6,830
	7/20/2023	44,400	3,190,000	3,290	< 0.330	6.20	498	6,080
	8/21/2023	22,800	1,710,000	3860 J+	0.218	6.07	428	7,120

Baseline Data - Appendix III Constituents

Highlighted results were removed from the data sets as outliers.

WELL	DATE	ANTIMONY (µg/L)	ARSENIC (µg/L)	BARIUM (μg/L)	BERYLLIUM (µg/L)	CADMIUM (µg/L)	CHROMIUM (µg/L)	COBALT (µg/L)	FLUORIDE (mg/L)	LEAD (µg/L)	LITHIUM (µg/L)	MERCURY (µg/L)	MOLYBDENUM (µg/L)	RADIUM-226/228 (pCi/L)	SELENIUM (µg/L)	THALLIUM (µg/L)
BACKGROUND	WELLS															
	1/17/2023	< 0.600	6.92	722	< 0.200	< 0.150	2.57 J	0.343 J	< 0.330	< 0.500	19.7	< 0.0670	1.43 J	11.7	6.32	< 0.125
	2/15/2023	< 0.600	5.02	423	< 0.200	< 0.0300	< 1.00	0.180 J	< 0.660	< 0.500	27.2	0.0760 J	1.22	8.73	5.64	< 0.125
	3/21/2023	< 2.5	< 6.3	500	< 0.75	< 0.30	< 6.3	< 1.3	< 0.050	< 1.3	15.8	< 0.091 UJ	< 2.5	4.59 J	29	< 0.75
	4/13/2023	< 2.5	< 6.3	510	< 0.75	< 0.30	< 6.3	< 6.3	0.28	< 1.3	19.7	< 0.091 UJ	< 13	13.0 J	38	< 0.75
WW-FGD-23	5/18/2023	< 0.600	5.16	503	< 0.200	0.0480 J	< 1.00	0.259 J	< 0.660	< 0.500	26.9	< 0.0670 R	1.10	11.0	5.54	< 0.125
	6/15/2023	< 0.600	6.77	469	< 0.200	0.0390 J	< 1.00	0.281 J	0.938 J	< 0.500	27.6	< 0.0670 UJ	< 0.979	9.00 J	5.15	< 0.125
	7/20/2023	< 0.600	6.44	418	< 0.200	< 0.0640	< 1.00	0.261 J	< 0.330	< 0.500	32.5	< 0.0670 R	< 1.15	8.46	5.61	0.253 J
	8/21/2023	< 0.600	5.47	402	< 0.200	< 0.0300	< 1.00	0.258 J	0.220	< 0.500	26.7	0.111 J	1.25	6.56 J	4.66 J	< 0.125
	1/17/2023	< 0.600	8.05	686	< 0.200	< 0.0300	< 1.00	0.458 J	< 0.660	< 0.500	15.5	< 0.0670	2.32	14.3	5.02	< 0.125
	2/15/2023	< 0.600	7.77	469	< 0.200	< 0.0300	< 1.00	0.171 J	< 0.660	< 0.500	14.8	0.103 J	2.26	6.44 J	3.88 J	< 0.125
	3/21/2023	< 2.5	< 6.3	470	< 0.75	< 0.30	< 6.3	< 1.3	< 0.13	< 1.3	13.5	< 0.091 UJ	< 2.5	3.72 J	27	< 0.75
	4/13/2023	< 2.5	< 6.3	410	< 0.75	< 0.30	< 6.3	< 6.3	< 0.13	< 1.3	14.1	< 0.091 UJ	< 13	11.7 J	26	< 0.75
WW-FGD-24	5/18/2023	< 0.600	7.88	398	< 0.200	< 0.0300	< 1.00	0.283 J	< 0.660	< 0.500	15.2	< 0.0670 R	2.61	11.1 J	3.58 J	< 0.125
	6/15/2023	< 0.600	8.12	358	< 0.200	0.0390 J	< 1.00	0.317 J	< 0.660	< 0.500	18.0	< 0.670 UJ	2.82	10.7 J	3.74 J	< 0.125
	7/20/2023	< 0.600	8.75	383	< 0.200	< 0.0550	1.14 J	0.295 J	< 0.330	< 0.500	19.2	< 0.0670 R	3.27	6.40 J	4.27 J	< 0.125
	8/21/2023	< 0.600	8.39	350	< 0.200	0.0320 J	< 1.00	0.258 J	0.218	< 0.500	18.0	< 0.0670 R	2.78	6.76 J	3.40	< 0.125

Baseline Data - Appendix IV Constituents

Appendix B Summary of General Statistics

TRC Environmental Corporation | Dominion Energy South Carolina Williams Station New FGD Pond – Baseline Statistical Evaluation

\EMPLOYEES.ROOT.LOCAL\ENV\ECC\GREENVILE\WPGVL\PIT2\416559\0006 WILLIAMS\R4165590006-033 WILLIAMS STATION NEW FGD POND CCR NEW BASELINE STATS REPORT.DOCX

General Statistics on Uncensored Full Data (Appendix III Constituents)

Date/Time of Computation

ion ProUCL 5.2 10/27/2023 3:01:59 PM

User Selected Options

From File WorkSheet_a.xls

Full Precision OFF

From File: WorkSheet_a.xls

General Statistics for Uncensored Data Sets

Variable	NumObs	# Missing	Minimum	Maximum	Mean	Geo-Mean	SD	SEM	MAD/0.675	Skewness	CV
Boron	16	0	19000	55500	26663	25528	9584	2396	2298	2.442	0.359
Calcium	16	0	1400000	4030000	1950625	1868156	693008	173252	237213	2.366	0.355
Chloride	16	0	2700	4460	3749	3718	491.8	123	600.4	-0.383	0.131
pН	16	0	5.59	6.56	6.185	6.178	0.294	0.0734	0.289	-0.596	0.0475
Sulfate	16	0	270	719	433.3	418.2	122.9	30.73	124.5	0.902	0.284
TDS	16	0	5470	9850	6931	6835	1226	306.5	1201	0.875	0.177

Percentiles for Uncensored Data Sets

Variable	NumObs	# Missing	10%ile	20%ile	25%ile(Q1)	50%ile(Q2)	75%ile(Q3)	80%ile	90%ile	95%ile	99%ile
Boron	16	0	20300	22500	22575	23800	25650	25800	35900	47175	53835
Calcium	16	0	1490000	1600000	1600000	1705000	1947500	1970000	2645000	3400000	3904000
Chloride	16	0	3230	3370	3393	3810	4165	4210	4350	4400	4448
pН	16	0	5.765	6	6.053	6.23	6.388	6.5	6.53	6.545	6.557
Sulfate	16	0	311	330	352.5	405	509.3	543	583.5	632.8	701.8
TDS	16	0	5550	5800	6010	6880	7423	7700	8430	8845	9649

TRC Environmental Corporation | Dominion Energy South Carolina Williams Station New FGD Pond – Baseline Statistical Evaluation

\\EMPLOYEES.ROOT.LOCAL\ENV\ECC\GREENVILLE\WPGVL\PJT2\416559\0006 WILLIAMS\R4165590006-033 WILLIAMS STATION NEW FGD POND CCR NEW BASELINE STATS REPORT.DOCX

	General Statistics on Uncensored Data (Appendix III Constituents)											
Date/Time o	f Computation	ProUCL 5.2	10/27/2023	3:02:44 PM								
User Sel	ected Options											
	From File	WorkSheet_	orkSheet_a.xls									
Full Precision OFF												
From File: Works	Sheet_a.xls											
		General S	tatistics for C	Censored Dat	tasets (with NE	Ds) using Kapla	an Meier Metho	bd				
Variable	NumObs	# Missing	Num Ds	NumNDs	% NDs	Min ND	Max ND	KM	KM Var	KM SD	KM CV	
Fluoride	16	0	4	12	75.00%	0.05	0.66	Mean 0.194	0.0457	0.214	1.1	
		(General Stat	istics for Rav	v Dataset using	g Detected Dat	ta Only					
Variable	NumObs	# Missing	Minimum	Maximum	Mean	Median	Var	SD	MAD/0.675	Skewness	cv	
Fluoride	4	0	0.218	0.938	0.414	0.25	0.123	0.351	0.046	1.96	0.847	
			Percentiles	using all De	tects (Ds) and	Non-Detects (NDs)					
Variable	NumObs	# Missina	10%ile	20%ile	25%ile(01)	50%ile(02)	, 75%ile(03)	80%ile	90%ile	95%ile	99%ile	
Fluoride	16	,,, missing	0.13	0.218	0.22	0.33	0.66	0.66	0.66	0.73	0.896	

General Statistics on Uncensored Full Data (Appendix IV Constituents)

Date/Time of Computation ProUCL 5.2 11/8/2023 5:06:11 PM

User Selected Options

 $\label{eq:starses} From File \quad Williams_New_FGD_Pond_Data_Summary_Table_8_21_2023_JC_g.xls$

Full Precision OFF

From File: Williams_New_FGD_Pond_Data_Summary_Table_8_21_2023_JC_g.xls

General Statistics for Uncensored Data Sets

Variable	NumObs	# Missing	Minimum	Maximum	Mean	Geo-Mean	SD	SEM	MAD/0.675	Skewness	CV
Barium	16	0	350	722	466.9	457.3	105.3		75.61	1.486	
1.51.5	10	0	10 5	00 F	00.00	10 50	5.05	26.33	F 007	0 700	0.226
Lithium	16	0	13.5	32.5	20.28	19.52	5.95	1 / 87	5.337	0.739	0 203
Radium-226/228	16	0	3.72	14.3	9.01	8.461	3.076	1.407	3.506	-0.0605	0.295
о.н. ^с	10		0 4		11.05	7 000	44 50	0.769	1 000		0.341
Selenium	16	0	3.4	38	11.05	7.383	11.59	2.898	1.883	1.445	1.049

Percentiles for Uncensored Data Sets

Variable	NumObs	# Missing	10%ile	20%ile	25%ile(Q1)	50%ile(Q2)	75%ile(Q3)	80%ile	90%ile	95%ile	99%ile
Barium	16	0	370.5	398	401	446	500.8	503	598	695	716.6
Lithium	16	0	14.45	15.2	15.43	18.6	26.75	26.9	27.4	28.83	31.77
Radium-226/228	16	0	5.495	6.44	6.53	8.865	11.25	11.7	12.35	13.33	14.11
Selenium	16	0	3.66	3.88	4.173	5.345	11.24	26	28	31.25	36.65

TRC Environmental Corporation | Dominion Energy South Carolina Williams Station New FGD Pond – Baseline Statistical Evaluation

\\EMPLOYEES.ROOT.LOCAL\ENV\ECC\GREENVILLE\WPGVL\PJT2\416559\0006 WILLIAMS\R4165590006-033 WILLIAMS STATION NEW FGD POND CCR NEW BASELINE STATS REPORT.DOCX

General Statistics on Uncensored Data (Appendix IV Constituents)

Date/Time of Computation ProUCL 5.2 11/8/2023 5:09:46 PM

User Selected Options

From File Williams_New_FGD_Pond_Data_Summary_Table_8_21_2023_JC_g.xls

Full Precision OFF

From File: Williams_New_FGD_Pond_Data_Summary_Table_8_21_2023_JC_g.xls

General Statistics for Censored Data Set (with NDs) using Kaplan Meier Method

Variable	NumObs	# Missing	Num Ds	NumNDs	% NDs	Min ND	Max ND	KM Mean	KM Var	KM SD	KM CV
Arsenic	16	0	12	4	25.00%	6.3	6.3	6.6	1.815	1.347	0.204
Cobalt	16	0	12	4	25.00%	1.3	6.3	0.28	0.00508	0.0712	0.254
Molybdenum	16	0	10	6	37.50%	0.979	13	1.856	0.609	0.781	0.421

General Statistics for Raw Data Sets using Detected Data Only

Variable	NumObs	# Missing	Minimum	Maximum	Mean	Median	Var	SD	MAD/0.675	Skewness	CV
Arsenic	12	0	5.02	8.75	7.062	7.345	1.699	1.304	1.245	-0.467	0.185
Cobalt	12	0	0.171	0.458	0.28	0.271	0.00554	0.0744	0.0274	0.94	0.265
Molybdenum	10	0	1.1	3.27	2.106	2.29	0.625	0.791	1.03	-0.0733	0.376

Percentiles using all Detects (Ds) and Non-Detects (NDs)

Variable	NumObs	# Missing	10%ile	20%ile	25%ile(Q1)	50%ile(Q2)	75%ile(Q3)	80%ile	90%ile	95%ile	99%ile
Arsenic	16	0	5.315	6.3	6.3	6.605	7.923	8.05	8.255	8.48	8.696
Cobalt	16	0	0.219	0.258	0.259	0.289	0.669	1.3	3.8	6.3	6.3
Molybdenum	16	0	1.125	1.22	1.243	2.41	2.79	2.82	8.135	13	13

TRC Environmental Corporation | Dominion Energy South Carolina Williams Station New FGD Pond – Baseline Statistical Evaluation

\\EMPLOYEES.ROOT.LOCAL\ENV\ECC\GREENVILLE\WPGVL\PJT2\416559\0006 WILLIAMS\R4165590006-033 WILLIAMS STATION NEW FGD POND CCR NEW BASELINE STATS REPORT.DOCX

Appendix C Background Evaluation ProUCL Outputs

Appendix III Constituents

- Outliers
- Background Threshold Values

Appendix IV Constituents

- Outliers
- Background Threshold Values

Appendix III Constituents

TRC Environmental Corporation | Dominion Energy South Carolina Williams Station New FGD Pond – Baseline Statistical Evaluation

User Selected Options

Date/Time of Computation ProUCL 5.2 10/17/2023 3:55:01 PM

From File Williams_New_FGD_Pond_Data_Summary_Table_8_21_2023_JC_b.xls

Full Precision OFF

Dixon's Outlier Test for Boron

Number of Observations = 16 10% critical value: 0.454 5% critical value: 0.507 1% critical value: 0.595

1. Observation Value 55500 is a Potential Outlier (Upper Tail)?

Test Statistic: 0.829

For 10% significance level, 55500 is an outlier. For 5% significance level, 55500 is an outlier. For 1% significance level, 55500 is an outlier.

2. Observation Value 19000 is a Potential Outlier (Lower Tail)?

Test Statistic: 0.310

For 10% significance level, 19000 is not an outlier. For 5% significance level, 19000 is not an outlier. For 1% significance level, 19000 is not an outlier.

User Selected Options

Date/Time of Computation ProUCL 5.2 10/17/2023 4:34:44 PM From File Williams_New_FGD_Pond_Data_Summary_Table_8_21_2023_JC_b.xls Full Precision OFF

Dixon's Outlier Test for Boron

Number of Observations = 15 10% critical value: 0.472 5% critical value: 0.525 1% critical value: 0.616

1. Observation Value 44400 is a Potential Outlier (Upper Tail)?

Test Statistic: 0.816

For 10% significance level, 44400 is an outlier. For 5% significance level, 44400 is an outlier. For 1% significance level, 44400 is an outlier.

2. Observation Value 19000 is a Potential Outlier (Lower Tail)?

Test Statistic: 0.382

For 10% significance level, 19000 is not an outlier. For 5% significance level, 19000 is not an outlier. For 1% significance level, 19000 is not an outlier.

User Selected Options

Date/Time of Computation ProUCL 5.2 10/17/2023 4:07:46 PM From File Williams_New_FGD_Pond_Data_Summary_Table_8_21_2023_JC_b.xls Full Precision OFF

Dixon's Outlier Test for Calcium

Number of Observations = 16 10% critical value: 0.454 5% critical value: 0.507 1% critical value: 0.595

1. Observation Value 4030000 is a Potential Outlier (Upper Tail)?

Test Statistic: 0.788

For 10% significance level, 4030000 is an outlier. For 5% significance level, 4030000 is an outlier. For 1% significance level, 4030000 is an outlier.

2. Observation Value 1400000 is a Potential Outlier (Lower Tail)?

Test Statistic: 0.257

For 10% significance level, 1400000 is not an outlier. For 5% significance level, 1400000 is not an outlier. For 1% significance level, 1400000 is not an outlier.

User Selected Options

Date/Time of Computation ProUCL 5.2 10/17/2023 4:35:59 PM From File Williams_New_FGD_Pond_Data_Summary_Table_8_21_2023_JC_b.xls Full Precision OFF

Dixon's Outlier Test for Calcium

Number of Observations = 15 10% critical value: 0.472 5% critical value: 0.525 1% critical value: 0.616

1. Observation Value 3190000 is a Potential Outlier (Upper Tail)?

Test Statistic: 0.758

For 10% significance level, 3190000 is an outlier. For 5% significance level, 3190000 is an outlier. For 1% significance level, 3190000 is an outlier.

2. Observation Value 1400000 is a Potential Outlier (Lower Tail)?

Test Statistic: 0.316

For 10% significance level, 1400000 is not an outlier. For 5% significance level, 1400000 is not an outlier. For 1% significance level, 1400000 is not an outlier.

Background Statistics for Uncensored Full Data Sets

User Selected Options

Date/Time of Computation	ProUCL 5.2 10/17/2023 4:39:43 PM
From File	P:\Clients\Dominion\South Carolina Sites\6_Williams Station SC\Williams Station\CCR\New FGD Pond\2023\Baseline Evaluation\New Background Stats\Williams New FGD Pond Data Summary Table 8 21 2023 JC.xlsx
Full Precision	OFF
Confidence Coefficient	95%
Coverage	95%
New or Future K Observations	12
Number of Bootstrap Operations	2000

Boron

General Statistics

Total Number of Observations	14	Number of Distinct Observations	13
		Number of Missing Observations	2
Minimum	19000	First Quartile	22525
Second Largest	25800	Median	23200
Maximum	27400	Third Quartile	25075
Mean	23336	SD	2428
Coefficient of Variation	0.104	Skewness	-0.411
Mean of logged Data	10.05	SD of logged Data	0.107
	Critical Value	es for Background Threshold Values (BTVs)	
Tolerance Factor K (For UTL)	2.614	d2max (for USL)	2.372
		Normal GOF Test	
Shapiro Wilk Test Statistic	0.949	Shapiro Wilk GOF Test	
1% Shapiro Wilk Critical Value	0.825	Data appear Normal at 1% Significance Levent	vel
Lilliefors Test Statistic	0.151	Lilliefors GOF Test	
1% Lilliefors Critical Value	0.263	Data appear Normal at 1% Significance Levent	vel
	Data a	ppear Normal at 1% Significance Level	

TRC Environmental Corporation | Dominion Energy South Carolina Williams Station New FGD Pond – Baseline Statistical Evaluation

\EMPLOYEES.ROOT.LOCAL\ENV\ECC\GREENVILLE\WPGVL\PJT2\416559\0006 WILLIAMS\R4165590006-033 WILLIAMS STATION NEW FGD POND CCR NEW BASELINE STATS REPORT.DOCX

	Background Statistics	Assuming Normal Distribution	
95% UTL with 95% Coverage	29683	90% Percentile (z)	26448
95% UPL (t)	27787	95% Percentile (z)	27330
95% UPL for Next 12 Observations	31145	99% Percentile (z)	28985
95% UPL for Mean of 12 Observations	25027	95% USL	29095
	Gam	ma GOF Test	
A-D Test Statistic	0.38	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.733	Detected data appear Gamma Distributed at 5% Sign	ificance Level
K-S Test Statistic	0.16	Kolmogorov-Smirnov Gamma GOF Tes	t
5% K-S Critical Value	0.228	Detected data appear Gamma Distributed at 5% Sign	ificance Level
Dete	ected data appear Gamm	a Distributed at 5% Significance Level	
	Gan	nma Statistics	
k hat (MLE)	95.96	k star (bias corrected MLE)	75.44
Theta hat (MLE)	243.2	Theta star (bias corrected MLE)	309.3
nu hat (MLE)	2687	nu star (bias corrected)	2112
MLE Mean (bias corrected)	23336	MLE Sd (bias corrected)	2687
	Background Statistics	Assuming Gamma Distribution	
95% Wilson Hilferty (WH) Approx. Gamma UPL	28076	90% Percentile	26838
95% Hawkins Wixley (HW) Approx. Gamma UPL	28117	95% Percentile	27924
95% WH UPL for Next 12 Observations	32124	99% Percentile	30036
95% HW UPL for Next 12 Observations	32272		
95% WH Approx. Gamma UTL with 95% Coverage	30317	95% HW Approx. Gamma UTL with 95% Coverage	30410
95% WH USL	29609	95% HW USL	29684
	Logno	ormal GOF Test	
Shapiro Wilk Test Statistic	0.931	Shapiro Wilk Lognormal GOF Test	
10% Shapiro Wilk Critical Value	0.895	Data appear Lognormal at 10% Significance	Level
Lilliefors Test Statistic	0.171	Lilliefors Lognormal GOF Test	
10% Lilliefors Critical Value	0.208	Data appear Lognormal at 10% Significance	Level

Data appear Lognormal at 10% Significance Level

TRC Environmental Corporation | Dominion Energy South Carolina Williams Station New FGD Pond – Baseline Statistical Evaluation

\\EMPLOYEES.ROOT.LOCAL\ENV\ECC\GREENVILLE\WPGVL\P1Z\416559\0006 WILLIAMS\R4165590006-033 WILLIAMS STATION NEW FGD POND CCR NEW BASELINE STATS REPORT.DOCX

Background Statistics assuming Lognormal Distribution

95% UTL with 95% Coverage	30715	90% Percentile (z)	26630
95% UPL (t)	28251	95% Percentile (z)	27687
95% UPL for Next 12 Observations	32761	99% Percentile (z)	29783
95% UPL for Mean of 12 Observations	25013	95% USL	29928

Nonparametric Distribution Free Background Statistics

Data appear Normal at 1% Significance Level

Nonparametric Upper Limits for Background Threshold Values

Order of Statistic, order	14	95% UTL with 95% Coverage	27400
Approx, f used to compute achieved CC	0.737	Approximate Actual Confidence Coefficient achieved by UTL	0.512
		Approximate Sample Size needed to achieve specified CC	59
95% Percentile Bootstrap UTL with 95% Coverage	27400	95% BCA Bootstrap UTL with 95% Coverage	27400
95% UPL	27400	90% Percentile	25740
90% Chebyshev UPL	30876	95% Percentile	26360
95% Chebyshev UPL	34292	99% Percentile	27192
95% USL	27400		

Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations. The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV.

Calcium

General Statistics

Total Number of Observations	14	Number of Distinct Observations	12
		Number of Missing Observations	2
Minimum	1400000	First Quartile	1600000
Second Largest	1970000	Median	1690000
Maximum	2100000	Third Quartile	1872500
Mean	1713571	SD	207053
Coefficient of Variation	0.121	Skewness	0.255

TRC Environmental Corporation | Dominion Energy South Carolina Williams Station New FGD Pond – Baseline Statistical Evaluation

\\EMPLOYEES.ROOT.LOCAL\ENV\ECC\GREENVILLE\WPGVL\PIT2\416559\0006 WILLIAMS\R4165590006-033 WILLIAMS STATION NEW FGD POND CCR NEW BASELINE STATS REPORT.DOCX
Mean of logged Data	14.35	SD of logged Data	0.121	
Critical Values for Background Threshold Values (BTVs)				
Tolerance Factor K (For UTL)	2.614	d2max (for USL)	2.372	
		Normal GOF Test		
Shapiro Wilk Test Statistic	0.956	Shapiro Wilk GOF Test		
1% Shapiro Wilk Critical Value	0.825	Data appear Normal at 1% Significance Lev	el	
Lilliefors Test Statistic	0.15	Lilliefors GOF Test		
1% Lilliefors Critical Value	0.263	Data appear Normal at 1% Significance Lev	el	
	Data a	appear Normal at 1% Significance Level		
	Backgrou	nd Statistics Assuming Normal Distribution		
95% UTL with 95% Coverage	2254808	90% Percentile (z)	1978920	
95% UPL (t)	2093118	95% Percentile (z)	2054143	
95% UPL for Next 12 Observations	2379469	99% Percentile (z)	2195248	
95% UPL for Mean of 12 Observations	1857821	95% USL	2204629	
		Gamma GOF Test		
A-D Test Statistic	0.29	Anderson-Darling Gamma GOF Test		
5% A-D Critical Value	0.733	Detected data appear Gamma Distributed at 5% Signif	icance Level	
K-S Test Statistic	0.135	Kolmogorov-Smirnov Gamma GOF Test		
5% K-S Critical Value	0.228	Detected data appear Gamma Distributed at 5% Signif	icance Level	
Dete	ected data ap	pear Gamma Distributed at 5% Significance Level		
		Gamma Statistics		
k hat (MLE)	74.11	k star (bias corrected MLE)	58.27	
Theta hat (MLE)	23123	Theta star (bias corrected MLE)	29405	
nu hat (MLE)	2075	nu star (bias corrected)	1632	
MLE Mean (bias corrected)	1713571	MLE Sd (bias corrected)	224472	
	Backgrour	nd Statistics Assuming Gamma Distribution		
95% Wilson Hilferty (WH) Approx. Gamma UPL	2111961	90% Percentile	2006803	
95% Hawkins Wixley (HW) Approx. Gamma UPL	2114708	95% Percentile	2098741	
95% WH UPL for Next 12 Observations	2457710	99% Percentile	2278555	
TRC Environmental Cornoration Dominion Energy South	Carolina			

95% HW UPL for Next 12 Observations	2469671		
95% WH Approx. Gamma UTL with 95% Coverage	2302892	95% HW Approx. Gamma UTL with 95% Coverage	2310056
95% WH USL	2242458	95% HW USL	2248043
		Lognormal GOF Test	
Shapiro Wilk Test Statistic	0.957	Shapiro Wilk Lognormal GOF Test	
10% Shapiro Wilk Critical Value	0.895	Data appear Lognormal at 10% Significance	Level
Lilliefors Test Statistic	0.127	Lilliefors Lognormal GOF Test	
10% Lilliefors Critical Value	0.208	Data appear Lognormal at 10% Significance	Level
	Data app	ear Lognormal at 10% Significance Level	
	Background	Statistics assuming Lognormal Distribution	
95% UTL with 95% Coverage	2333484	90% Percentile (z)	1986786
95% UPL (t)	2123565	95% Percentile (z)	2075856
95% UPL for Next 12 Observations	2509394	99% Percentile (z)	2253848
95% UPL for Mean of 12 Observations	1851352	95% USL	2266208
	Nonparame	tric Distribution Free Background Statistics	
	Data a	ppear Normal at 1% Significance Level	
N	onparametric	Upper Limits for Background Threshold Values	
Order of Statistic, order	14	95% UTL with 95% Coverage	2100000
Approx, f used to compute achieved CC	0.737	Approximate Actual Confidence Coefficient achieved by UTL	0.512
		Approximate Sample Size needed to achieve specified CC	59
95% Percentile Bootstrap UTL with 95% Coverage	2100000	95% BCA Bootstrap UTL with 95% Coverage	2100000
95% UPL	2100000	90% Percentile	1961000
90% Chebyshev UPL	2356532	95% Percentile	2015500
95% Chebyshev UPL	2647771	99% Percentile	2083100
95% USL	2100000		

Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations. The use of USL tends to provide a balance between false positives and false negatives provided the data

represents a background data set and when many onsite observations need to be compared with the BTV.

TRC Environmental Corporation | Dominion Energy South Carolina Williams Station New FGD Pond – Baseline Statistical Evaluation

Background Statistics for Uncensored Full Data Sets

User Selected Options	
Date/Time of Computation	ProUCL 5.2 10/17/2023 4:15:28 PM
From File	P:\Clients\Dominion\South Carolina Sites\6_Williams Station SC\Williams Station\CCR\New FGD Pond\2023\Baseline Evaluation\New Background Stats\Williams New FGD Pond Data Summary Table 8 21 2023 JC.xlsx
Full Precision	OFF
Confidence Coefficient	95%
Coverage	95%
New or Future K Observations	12
Number of Bootstrap Operations	2000

Chloride

General Statistics

Total Number of Observations	16	Number of Distinct Observations	16
Minimum	2700	First Quartile	3393
Second Largest	4380	Median 3	3810
Maximum	4460	Third Quartile	4165
Mean	3749	SD	491.8
Coefficient of Variation	0.131	Skewness	-0.383
Mean of logged Data	8.221	SD of logged Data	0.136
	Critical Va	lues for Background Threshold Values (BTVs)	
Tolerance Factor K (For UTL)	2.524	d2max (for USL)	2.443
		Normal GOF Test	
Shapiro Wilk Test Statistic	0.966	Shapiro Wilk GOF Test	
1% Shapiro Wilk Critical Value	0.844	Data appear Normal at 1% Significance Level	
Lilliefors Test Statistic	0.105	Lilliefors GOF Test	
1% Lilliefors Critical Value	0.248	Data appear Normal at 1% Significance Level	
	Data	appear Normal at 1% Significance Level	

Background Statistics Assuming Normal Distribution

TRC Environmental Corporation | Dominion Energy South Carolina Williams Station New FGD Pond – Baseline Statistical Evaluation

95% UTL with 95% Coverage	4991	90% Percentile (z)	4380
95% UPL (t)	4638	95% Percentile (z)	4558
95% UPL for Next 12 Observations	5289	99% Percentile (z)	4893
95% UPL for Mean of 12 Observations	4079	95% USL	4951
	0		
A D Test Statistic			
	0.240		:C
5% A-D Critical Value	0.735	Detected data appear Gamma Distributed at 5% Sign	ificance Leve
K-S Test Statistic	0.113	Kolmogorov-Smirnov Gamma GOF Tes	t
5% K-S Critical Value	0.214	Detected data appear Gamma Distributed at 5% Sign	ificance Leve
De	tected data appear Gamm	na Distributed at 5% Significance Level	
	Gan	nma Statistics	
k hat (MLE)	59.1	k star (bias corrected MLE)	48.06
Theta hat (MLE)	63.44	Theta star (bias corrected MLE)	78.01
nu hat (MLE)	1891	nu star (bias corrected)	1538
MLE Mean (bias corrected)	3749	MLE Sd (bias corrected)	540.8
	Background Statistics	Assuming Gamma Distribution	
95% Wilson Hilferty (WH) Approx. Gamma UPL	4711	90% Percentile	4457
95% Hawkins Wixley (HW) Approx. Gamma UPL	4722	95% Percentile	4681
95% WH UPL for Next 12 Observations	5530	99% Percentile	5121
95% HW UPL for Next 12 Observations	5568		
95% WH Approx. Gamma UTL with 95%	5144	95% HW Approx. Gamma UTL with 95% Coverage	5167
Coverage 95% WH USL	5094	95% HW USL	5116
	Logno	ormal GOF Test	
Shapiro Wilk Test Statistic	0.95	Shapiro Wilk Lognormal GOF Test	
10% Shapiro Wilk Critical Value	0.906	Data appear Lognormal at 10% Significance	Level
Lilliefors Test Statistic	0.119	Lilliefors Lognormal GOF Test	
10% Lilliefors Critical Value	0.196	Data appear Lognormal at 10% Significance	Level
	Data appear Lognor	mal at 10% Significance Level	
	· · · · · · · · · · · · · · · · · · ·		

Background Statistics assuming Lognormal Distribution

95% UTL with 95% Coverage	5246	90% Percentile (z)	4428
95% UPL (t)	4757	95% Percentile (z)	4653
95% UPL for Next 12 Observations	5698	99% Percentile (z)	5106
95% UPL for Mean of 12 Observations	4073	95% USL	5189

Nonparametric Distribution Free Background Statistics

Data appear Normal at 1% Significance Level

Nonparametric Upper Limits for Background Threshold Values

Order of Statistic, order	16	95% UTL with 95% Coverage	4460
Approx, f used to compute achieved CC	0.842	Approximate Actual Confidence Coefficient achieved by UTL	0.56
		Approximate Sample Size needed to achieve specified CC	59
95% Percentile Bootstrap UTL with 95% Coverage	4460	95% BCA Bootstrap UTL with 95% Coverage	4460
95% UPL	4460	90% Percentile	4350
90% Chebyshev UPL	5270	95% Percentile	4400
95% Chebyshev UPL	5959	99% Percentile	4448
95% USL	4460		

Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations. The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV.

Field pH

General Statistics

Total Number of Observations	16
Minimum	5.59
Second Largest	6.54
Maximum	6.56
Mean	6.185
Coefficient of Variation	0.0475
Mean of logged Data	1.821

Number of Distinct Observations	16
First Quartile	6.053
Median	6.23
Third Quartile	6.388
SD	0.294
Skewness	-0.596
SD of logged Data	0.0482

TRC Environmental Corporation | Dominion Energy South Carolina Williams Station New FGD Pond – Baseline Statistical Evaluation

	Critical Value	es for Background Threshold Values (BTVs)	
Tolerance Factor K (For UTL)	2.524	d2max (for USL)	2.443
		Normal GOF Test	
Shapiro Wilk Test Statistic	0.937	Shapiro Wilk GOF Test	
1% Shapiro Wilk Critical Value	0.844	Data appear Normal at 1% Significance Lev	el
Lilliefors Test Statistic	0.145	Lilliefors GOF Test	
1% Lilliefors Critical Value	0.248	Data appear Normal at 1% Significance Lev	el
	Data ap	ppear Normal at 1% Significance Level	
	Backgroun	nd Statistics Assuming Normal Distribution	
95% UTL with 95% Coverage	6.926	90% Percentile (z)	6.561
95% UPL (t)	6.715	95% Percentile (z)	6.668
95% UPL for Next 12 Observations	7.104	99% Percentile (z)	6.868
95% UPL for Mean of 12 Observations	6.382	95% USL	6.902
		Gamma GOF Test	
A-D Test Statistic	0.399	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.736	Detected data appear Gamma Distributed at 5% Signif	icance Level
K-S Test Statistic	0.152	Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value	0.214	Detected data appear Gamma Distributed at 5% Signif	icance Level
De	tected data app	pear Gamma Distributed at 5% Significance Level	
		Gamma Statistics	
k hat (MLE)	464.7	k star (bias corrected MLE)	377.6
Theta hat (MLE)	0.0133	Theta star (bias corrected MLE)	0.0164
nu hat (MLE)	14871	nu star (bias corrected)	12084
MLE Mean (bias corrected)	6.185	MLE Sd (bias corrected)	0.318
	Backgroun	d Statistics Assuming Gamma Distribution	
95% Wilson Hilferty (WH) Approx. Gamma UPL	6.731	90% Percentile	6.596
95% Hawkins Wixley (HW) Approx. Gamma UPL	6.733	95% Percentile	6.718
95% WH UPL for Next 12 Observations	7.155	99% Percentile	6.949
95% HW UPL for Next 12 Observations	7.162		

95% WH Approx. Gamma UTL with 95% Coverage	6.959	95% HW Approx. Gamma UTL with 95% Coverage	6.963
95% WH USL	6.933	95% HW USL	6.937
		Lognormal GOF Test	
Shapiro Wilk Test Statistic	0.93	Shapiro Wilk Lognormal GOF Test	
10% Shapiro Wilk Critical Value	0.906	Data appear Lognormal at 10% Significance Lev	vel
Lilliefors Test Statistic	0.154	Lilliefors Lognormal GOF Test	
10% Lilliefors Critical Value	0.196	Data appear Lognormal at 10% Significance Lev	/el
	Data app	ear Lognormal at 10% Significance Level	
	Background	d Statistics assuming Lognormal Distribution	
95% UTL with 95% Coverage	6.977	90% Percentile (z)	6.572
95% UPL (t)	6.74	95% Percentile (z)	6.688
95% UPL for Next 12 Observations	7.183	99% Percentile (z)	6.911
95% UPL for Mean of 12 Observations	6.381	95% USL	6.95
	Nonparame	etric Distribution Free Background Statistics	
	Data a	ppear Normal at 1% Significance Level	
1	Nonparametric	Upper Limits for Background Threshold Values	
Order of Statistic, order	16	95% UTL with 95% Coverage	6.56
Approx, f used to compute achieved CC	0.842	Approximate Actual Confidence Coefficient achieved by UTL	0.56
		Approximate Sample Size needed to achieve specified CC	59
95% Percentile Bootstrap UTL with 95% Coverage	6.56	95% BCA Bootstrap UTL with 95% Coverage	6.56
95% UPL	6.56	90% Percentile	6.53
90% Chebyshev UPL	7.093	95% Percentile	6.545
95% Chebyshev UPL	7.504	99% Percentile	6.557

Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations. The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV.

Sulfate

TRC Environmental Corporation | Dominion Energy South Carolina Williams Station New FGD Pond – Baseline Statistical Evaluation

\EMPLOYEES.ROOT.LOCAL\ENV\ECC\GREENVILE\WPGVL\PIT2\416559\0006 WILLIAMS\R4165590006-033 WILLIAMS STATION NEW FGD POND CCR NEW BASELINE STATS REPORT.DOCX

95% USL

6.56

General Statistics

Total Number of Observations	16	Number of Distinct Observations	16
Minimum	270	First Quartile	352.5
Second Largest	604	Median	405
Maximum	719	Third Quartile	509.3
Mean	433.3	SD	122.9
Coefficient of Variation	0.284	Skewness	0.902
Mean of logged Data	6.036	SD of logged Data	0.271
	Critical Valu	ues for Background Threshold Values (BTVs)	
Tolerance Factor K (For UTL)	2.524	d2max (for USL)	2.443
		Normal GOF Test	
Shapiro Wilk Test Statistic	0.933	Shapiro Wilk GOF Test	
1% Shapiro Wilk Critical Value	0.844	Data appear Normal at 1% Significance Leve	el
Lilliefors Test Statistic	0.149	Lilliefors GOF Test	
1% Lilliefors Critical Value	0.248	Data appear Normal at 1% Significance Leve	el
	Data a	appear Normal at 1% Significance Level	
	Backarou	nd Statistics Assuming Normal Distribution	
95% UTL with 95% Coverage	743.5	90% Percentile (z)	590.8
95% UPL (t)	655.4	95% Percentile (z)	635.4
95% UPL for Next 12 Observations	818	99% Percentile (z)	719.2
95% UPL for Mean of 12 Observations	515.5	95% USL	733.6
		Gamma GOE Test	
A-D Test Statistic	0.271	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.738	Detected data appear Gamma Distributed at 5% Signifi	cance Level
K-S Test Statistic	0.123	Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value	0.215	Detected data appear Gamma Distributed at 5% Signifi	cance Level
Det	ected data ap	pear Gamma Distributed at 5% Significance Level	
		Gamma Statistics	
k hat (MLE)	14.33	k star (bias corrected MLE)	11.68

TRC Environmental Corporation | Dominion Energy South Carolina Williams Station New FGD Pond – Baseline Statistical Evaluation

Theta hat (MLE)	30.24	Theta star (bias corrected MLE)	37.08
nu hat (MLE)	458.5	nu star (bias corrected)	373.9
MLE Mean (bias corrected)	433.3	MLE Sd (bias corrected)	126.8
	Backgrou	nd Statistics Assuming Gamma Distribution	
95% Wilson Hilferty (WH) Approx. Gamma UPL	670.2	90% Percentile	601.5
95% Hawkins Wixley (HW) Approx. Gamma UPL	672.9	95% Percentile	660.6
95% WH UPL for Next 12 Observations	901.9	99% Percentile	781.2
95% HW UPL for Next 12 Observations	917.6		
95% WH Approx. Gamma UTL with 95% Coverage	790.1	95% HW Approx. Gamma UTL with 95% Coverage	798.5
95% WH USL	776	95% HW USL	783.5
		Lognormal GOF Test	
Shapiro Wilk Test Statistic	0.975	Shapiro Wilk Lognormal GOF Test	
10% Shapiro Wilk Critical Value	0.906	Data appear Lognormal at 10% Significance Le	evel
Lilliefors Test Statistic	0.108	Lilliefors Lognormal GOF Test	
10% Lilliefors Critical Value	0.196	Data appear Lognormal at 10% Significance Le	evel
	Data app	pear Lognormal at 10% Significance Level	
	Background	d Statistics assuming Lognormal Distribution	
95% UTL with 95% Coverage	828.6	90% Percentile (z)	591.8
95% UPL (t)	682.3	95% Percentile (z)	653
95% UPL for Next 12 Observations	976.3	99% Percentile (z)	785.4
95% UPL for Mean of 12 Observations	501.4	95% USL	810.7
	Nonparam	etric Distribution Free Background Statistics	
	Data a	ppear Normal at 1% Significance Level	
Ν	lonparametric	Upper Limits for Background Threshold Values	
Order of Statistic, order	16	95% UTL with 95% Coverage	719
Approx, f used to compute achieved CC	0.842	Approximate Actual Confidence Coefficient achieved by UTL	0.56
		Approximate Sample Size needed to achieve specified CC	59
95% Percentile Bootstrap UTL with 95% Coverage	719	95% BCA Bootstrap UTL with 95% Coverage	719
95% UPL	719	90% Percentile	583.5

90% Chebyshev UPL	813.4	95% Percentile	632.8
95% Chebyshev UPL	985.6	99% Percentile	701.8
95% USL	719		

Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations. The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV.

TDS

General Statistics

Total Number of Observation	ıs 16	Number of Distinct Observations	16			
Minimu	m 5470	First Quartile	6010			
Second Large	st 8510	Median	6880			
Maximu	m 9850	Third Quartile	7423			
Mea	in 6931	SD	1226			
Coefficient of Variation	on 0.177	Skewness	0.875			
Mean of logged Dat	ta 8.83	SD of logged Data	0.17			
	Critical Va	alues for Background Threshold Values (BTVs)				
Tolerance Factor K (For UTI	L) 2.524	d2max (for USL)	2.443			
		Normal GOF Test				
Shapiro Wilk Test Statist	ic 0.928	Shapiro Wilk GOF Test				
1% Shapiro Wilk Critical Valu	ue 0.844	Data appear Normal at 1% Significance Lev	vel			
Lilliefors Test Statist	ic 0.126	Lilliefors GOF Test				
1% Lilliefors Critical Valu	ie 0.248	Data appear Normal at 1% Significance Lev	vel			
	Data	a appear Normal at 1% Significance Level				
	Background Statistics Assuming Normal Distribution					
95% UTL with 95% Coverag	je 10025	90% Percentile (z)	8502			
95% UPL ((t) 9146	95% Percentile (z)	8947			

TRC Environmental Corporation | Dominion Energy South Carolina Williams Station New FGD Pond – Baseline Statistical Evaluation

95% UPL for Next 12 Observations	10768	99% Percentile (z)	9783
95% UPL for Mean of 12 Observations	7751	95% USL	9926
	Gamm	a GOF Test	
A-D Test Statistic	0.306	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.736	Detected data appear Gamma Distributed at 5% Signi	ficance Level
K-S Test Statistic	0.132	Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value	0.215	Detected data appear Gamma Distributed at 5% Signi	ficance Level
De	tected data appear Gamma	Distributed at 5% Significance Level	
	Gamm	a Statistics	
k hat (MLE)	36.16	k star (bias corrected MLE)	29.42
Theta hat (MLE)	191.7	Theta star (bias corrected MLE)	235.6
nu hat (MLE)	1157	nu star (bias corrected)	941.5
MLE Mean (bias corrected)	6931	MLE Sd (bias corrected)	1278
	Background Statistics A	ssuming Gamma Distribution	
95% Wilson Hilferty (WH) Approx. Gamma UPL	9234	90% Percentile	8610
95% Hawkins Wixley (HW) Approx. Gamma UPL	9248	95% Percentile	9158
95% WH UPL for Next 12 Observations	11275	99% Percentile	10244
95% HW UPL for Next 12 Observations	11357		
95% WH Approx. Gamma UTL with 95% Coverage	10306	95% HW Approx. Gamma UTL with 95% Coverage	10351
95% WH USL	10182	95% HW USL	10222
	Lognorn	nal GOF Test	
Shapiro Wilk Test Statistic	0.951	Shapiro Wilk Lognormal GOF Test	
10% Shapiro Wilk Critical Value	0.906	Data appear Lognormal at 10% Significance L	evel
Lilliefors Test Statistic	0.123	Lilliefors Lognormal GOF Test	
10% Lilliefors Critical Value	0.196	Data appear Lognormal at 10% Significance L	evel
	Data appear Lognorma	al at 10% Significance Level	
	Background Statistics as	suming Lognormal Distribution	
95% UTL with 95% Coverage	10501	90% Percentile (z)	8500
95% UPL (t)	9295	95% Percentile (z)	9042

Nonparametric Distribution Free Background Statistics

Data appear Normal at 1% Significance Level

Nonparametric Upper Limits for Background Threshold Values

Order of Statistic, order	16	95% UTL with 95% Coverage	9850
Approx, f used to compute achieved CC	0.842	Approximate Actual Confidence Coefficient achieved by UTL	0.56
		Approximate Sample Size needed to achieve specified CC	59
95% Percentile Bootstrap UTL with 95% Coverage	9850	95% BCA Bootstrap UTL with 95% Coverage	9850
95% UPL	9850	90% Percentile	8430
90% Chebyshev UPL	10722	95% Percentile	8845
95% Chebyshev UPL	12439	99% Percentile	9649
95% USL	9850		

Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations. The use of USL tends to provide a balance between false positives and false negatives provided the data

represents a background data set and when many onsite observations need to be compared with the BTV.

Background Statistics for Data Sets with Non-Detects

User Selected Options Date/Time of Computation ProUCL 5.2 10/17/2023 4:22:08 PM From File Williams_New_FGD_Pond_Data_Summary_Table_8_21_2023_JC_b.xls Full Precision OFF Confidence Coefficient 95%

Coverage 95%

Coverage 959

Different or Future K Observations 12

Number of Bootstrap Operations 2000

Fluoride

TRC Environmental Corporation | Dominion Energy South Carolina Williams Station New FGD Pond – Baseline Statistical Evaluation

	Gene	eral Statistics	
Total Number of Observations	16	Number of Missing Observations	0
Number of Distinct Observations	8		
Number of Detects	4	Number of Non-Detects	12
Number of Distinct Detects	4	Number of Distinct Non-Detects	4
Minimum Detect	0.218	Minimum Non-Detect	0.05
Maximum Detect	0.938	Maximum Non-Detect	0.66
Variance Detected	0.123	Percent Non-Detects	75%
Mean Detected	0.414	SD Detected	0.351
Mean of Detected Logged Data	-1.094	SD of Detected Logged Data	0.696
Critical Va	lues for Back	ground Threshold Values (BTVs)	
Tolerance Factor K (For UTL)	2.524	d2max (for USL)	2.443
	Normal GOF	Test on Detects Only	
Shapiro Wilk Test Statistic	0.691	Shapiro Wilk GOF Test	
1% Shapiro Wilk Critical Value	0.687	Detected Data appear Normal at 1% Significance Level	
Lilliefors Test Statistic	0.399	Lilliefors GOF Test	
1% Lilliefors Critical Value	0.413	Detected Data appear Normal at 1% Significance Level	
Detected I	Data appear N	Normal at 1% Significance Level	
Kaplan Meier (KM) Background	Statistics Assuming Normal Distribution	
KM Mean	0.194	KM SD	0.214
95% UTL95% Coverage	0.734	95% KM UPL (t)	0.58
95% KM UPL for Next 12 Observations	0.863	95% KM UPL for Mean of Next 12 Observations	0.337
90% KM Percentile (z)	0.468	95% KM Percentile (z)	0.546
99% KM Percentile (z)	0.691	95% KM USL	0.716
DL/2 Substitution	Background	Statistics Assuming Normal Distribution	
Mean	0.268	SD	0.208
95% UTL95% Coverage	0.793	95% UPL (t)	0.644
95% UPL for Next 12 Observations	0.919	95% UPL for Mean of Next 12 Observations	0.407
90% Percentile (z)	0.535	95% Percentile (z)	0.61
99% Percentile (z)	0.752	95% USL	0.777

DL/2 is not a recommended method. DL/2 provided for comparisons and historical reasons

Gamma GOF Tests on Detected Observations Only

Anderson-Darling GOF Test	0.718	A-D Test Statistic			
Data Not Gamma Distributed at 5% Significance Level	0.66	5% A-D Critical Value			
Kolmogorov-Smirnov GOF	0.392	K-S Test Statistic			
Detected data appear Gamma Distributed at 5% Significance	0.397	5% K-S Critical Value			
Detected data follow Appr. Gamma Distribution at 5% Significance Level					

Gamma Statistics on Detected Data Only

k hat (MLE)	2.516	k star (bias corrected MLE)	0.796
Theta hat (MLE)	0.165	Theta star (bias corrected MLE)	0.52
nu hat (MLE)	20.13	nu star (bias corrected)	6.365
MLE Mean (bias corrected)	0.414		
MLE Sd (bias corrected)	0.464	95% Percentile of Chisquare (2kstar)	5.172

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when o	lata set has > {	50% NDs with many tied observations at multiple DLs	
GROS may not be used when kstar of detection	cts is small suc	h as <1.0, especially when the sample size is small (e.g., <15-20)	
For such situations, G	ROS method m	nay yield incorrect values of UCLs and BTVs	
This is e	specially true v	when the sample size is small.	
For gamma distributed detected data, B	TVs and UCLs	may be computed using gamma distribution on KM estimates	
Minimum	0.01	Mean	0.166
Maximum	0.938	Median	0.0569
SD	0.239	CV	1.442
k hat (MLE)	0.56	k star (bias corrected MLE)	0.496
Theta hat (MLE)	0.296	Theta star (bias corrected MLE)	0.334
nu hat (MLE)	17.91	nu star (bias corrected)	15.89
MLE Mean (bias corrected)	0.166	MLE Sd (bias corrected)	0.235
95% Percentile of Chisquare (2kstar)	3.824	90% Percentile	0.45
95% Percentile	0.639	99% Percentile	1.105
The following statistics a	are computed u	ising Gamma ROS Statistics on Imputed Data	
Upper Limits using	Wilson Hilferty	(WH) and Hawkins Wixley (HW) Methods	

WH HW

WH HW

TRC Environmental Corporation | Dominion Energy South Carolina Williams Station New FGD Pond – Baseline Statistical Evaluation

95% Approx. Gamma UTL with 95% Coverage	1.171	1.382	95% Approx. Gamma UPL 0.68	0.733
95% Gamma USL	1.107	1.293	95% UPL for Next 12 Observations 1.735	2.204
	Estimates	s of Gamma Pa	rameters using KM Estimates	
Mea	an (KM)	0.194	SD (KM	1) 0.214
Variand	ce (KM)	0.0457	SE of Mean (KM	1) 0.07
k h	at (KM)	0.826	k star (KN	1) 0.713
nu h	at (KM)	26.44	nu star (KN	1) 22.82
theta h	at (KM)	0.235	theta star (KN	1) 0.272
80% gamma percenti	ile (KM)	0.319	90% gamma percentile (KM	I) 0.485
95% gamma percenti	le (KM)	0.657	99% gamma percentile (KM	I) 1.065
The following	statistics	are computed u	ising gamma distribution and KM estimates	
Upper Lim	its using \	Vilson Hilferty (WH) and Hawkins Wixley (HW) Methods	
	WH	HW	WH	HW
95% Approx. Gamma UTL with 95% Coverage	0.866	0.923	95% Approx. Gamma UPL 0.575	0.587
95% KM Gamma Percentile	0.52	0.525	95% Gamma USL 0.83	0.879
	Lognorm	al GOF Test on	Detected Observations Only	
Shapiro Wilk Test S	Statistic	0.749	Shapiro Wilk GOF Test	
10% Shapiro Wilk Critica	al Value	0.792	Data Not Lognormal at 10% Significance Level	
Lilliefors Test S	Statistic	0.352	Lilliefors GOF Test	
10% Lilliefors Critica	al Value	0.346	Data Not Lognormal at 10% Significance Level	
	Data	Not Lognormal	at 10% Significance Level	
Background Lognorma	I ROS Sta	tistics Assuming	g Lognormal Distribution Using Imputed Non-Detects	
Mean in Origina	al Scale	0.205	Mean in Log Sca	e -1.897
SD in Origina	al Scale	0.213	SD in Log Sca	e 0.766
95% UTL95% Co	overage	1.037	95% BCA UTL95% Coverage	e 0.938
95% Bootstrap (%) UTL95% Co	overage	0.938	95% UPL (t) 0.599
95% UPL for Next 12 Obser	vations	1.649	95% UPL for Mean of 12 Observation	s 0.25
90% Perce	ntile (z)	0.4	95% Percentile (2) 0.529
99% Perce	ntile (z)	0.891	95% US	L 0.974

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean of Logged Data	-2.082	95% KM UTL (Lognormal)95% Coverage	1.273
KM SD of Logged Data	0.92	95% KM UPL (Lognormal)	0.658
95% KM Percentile Lognormal (z)	0.567	95% KM USL (Lognormal)	1.182
Background D	L/2 Statisti	cs Assuming Lognormal Distribution	
Mean in Original Scale	0.268	Mean in Log Scale	-1.599
SD in Original Scale	0.208	SD in Log Scale	0.856
95% UTL95% Coverage	1.752	95% UPL (t)	0.948
95% UPL for Next 12 Observations	2.941	95% UPL for Mean of 12 Observations	0.358
90% Percentile (z)	0.605	95% Percentile (z)	0.826
99% Percentile (z)	1.479	95% USL	1.635

DL/2 is not a Recommended Method. DL/2 provided for comparisons and historical reasons.

Nonparametric Distribution Free Background Statistics

Data appear to follow a Discernible Distribution

Nonparametric Upper Limits for BTVs(no distinction made between detects and nondetects)

Order of Statistic, r	16	95% UTL with95% Coverage	0.938
Approx, f used to compute achieved CC	0.842	Approximate Actual Confidence Coefficient achieved by UTL	0.56
Approximate Sample Size needed to achieve specified CC	59	95% UPL	0.938
95% USL	0.938	95% KM Chebyshev UPL	1.154

Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations.

The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV.

Appendix IV Constituents

Background Statistics for Uncensored Full Data Sets

User Selected Options	
Date/Time of Computation	ProUCL 5.2 11/8/2023 5:25:07 PM
From File	P:\Clients\Dominion\South Carolina Sites\6_Williams Station SC\Williams Station\CCR\New FGD Pond\2023\Baseline Evaluation\New Background Stats\Williams_New_FGD_Pond_Data_Summary_Table_8_21_2023_JC.xlsx
Full Precision	OFF
Confidence Coefficient	95%
Coverage	95%
New or Future K Observations	1
Number of Bootstrap Operations	2000

Barium

General Statistics

Total Number of Observations	16	Number of Distinct Observations	15
Minimum	350	First Quartile	401
Second Largest	686	Median	446
Maximum	722	Third Quartile	500.8
Mean	466.9	SD	105.3
Coefficient of Variation	0.226	Skewness	1.486
Mean of logged Data	6.125	SD of logged Data	0.205

Critical Values for Background Threshold Values (BTVs)

Tolerance Factor K (For UTL)	2.524	d2max (for USL) 2.44	3
		Normal GOF Test	
Shapiro Wilk Test Statistic	0.834	Shapiro Wilk GOF Test	
1% Shapiro Wilk Critical Value	0.844	Data Not Normal at 1% Significance Level	
Lilliefors Test Statistic	0.216	Lilliefors GOF Test	
1% Lilliefors Critical Value	0.248	Data appear Normal at 1% Significance Level	

Data appear Approximate Normal at 1% Significance Level

Background Statistics Assuming Normal Distribution

95% UTL with 95% Coverage	732.8	90% Percentile (z)	601.9
95% UPL (t)	657.3	95% Percentile (z)	640.2
95% USL	724.3	99% Percentile (z)	712
		Gamma GOF Test	
A-D Test Statistic	0.72	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.736	Detected data appear Gamma Distributed at 5% Significance Level	
K-S Test Statistic	0.181	Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value	0.215	Detected data appear Gamma Distributed at 5% Significance Level	
Detecto	ed data appe	ar Gamma Distributed at 5% Significance Level	
		Gamma Statistics	
k hat (MLE)	24.1	k star (bias corrected MLE)	19.62
Theta hat (MLE)	19.38	Theta star (bias corrected MLE)	23.8
nu hat (MLE)	771.2	nu star (bias corrected)	627.9
MLE Mean (bias corrected)	466.9	MLE Sd (bias corrected)	105.4
	Background	Statistics Assuming Gamma Distribution	
95% Wilson Hilferty (WH) Approx. Gamma UPL	659.5	90% Percentile	606.1
95% Hawkins Wixley (HW) Approx. Gamma UPL	660	95% Percentile	652.8
95% WH Approx. Gamma UTL with 95% Coverage	752.2	99% Percentile	746.5
95% HW Approx. Gamma UTL with 95% Coverage	755.4		
95% WH USL	741.4	95% HW USL	744.2
		Lognormal GOF Test	
Shapiro Wilk Test Statistic	0.899	Shapiro Wilk Lognormal GOF Test	
10% Shapiro Wilk Critical Value	0.906	Data Not Lognormal at 10% Significance Level	
Lilliefors Test Statistic	0.172	Lilliefors Lognormal GOF Test	
10% Lilliefors Critical Value	0.196	Data appear Lognormal at 10% Significance Level	
Data	appear Appr	oximate Lognormal at 10% Significance Level	
E	Background S	Statistics assuming Lognormal Distribution	
95% UTL with 95% Coverage	766.7	90% Percentile (z)	594.5
95% UPL (t)	662	95% Percentile (z)	640.4

d2max (for USL)

95% USL 754.1

Nonparametric Distribution Free Background Statistics

Data appear Approximate Normal at 1% Significance Level

Nonparametric Upper Limits for Background Threshold Values

Order of Statistic, order	16	95% UTL with 95% Coverage	722
Approx, f used to compute achieved CC	0.842	Approximate Actual Confidence Coefficient achieved by UTL	0.56
		Approximate Sample Size needed to achieve specified CC	59
95% Percentile Bootstrap UTL with 95% Coverage	722	95% BCA Bootstrap UTL with 95% Coverage	722
95% UPL	722	90% Percentile	598
90% Chebyshev UPL	792.7	95% Percentile	695
95% Chebyshev UPL	940.2	99% Percentile	716.6
95% USL	722		

Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations. The use of USL tends to provide a balance between false positives and false negatives provided the data

represents a background data set and when many onsite observations need to be compared with the BTV.

Lithium

General Statistics

Total Number of Observations	16	Number of Distinct Observations	14
Minimum	13.5	First Quartile	15.43
Second Largest	27.6	Median	18.6
Maximum	32.5	Third Quartile	26.75
Mean	20.28	SD	5.95
Coefficient of Variation	0.293	Skewness	0.739
Mean of logged Data	2.971	SD of logged Data	0.281
C	ritical Values for Ba	ckground Threshold Values (BTVs)	

Tolerance Factor K (For UTL) 2.524

Normal GOF Test

2.443

Shapiro Wilk Test Statistic	0.877	Shapiro Wilk GOF Test	
1% Shapiro Wilk Critical Value	0.844	Data appear Normal at 1% Significance Level	
Lilliefors Test Statistic	0.226	Lilliefors GOF Test	
1% Lilliefors Critical Value	0.248	Data appear Normal at 1% Significance Level	
	Data app	ear Normal at 1% Significance Level	
	Background	Statistics Assuming Normal Distribution	
95% UTL with 95% Coverage	35.29	90% Percentile (z)	27.9
95% UPL (t)	31.03	95% Percentile (z)	30.06
	34.81	99% Percentile (z)	34.12
		Gamma GOF Test	
A-D Test Statistic	0.736	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.738	Detected data appear Gamma Distributed at 5% Significance Level	
K-S Test Statistic	0.193	Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value	0.215	Detected data appear Gamma Distributed at 5% Significance Level	
Detect	ed data appe	ar Gamma Distributed at 5% Significance Level	
		Gamma Statistics	
k hat (MLE)	13.31	k star (bias corrected MLE)	10.86
Theta hat (MLE)	1.523	Theta star (bias corrected MLE)	1.868
nu hat (MLE)	425.9	nu star (bias corrected)	347.4
MLE Mean (bias corrected)	20.28	MLE Sd (bias corrected)	6.154
	Background	Statistics Assuming Gamma Distribution	
95% Wilson Hilferty (WH) Approx. Gamma UPL	31.82	90% Percentile	28.45
95% Hawkins Wixley (HW) Approx. Gamma UPL	31.96	95% Percentile	31.34
95% WH Approx. Gamma UTL with 95% Coverage	37.72	99% Percentile	37.26
95% HW Approx. Gamma UTL with 95% Coverage	38.14		
95% WH USL	37.02	95% HW USL	37.4
		Lognormal GOF Test	
Shapiro Wilk Test Statistic	0.908	Shapiro Wilk Lognormal GOF Test	
10% Shapiro Wilk Critical Value	0.906	Data appear Lognormal at 10% Significance Level	

Lilliefors Test Statistic 0.18

Lilliefors Lognormal GOF Test

10% Lilliefors Critical Value 0.196

Data appear Lognormal at 10% Significance Level

Data appear Lognormal at 10% Significance Level

Background Statistics assuming Lognormal Distribution

95% UTL with 95%	% Coverage	39.66	90% Percentile (z)	27.97
9	95% UPL (t)	32.42	95% Percentile (z)	30.98
	95% USL	38.77	99% Percentile (z)	37.52

Nonparametric Distribution Free Background Statistics

Data appear Normal at 1% Significance Level

Nonparametric Upper Limits for Background Threshold Values

Order of Statistic, order	16	95% UTL with 95% Coverage	32.5
Approx, f used to compute achieved CC	0.842	Approximate Actual Confidence Coefficient achieved by UTL	0.56
		Approximate Sample Size needed to achieve specified CC	59
95% Percentile Bootstrap UTL with 95% Coverage	32.5	95% BCA Bootstrap UTL with 95% Coverage	32.5
95% UPL	32.5	90% Percentile	27.4
90% Chebyshev UPL	38.67	95% Percentile	28.83
95% Chebyshev UPL	47.01	99% Percentile	31.77
95% USL	32.5		

Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations. The use of USL tends to provide a balance between false positives and false negatives provided the data

represents a background data set and when many onsite observations need to be compared with the BTV.

Radium-226/228

General Statistics

Total Number of Observations	16	Number of Distinct Observations	15
Minimum	3.72	First Quartile	6.53
Second Largest	13	Median	8.865
Maximum	14.3	Third Quartile	11.25

TRC Environmental Corporation | Dominion Energy South Carolina Williams Station New FGD Pond – Baseline Statistical Evaluation

Mean	9.01	SD	3.076
Coefficient of Variation	0.341	Skewness	-0.0605
Mean of logged Data	2.135	SD of logged Data	0.382
с	ritical Values	for Background Threshold Values (BTVs)	
Tolerance Factor K (For UTL)	2.524	d2max (for USL)	2.443
		Normal GOF Test	
Shapiro Wilk Test Statistic	0.963	Shapiro Wilk GOF Test	
1% Shapiro Wilk Critical Value	0.844	Data appear Normal at 1% Significance Level	
Lilliefors Test Statistic	0.146	Lilliefors GOF Test	
1% Lilliefors Critical Value	0.248	Data appear Normal at 1% Significance Level	
	Data app	ear Normal at 1% Significance Level	
	Background	Statistics Assuming Normal Distribution	
95% UTL with 95% Coverage	16.77	90% Percentile (z)	12.95
95% UPL (t)	14.57	95% Percentile (z)	14.07
95% USL	16.53	99% Percentile (z)	16.17
		Gamma GOF Test	
A-D Test Statistic	0.377	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.74	Detected data appear Gamma Distributed at 5% Significance Level	
K-S Test Statistic	0.17	Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value	0.215	Detected data appear Gamma Distributed at 5% Significance Level	
Detect	ed data appea	ar Gamma Distributed at 5% Significance Level	
		Gamma Statistics	
k hat (MLE)	8.115	k star (bias corrected MLE)	6.635
Theta hat (MLE)	1.11	Theta star (bias corrected MLE)	1.358
nu hat (MLE)	259.7	nu star (bias corrected)	212.3
MLE Mean (bias corrected)	9.01	MLE Sd (bias corrected)	3.498
	De elverror 14		
			12.69
95% Wilson nillerty (Wh) Approx. Gamma OPL	15.70	90% Percentile	13.08

95% Hawkins Wixley (HW) Approx. Gamma UPL	15.99	95% Percentile	15.43
95% WH Approx. Gamma UTL with 95% Coverage	19.42	99% Percentile	19.07
95% HW Approx. Gamma UTL with 95% Coverage	19.96		
95% WH USL	18.98	95% HW USL	19.48
		Lognormal GOF Test	
Shapiro Wilk Test Statistic	0.935	Shapiro Wilk Lognormal GOF Test	
10% Shapiro Wilk Critical Value	0.906	Data appear Lognormal at 10% Significance Level	
Lilliefors Test Statistic	0.168	Lilliefors Lognormal GOF Test	
10% Lilliefors Critical Value	0.196	Data appear Lognormal at 10% Significance Level	
	Data appea	r Lognormal at 10% Significance Level	
E	Background S	tatistics assuming Lognormal Distribution	
95% UTL with 95% Coverage	22.19	90% Percentile (z)	13.81
95% UPL (t)	16.87	95% Percentile (z)	15.86
95% USL	21.52	99% Percentile (z)	20.58
1	Nonparametri	ic Distribution Free Background Statistics	
	Data app	ear Normal at 1% Significance Level	
Non	parametric U	pper Limits for Background Threshold Values	
Order of Statistic, order	16	95% UTL with 95% Coverage	14.3
Approx, f used to compute achieved CC	0.842	Approximate Actual Confidence Coefficient achieved by UTL	0.56
		Approximate Sample Size needed to achieve specified CC	59
95% Percentile Bootstrap UTL with 95% Coverage	14.3	95% BCA Bootstrap UTL with 95% Coverage	14.3
95% UPL	14.3	90% Percentile	12.35
90% Chebyshev UPL	18.52	95% Percentile	13.33
95% Chebyshev UPL	22.83	99% Percentile	14.11
95% USL	14.3		
Note: The use of USL tends to vial	d o conconvo	tive estimate of PTV consciently when the comple size starts even ding 20	

Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations. The use of USL tends to provide a balance between false positives and false negatives provided the data

represents a background data set and when many onsite observations need to be compared with the BTV.

TRC Environmental Corporation | Dominion Energy South Carolina Williams Station New FGD Pond – Baseline Statistical Evaluation

Selenium

General Statistics			
Total Number of Observations	16	Number of Distinct Observations	16
Minimum	3.4	First Quartile	4.173
Second Largest	29	Median	5.345
Maximum	38	Third Quartile	11.24
Mean	11.05	SD	11.59
Coefficient of Variation	1.049	Skewness	1.445
Mean of logged Data	1.999	SD of logged Data	0.851
c	ritical Values	for Background Threshold Values (BTVs)	
Tolerance Factor K (For UTL)	2.524	d2max (for USL)	2.443
		Normal GOF Test	
Shapiro Wilk Test Statistic	0.659	Shapiro Wilk GOF Test	
1% Shapiro Wilk Critical Value	0.844	Data Not Normal at 1% Significance Level	
Lilliefors Test Statistic	0.408	Lilliefors GOF Test	
1% Lilliefors Critical Value	0.248	Data Not Normal at 1% Significance Level	
	Data No	t Normal at 1% Significance Level	
	Background S	Statistics Assuming Normal Distribution	
95% UTL with 95% Coverage	40.31	90% Percentile (z)	25.9
95% UPL (t)	31.99	95% Percentile (z)	30.12
95% USL	39.37	99% Percentile (z)	38.01
		Gamma GOF Test	
A-D Test Statistic	2.256	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.757	Data Not Gamma Distributed at 5% Significance Level	
K-S Test Statistic	0.369	Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value	0.219	Data Not Gamma Distributed at 5% Significance Level	
1	Data Not Gam	ma Distributed at 5% Significance Level	
		Gamma Statistics	
k hat (MLE)	1.383	k star (bias corrected MLE)	1.165

TRC Environmental Corporation | Dominion Energy South Carolina Williams Station New FGD Pond – Baseline Statistical Evaluation

Theta hat (MLE)	7.993	Theta star (bias corrected MLE)	9.486
nu hat (MLE)	44.24	nu star (bias corrected)	37.28
MLE Mean (bias corrected)	11.05	MLE Sd (bias corrected)	10.24
	Background S	Statistics Assuming Gamma Distribution	
95% Wilson Hilferty (WH) Approx. Gamma UPL	32.91	90% Percentile	24.5
95% Hawkins Wixley (HW) Approx. Gamma UPL	33.18	95% Percentile	31.38
95% WH Approx. Gamma UTL with 95% Coverage	49.49	99% Percentile	47.17
95% HW Approx. Gamma UTL with 95% Coverage	51.84		
95% WH USL	47.39	95% HW USL	49.41
		Lognormal GOF Test	
Shapiro Wilk Test Statistic	0.752	Shapiro Wilk Lognormal GOF Test	
10% Shapiro Wilk Critical Value	0.906	Data Not Lognormal at 10% Significance Level	
Lilliefors Test Statistic	0.322	Lilliefors Lognormal GOF Test	
10% Lilliefors Critical Value	0.196	Data Not Lognormal at 10% Significance Level	
	Data Not L	ognormal at 10% Significance Level	
	Background St	atistics assuming Lognormal Distribution	
95% UTL with 95% Coverage	63.28	90% Percentile (z)	21.98
95% UPL (t)	34.37	95% Percentile (z)	29.94
95% USL	59.08	99% Percentile (z)	53.48
	Nonparametric	Distribution Free Background Statistics	
	Data do I	not follow a Discernible Distribution	
Nor	parametric Up	per Limits for Background Threshold Values	
Order of Statistic, order	16	95% UTL with 95% Coverage	38
Approx, f used to compute achieved CC	0.842	Approximate Actual Confidence Coefficient achieved by UTL	0.56
		Approximate Sample Size needed to achieve specified CC	59
95% Percentile Bootstrap UTL with 95% Coverage	38	95% BCA Bootstrap UTL with 95% Coverage	38
95% UPL	38	90% Percentile	28
90% Chebyshev UPL	46.89	95% Percentile	31.25

95% Chebyshev UPL 63.13

95% USL 38

Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers

and consists of observations collected from clean unimpacted locations.

The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV.

Background Statistics for Data Sets with Non-Detects

User Selected Options	
Date/Time of Computation	ProUCL 5.2 11/8/2023 5:26:09 PM
From File	Williams_New_FGD_Pond_Data_Summary_Table_8_21_2023_JC_g.xls
Full Precision	OFF
Confidence Coefficient	95%
Coverage	95%
Different or Future K Observations	1
Number of Bootstrap Operations	2000

Arsenic

General Statistics Total Number of Observations 16 0 Number of Missing Observations Number of Distinct Observations 13 12 Number of Non-Detects Number of Detects 4 12 Number of Distinct Non-Detects Number of Distinct Detects 1 5.02 Minimum Detect Minimum Non-Detect 6.3 Maximum Detect 8.75 Maximum Non-Detect 6.3 Variance Detected 1.699 Percent Non-Detects 25% 7.062 Mean Detected SD Detected 1.304 Mean of Detected Logged Data 1.938 SD of Detected Logged Data 0.196 Critical Values for Background Threshold Values (BTVs) Tolerance Factor K (For UTL) d2max (for USL) 2.443 2.524

TRC Environmental Corporation | Dominion Energy South Carolina Williams Station New FGD Pond – Baseline Statistical Evaluation

\\EMPLOYEES.ROOT.LOCAL\ENV\ECC\GREENVILE\WPGVL\PIT2\416559\0006 WILLIAMS\R4165590006-033 WILLIAMS STATION NEW FGD POND CCR NEW BASELINE STATS REPORT.DOCX

36.65

99% Percentile

Normal GOF Test on Detects Only

0.909	Shapiro Wilk GOF Test
0.805	Detected Data appear Normal at 1% Significance Level
0.207	Lilliefors GOF Test
0.281	Detected Data appear Normal at 1% Significance Level
	0.909 0.805 0.207 0.281

Detected Data appear Normal at 1% Significance Level

Kaplan Meier (KM) Background Statistics Assuming Normal Distribution

KM Mean	6.6	KM SD	1.347	
95% UTL95% Coverage	10	95% KM UPL (t)	9.035	
90% KM Percentile (z)	8.327	95% KM Percentile (z)	8.817	
99% KM Percentile (z)	9.735	95% KM USL	9.892	
DL/2 Substitutio	on Background Statis	tics Assuming Normal Distribution		
Mean	6.084	SD	2.075	
95% UTL95% Coverage	11.32	95% UPL (t)	9.834	
90% Percentile (z)	8.743	95% Percentile (z)	9.497	
99% Percentile (z)	10.91	95% USL	11.15	

DL/2 is not a recommended method. DL/2 provided for comparisons and historical reasons

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.562	Anderson-Darling GOF Test
5% A-D Critical Value	0.731	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.223	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.245	Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

k hat (MLE)	29.81	k star (bias corrected MLE)	22.41
Theta hat (MLE)	0.237	Theta star (bias corrected MLE)	0.315
nu hat (MLE)	715.5	nu star (bias corrected)	537.9
MLE Mean (bias corrected)	7.062		
MLE Sd (bias corrected)	1.492	95% Percentile of Chisquare (2kstar)	61.46

TRC Environmental Corporation | Dominion Energy South Carolina Williams Station New FGD Pond – Baseline Statistical Evaluation

Gamma ROS Statistics using Imputed Non-Detects GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20) For such situations, GROS method may yield incorrect values of UCLs and BTVs This is especially true when the sample size is small. For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates Minimum 4.691 6.645 Mean 8.75 6.605 Maximum Median SD 1.366 CV 0.206 k hat (MLE) 24.93 k star (bias corrected MLE) 20.3 Theta hat (MLE) 0.267 Theta star (bias corrected MLE) 0.327 nu hat (MLE) 797.8 nu star (bias corrected) 649.5 1.475 MLE Mean (bias corrected) 6.645 MLE Sd (bias corrected) 95% Percentile of Chisquare (2kstar) 56.46 90% Percentile 8.591 95% Percentile 9.242 99% Percentile 10.55 The following statistics are computed using Gamma ROS Statistics on Imputed Data Upper Limits using Wilson Hilferty (WH) and Hawkins Wixley (HW) Methods WH HW WH НW 95% Approx. Gamma UTL with 95% Coverage 10.63 10.72 95% Approx. Gamma UPL 9.34 9.375 95% Gamma USL 10.56 10.48 Estimates of Gamma Parameters using KM Estimates Mean (KM) 6.6 SD (KM) 1.347 1.815 0.354 Variance (KM) SE of Mean (KM) k star (KM) k hat (KM) 24 19.54 767.9 625.3 nu hat (KM) nu star (KM) 0.275 theta hat (KM) theta star (KM) 0.338 80% gamma percentile (KM) 7.813 90% gamma percentile (KM) 8.572 95% gamma percentile (KM) 9.233 10.56 99% gamma percentile (KM) The following statistics are computed using gamma distribution and KM estimates Upper Limits using Wilson Hilferty (WH) and Hawkins Wixley (HW) Methods WH HW WН HW

TRC Environmental Corporation | Dominion Energy South Carolina Williams Station New FGD Pond – Baseline Statistical Evaluation

95% Approx. Gamma UTL with 95% Coverage	10.49	10.57	95% Approx. Gamma UPL 9.232	9.262						
95% KM Gamma Percentile	8.962	8.983	95% Gamma USL 10.35	10.42						
	Logno	rmal GOF [·]	Test on Detected Observations Only							
Shapiro Wilk Test S	Statistic	0.888	Shapiro Wilk GOF Test							
10% Shapiro Wilk Critica	l Value	0.883	Detected Data appear Lognormal at 10% Significan	ce Level						
Lilliefors Test S	Statistic	0.217	Lilliefors GOF Test	Lilliefors GOF Test						
10% Lilliefors Critica	l Value	0.223	Detected Data appear Lognormal at 10% Significan	ce Level						
1	Detected	Data appea	ar Lognormal at 10% Significance Level							
Background Lognorn	nal ROS S	Statistics A	ssuming Lognormal Distribution Using Imputed Non-Detects							
Mean in Origina	l Scale	6.643	Mean in Log Scale	1.873						
SD in Origina	l Scale	1.364	SD in Log Scale	0.208						
95% UTL95% Co	verage	11	95% BCA UTL95% Coverage	8.75						
95% Bootstrap (%) UTL95% Co	verage	8.75	95% UPL (t)	9.478						
90% Percer	ntile (z)	8.497	95% Percentile (z)	9.164						
99% Percer	ntile (z)	10.56	95% USL	10.82						
Statistics usi	ing KM es	timates on	Logged Data and Assuming Lognormal Distribution							
KM Mean of Logge	ed Data	1.866	95% KM UTL (Lognormal)95% Coverage	10.84						
KM SD of Logge	ed Data	0.205	95% KM UPL (Lognormal)	9.361						
95% KM Percentile Lognor	mal (z)	9.055	95% KM USL (Lognormal)	10.67						
E	Backgrour	nd DL/2 Sta	atistics Assuming Lognormal Distribution							
Mean in Origina	l Scale	6.084	Mean in Log Scale	1.74						
SD in Origina	l Scale	2.075	SD in Log Scale	0.391						
95% UTL95% Co	verage	15.29	95% UPL (t)	11.55						
90% Percer	ntile (z)	9.408	95% Percentile (z)	10.84						
99% Percer	ntile (z)	14.16	95% USL	14.82						
DL/2 is not a Re	commend	led Method	I. DL/2 provided for comparisons and historical reasons.	DL/2 is not a Recommended Method. DL/2 provided for comparisons and historical reasons.						

Nonparametric Distribution Free Background Statistics

Data appear to follow a Discernible Distribution

Nonparametric Upper Limits for BTVs(no distinction made between detects and nondetects)

TRC Environmental Corporation | Dominion Energy South Carolina Williams Station New FGD Pond – Baseline Statistical Evaluation

Order of Statistic, r	16	95% UTL with95% Coverage	8.75
Approx, f used to compute achieved CC	0.842	Approximate Actual Confidence Coefficient achieved by UTL	0.56
Approximate Sample Size needed to achieve specified	59	95% UPL	8.75
95% USL	8.75	95% KM Chebyshev UPL	12.65

Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations. The use of USL tends to provide a balance between false positives and false negatives provided the data

represents a background data set and when many onsite observations need to be compared with the BTV.

Cobalt

	G	eneral Statistics	
Total Number of Observations	16	Number of Missing Observations	0
Number of Distinct Observations	13		
Number of Detects	12	Number of Non-Detects	4
Number of Distinct Detects	11	Number of Distinct Non-Detects	2
Minimum Detect	0.171	Minimum Non-Detect	1.3
Maximum Detect	0.458	Maximum Non-Detect	6.3
Variance Detected	0.00554	Percent Non-Detects	25%
Mean Detected	0.28	SD Detected	0.0744
Mean of Detected Logged Data	-1.303	SD of Detected Logged Data	0.262
Critical	Values for Ba	ackground Threshold Values (BTVs)	
Tolerance Factor K (For UTL)	2.524	d2max (for USL)	2.443
	Normal G	OF Test on Detects Only	
Shapiro Wilk Test Statistic	0.898	Shapiro Wilk GOF Test	
1% Shapiro Wilk Critical Value	0.805	Detected Data appear Normal at 1% Significance Le	əvel
Lilliefors Test Statistic	0.215	Lilliefors GOF Test	
1% Lilliefors Critical Value	0.281	Detected Data appear Normal at 1% Significance Le	əvel

Detected Data appear Normal at 1% Significance Level

TRC Environmental Corporation | Dominion Energy South Carolina Williams Station New FGD Pond – Baseline Statistical Evaluation

Kaplan Meier (KM) Background Statistics Assuming Normal Distribution

KM Mean	0.28	KM SD	0.0712
95% UTL95% Coverage	0.46	95% KM UPL (t)	0.409
90% KM Percentile (z)	0.372	95% KM Percentile (z)	0.398
99% KM Percentile (z)	0.446	95% KM USL	0.454
DL/2 Substitut	tion Background Statis	tics Assuming Normal Distribution	
Mean	0.685	SD	0.972
95% UTL95% Coverage	3.139	95% UPL (t)	2.442
90% Percentile (z)	1.931	95% Percentile (z)	2.285
99% Percentile (z)	2.947	95% USL	3.061
DL/2 is not a recommen	ded method. DL/2 prov	vided for comparisons and historical reasons	
Gam	ma GOF Tests on Det	tected Observations Only	
A-D Test Statistic	0.517	Anderson-Darling GOF Test	
5% A-D Critical Value	0.731	Detected data appear Gamma Distributed at 5% Signific	ance Level
K-S Test Statistic	0.236	Kolmogorov-Smirnov GOF	
5% K-S Critical Value	0.245	Detected data appear Gamma Distributed at 5% Signific	ance Level
Detected da	ta appear Gamma Dis	tributed at 5% Significance Level	
	Gamma Statistics on	Detected Data Only	
k hat (MLE)	16.14	k star (bias corrected MLE)	12.16
Theta hat (MLE)	0.0174	Theta star (bias corrected MLE)	0.0231
nu hat (MLE)	387.4	nu star (bias corrected)	291.9
MLE Mean (bias corrected)	0.28		
MLE Sd (bias corrected)	0.0804	95% Percentile of Chisquare (2kstar)	36.81
Gan	nma ROS Statistics us	ing Imputed Non-Detects	
GROS may not be used when GROS may not be used when kstar of de For such situations This For gamma distributed detected data	en data set has > 50% etects is small such as , GROS method may y is especially true wher , BTVs and UCLs may	NDs with many tied observations at multiple DLs <1.0, especially when the sample size is small (e.g., <15-20) rield incorrect values of UCLs and BTVs the sample size is small.	
Minimum	0.171	Mean	0.28
Maximum	0.458	Median	0.271

TRC Environmental Corporation | Dominion Energy South Carolina Williams Station New FGD Pond – Baseline Statistical Evaluation
SD	0.0663	CV	0.237			
k hat (MLE)) 19.74	k star (bias corrected MLE)	16.08			
Theta hat (MLE)	0.0142	Theta star (bias corrected MLE)	0.0174			
nu hat (MLE)	631.8	nu star (bias corrected)	514.7			
MLE Mean (bias corrected)	0.28	MLE Sd (bias corrected)	0.0697			
95% Percentile of Chisquare (2kstar)	46.4	90% Percentile	0.372			
95% Percentile	e 0.403	99% Percentile	0.467			
The following statis	tics are comput	ted using Gamma ROS Statistics on Imputed Data				
Upper Limits us	sing Wilson Hilf	erty (WH) and Hawkins Wixley (HW) Methods				
WH	HW	WH	HW			
95% Approx. Gamma UTL with 95% Coverage 0.471	0.475	95% Approx. Gamma UPL 0.408	0.41			
95% Gamma USL 0.463	0.467					
Estimates of Gamma Parameters using KM Estimates						
Mean (KM)	0.28	SD (KM)	0.0712			
Variance (KM)	0.00508	SE of Mean (KM)	0.0215			
k hat (KM)) 15.48	k star (KM)	12.62			
nu hat (KM)	495.5	nu star (KM)	403.9			
theta hat (KM)	0.0181	theta star (KM)	0.0222			
80% gamma percentile (KM)	0.344	90% gamma percentile (KM)	0.385			
95% gamma percentile (KM) 0.421 99% gamma percent		99% gamma percentile (KM)	0.496			
The following stat	istics are compu	uted using gamma distribution and KM estimates				
Upper Limits u	sing Wilson Hilf	erty (WH) and Hawkins Wixley (HW) Methods				
WH	HW	WH	HW			
95% Approx. Gamma UTL with 95% Coverage 0.487	0.492	95% Approx. Gamma UPL 0.419	0.42			
95% KM Gamma Percentile 0.404	0.405	95% Gamma USL 0.479	0.484			
	normal GOF Te	act on Detected Observations Only				
Shaniro Wilk Test Statistic		Shaniro Wilk GOF Test				
10% Shaniro Wilk Critical Value	0.883	Detected Data appear Lognormal at 10% Significant	e l evel			
Lilliefors Test Statistic	0 255					
10% Lilliefors Critical Value	0.200	Data Not Lognormal at 10% Significance Leve	اد			
	, 0.220					

TRC Environmental Corporation | Dominion Energy South Carolina Williams Station New FGD Pond – Baseline Statistical Evaluation

\\EMPLOYEES.ROOT.LOCAL\ENV\ECC\GREENVILLE\WPGVL\PIT2\416559\0006 WILLIAMS\R4165590006-033 WILLIAMS STATION NEW FGD POND CCR NEW BASELINE STATS REPORT.DOCX

Detected Data appear Approximate Lognormal at 10% Significance Level

Background Lognormal ROS Statistics Assuming Lognormal Distribution Using Imputed Non-Detects

Mean in Original Scale	0.279	Mean in Log Scale	-1.303
SD in Original Scale	0.0662	SD in Log Scale	0.233
95% UTL95% Coverage	0.49	95% BCA UTL95% Coverage	0.458
95% Bootstrap (%) UTL95% Coverage	0.458	95% UPL (t)	0.414
90% Percentile (z)	0.366	95% Percentile (z)	0.399
99% Percentile (z)	0.468	95% USL	0.48
Statistics using KM es	timates on L	ogged Data and Assuming Lognormal Distribution	
KM Mean of Logged Data	-1.303	95% KM UTL (Lognormal)95% Coverage	0.511
KM SD of Logged Data	0.251	95% KM UPL (Lognormal)	0.427
95% KM Percentile Lognormal (z)	0.41	95% KM USL (Lognormal)	0.501
Backgrour	nd DL/2 Stat	istics Assuming Lognormal Distribution	
Mean in Original Scale	0.685	Mean in Log Scale	-0.888
SD in Original Scale	0.972	SD in Log Scale	0.877
95% UTL95% Coverage	3.761	95% UPL (t)	2.006
90% Percentile (z)	1.266	95% Percentile (z)	1.74
99% Percentile (z)	3.163	95% USL	3.504
DL/2 is not a Recommend	led Method.	DL/2 provided for comparisons and historical reasons.	
Nama		hikutian Fran Daalamaund Otatiatian	

Nonparametric Distribution Free Background Statistics

Data appear to follow a Discernible Distribution

Nonparametric Upper Limits for BTVs(no distinction made between detects and nondetects)

Order of Statistic, r	16	95% UTL with 95% Coverage	6.3
Approx, f used to compute achieved CC	0.842	Approximate Actual Confidence Coefficient achieved by UTL	0.56
Approximate Sample Size needed to achieve specified CC	59	95% UPL	6.3
95% USL	6.3	95% KM Chebyshev UPL	0.6

Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations.

The use of USL tends to provide a balance between false positives and false negatives provided the data

TRC Environmental Corporation | Dominion Energy South Carolina Williams Station New FGD Pond – Baseline Statistical Evaluation

represents a background data set and when many onsite observations need to be compared with the BTV.

Molybdenum

	General S	tatistics				
Total Number of Observations	16	Number of Missing Observations	0			
Number of Distinct Observations	14					
Number of Detects	10	Number of Non-Detects	6			
Number of Distinct Detects	10	Number of Distinct Non-Detects	4			
Minimum Detect	1.1	Minimum Non-Detect	0.979			
Maximum Detect	3.27	Maximum Non-Detect	13			
Variance Detected	0.625	Percent Non-Detects	37.5%			
Mean Detected	2.106	SD Detected	0.791			
Mean of Detected Logged Data	0.674	SD of Detected Logged Data	0.409			
Critical	alues for Backgroun/	d Threshold Values (BTVs)				
Tolerance Factor K (For UTL)	2.524	d2max (for USL)	2.443			
	Normal GOF Test on Detects Only					
Shapiro Wilk Test Statistic	0.896	Shapiro Wilk GOF Test				
1% Shapiro Wilk Critical Value	0.781	Detected Data appear Normal at 1% Significance L	evel			
Lilliefors Test Statistic	0.204	Lilliefors GOF Test				
1% Lilliefors Critical Value	0.304	Detected Data appear Normal at 1% Significance L	evel			
Detecte	d Data appear Norm	al at 1% Significance Level				
Kaplan Meier (K	(M) Background Stati	stics Assuming Normal Distribution				
KM Mean	1.856	KM SD	0.781			
95% UTL95% Coverage	3.826	95% KM UPL (t)	3.266			
90% KM Percentile (z)	2.856	95% KM Percentile (z)	3.139			
99% KM Percentile (z)	3.671	95% KM USL	3.763			
DL/2 Substituti	on Background Statis	tics Assuming Normal Distribution				
Mean	2.352	SD	1.82			
95% UTL95% Coverage	6.946	95% UPL (t)	5.641			

TRC Environmental Corporation | Dominion Energy South Carolina Williams Station New FGD Pond – Baseline Statistical Evaluation

\EMPLOYEES.ROOT.LOCAL\ENV\ECC\GREENVILLE\WPGVL\PIT2\416559\0006 WILLIAMS\R4165590006-033 WILLIAMS STATION NEW FGD POND CCR NEW BASELINE STATS REPORT.DOCX

90% Percentile (z)	4.684	95% Percentile (z)	5.346
99% Percentile (z)	6.586	95% USL	6.799
DL/2 is not a recommen	ded method.	DL/2 provided for comparisons and historical reasons	
Gan	nma GOF Tes	sts on Detected Observations Only	
A-D Test Statistic	0.62	Anderson-Darling GOF Test	
5% A-D Critical Value	0.728	Detected data appear Gamma Distributed at 5% Signific	ance Level
K-S Test Statistic	0.224	Kolmogorov-Smirnov GOF	
5% K-S Critical Value	0.267	Detected data appear Gamma Distributed at 5% Signific	ance Level
Detected da	ta appear Ga	mma Distributed at 5% Significance Level	
	Gamma Stat	tistics on Detected Data Only	
k hat (MLE)	7.178	k star (bias corrected MLE)	5.092
Theta hat (MLE)	0.293	Theta star (bias corrected MLE)	0.414
nu hat (MLE)	143.6	nu star (bias corrected)	101.8
MLE Mean (bias corrected)	2.106		
MLE Sd (bias corrected)	0.933	95% Percentile of Chisquare (2kstar)	18.56
Gan	nma ROS Sta	tistics using Imputed Non-Detects	
GROS may not be used when GROS may not be used when kstar of do For such situations This	en data set ha etects is smal , GROS meth is especially t	as > 50% NDs with many tied observations at multiple DLs I such as <1.0, especially when the sample size is small (e.g., <15-20) nod may yield incorrect values of UCLs and BTVs true when the sample size is small.	
For gamma distributed detected data Minimum	a, BTVs and U 0.617	JCLs may be computed using gamma distribution on KM estimates Mean	1.8
Maximum	3.27	Median	1.546
SD	0.801	CV	0.445
k hat (MLE)	5.097	k star (bias corrected MLE)	4.183
Theta hat (MLE)	0.353	Theta star (bias corrected MLE)	0.43
nu hat (MLE)	163.1	nu star (bias corrected)	133.9
MLE Mean (bias corrected)	1.8	MLE Sd (bias corrected)	0.88
95% Percentile of Chisquare (2kstar)	16.03	90% Percentile	2.98
95% Percentile	3.449	99% Percentile	4.448

The following statistics are computed using Gamma ROS Statistics on Imputed Data

TRC Environmental Corporation | Dominion Energy South Carolina Williams Station New FGD Pond – Baseline Statistical Evaluation

()EMPLOYEES.ROOT.LOCAL[ENV]ECC[GREENVILLE]WPGVL[PIT2]416559\0006 WILLIAMS]R4165590006-033 WILLIAMS STATION NEW FGD POND CCR NEW BASELINE STATS REPORT.DOCX

Upper Limits using Wilson Hilferty (WH) and Hawkins Wixley (HW) Methods

	WH	HW		WH	HW
95% Approx. Gamma UTL with 95% Coverage	4.563	4.729	95% Approx. Gamma UPL	3.55	3.613
95% Gamma USL	4.441	4.592			
Estimates of Gamma Parameters using KM Estimates					

0.781	SD (KM)	1.856	Mean (KM)
0.228	SE of Mean (KM)	0.609	Variance (KM)
4.634	k star (KM)	5.652	k hat (KM)
148.3	nu star (KM)	180.9	nu hat (KM)
0.4	theta star (KM)	0.328	theta hat (KM)
3.01	90% gamma percentile (KM)	2.516	80% gamma percentile (KM)
4.421	99% gamma percentile (KM)	3.462	95% gamma percentile (KM)

The following statistics are computed using gamma distribution and KM estimates

Upper Limits using Wilson Hilferty (WH) and Hawkins Wixley (HW) Methods

	WH	HW		WH	HW
95% Approx. Gamma UTL with 95% Coverage	4.402	4.518	95% Approx. Gamma UPL	3.481	3.52
95% KM Gamma Percentile	3.292	3.32	95% Gamma USL	4.291	4.396

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.873	Shapiro Wilk GOF Test
10% Shapiro Wilk Critical Value	0.869	Detected Data appear Lognormal at 10% Significance Level
Lilliefors Test Statistic	0.236	Lilliefors GOF Test
10% Lilliefors Critical Value	0.241	Detected Data appear Lognormal at 10% Significance Level

Detected Data appear Lognormal at 10% Significance Level

Background Lognormal ROS Statistics Assuming Lognormal Distribution Using Imputed Non-Detects

Mean in Original Scale	1.803	Mean in Log Scale	0.499
SD in Original Scale	0.781	SD in Log Scale	0.443
95% UTL95% Coverage	5.044	95% BCA UTL95% Coverage	3.27
95% Bootstrap (%) UTL95% Coverage	3.27	95% UPL (t)	3.671
90% Percentile (z)	2.908	95% Percentile (z)	3.416

TRC Environmental Corporation | Dominion Energy South Carolina Williams Station New FGD Pond – Baseline Statistical Evaluation

\EMPLOYEES.ROOT.LOCAL\ENV\ECC\GREENVILLE\WPGVL\PIT2\416559\0006 WILLIAMS\R4165590006-033 WILLIAMS STATION NEW FGD POND CCR NEW BASELINE STATS REPORT.DOCX

99% Percentile (z)	4.621	95% USL	4.867
Statistics using KM est	timates on Lo	gged Data and Assuming Lognormal Distribution	
KM Mean of Logged Data	0.528	95% KM UTL (Lognormal)95% Coverage	4.979
KM SD of Logged Data	0.427	95% KM UPL (Lognormal)	3.666
95% KM Percentile Lognormal (z)	3.421	95% KM USL (Lognormal)	4.81
Backgroun	d DL/2 Statist	tics Assuming Lognormal Distribution	
Mean in Original Scale	2.352	Mean in Log Scale	0.604
SD in Original Scale	1.82	SD in Log Scale	0.737
95% UTL95% Coverage	11.74	95% UPL (t)	6.921
90% Percentile (z)	4.7	95% Percentile (z)	6.142
99% Percentile (z)	10.15	95% USL	11.06

DL/2 is not a Recommended Method. DL/2 provided for comparisons and historical reasons.

Nonparametric Distribution Free Background Statistics

Data appear to follow a Discernible Distribution

Nonparametric Upper Limits for BTVs(no distinction made between detects and nondetects)

Order of Statistic, r	16	95% UTL with95% Coverage	13
Approx, f used to compute achieved CC	0.842	Approximate Actual Confidence Coefficient achieved by UTL	0.56
Approximate Sample Size needed to achieve specified CC	59	95% UPL	13
95% USL	13	95% KM Chebyshev UPL	5.363

Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations.

The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV.

TRC Environmental Corporation | Dominion Energy South Carolina Williams Station New FGD Pond – Baseline Statistical Evaluation

Appendix B Background Data Set for October 2023 Semiannual Detection Monitoring Event

TRC Environmental Corporation | Dominion Energy South Carolina Williams Station New FGD Pond – Detection Monitoring

\\EMPLOYEES.ROOT.LOCAL\ENV\ECC\GREENVILLE\WPGVL\PJT2\416559\0006 WILLIAMS\R4165590006-034 WILLIAMS NEW FGD POND CCR DM 252023.DOCX

		CONSTITUENT/RESULT						
EVENT	WELL	BORON (µg/L)	CALCIUM (µg/L)	CHLORIDE (mg/L)	FLUORIDE (mg/L)	FIELD pH (S.U.)	SULFATE (mg/L)	TDS (mg/L)
BL-1	MW-FGD-23	22,500	1,790,000	4,210	< 0.330	6.56	369	7,040
BL-2	MW-FGD-23	25,800	1,900,000	4,150	< 0.660	6.25	604	8,510
BL-3	MW-FGD-23	19,000	1,400,000	3,500	< 0.050	6.52	270	5,600
BL-4	MW-FGD-23	24,000	2,100,000	3,900	0.280	6.00	310	6,100
BL-5	MW-FGD-23	25,600	1,940,000	3,830	< 0.660	5.73	330	7,700
BL-6	MW-FGD-23	27,400	1,970,000	4,380	0.938 J	6.09	420	9,850
BL-7	MW-FGD-23	55,500 ⁽¹⁾	4,030,000 ⁽¹⁾	4,320	< 0.330	5.59	371	8,350
BL-8	MW-FGD-23	25,100	1,700,000	3,790 J+	0.220	5.80	312	7,330
BL-1	MW-FGD-24	23,600	1,680,000	4,460	< 0.660	6.54	719	6,680
BL-2	MW-FGD-24	22,700	1,620,000	3,370	< 0.660	6.29	563	6,930
BL-3	MW-FGD-24	25,000	1,600,000	3,400	< 0.130	6.50	390	5,800
BL-4	MW-FGD-24	19,000	1,400,000	2,700	< 0.130	6.35	360	5,500
BL-5	MW-FGD-24	21,600	1,600,000	3,170	< 0.660	6.26	445	5,470
BL-6	MW-FGD-24	22,600	1,580,000	3,660	< 0.660	6.21	543	6,830
BL-7	MW-FGD-24	44,400 ⁽¹⁾	3,190,000 ⁽¹⁾	3,290	< 0.330	6.20	498	6,080
BL-8	MW-FGD-24	22,800	1,710,000	3860 J+	0.218	6.07	428	7,120

Appendix B Background Data Set for October 2023 Semiannual Detection Monitoring Event

(1) = Results were removed from the data set as outliers.

pH expressed in standard units (S.U.).

TDS = Total dissolved solids.

 μ g/L = micrograms per liter.

ns per liter.

BL = Baseline sampling event. J Estimated concentration.

J+ Estimated concentration, the result may be biased high.

< Result less than the indicated detection limit.

mg/L = milligrams per liter.

TRC Environmental Corporation | Dominion Energy South Carolina Williams Station New FGD Pond – Detection Monitoring

- OBG 2017. *Statistical Analysis Plan* SCE&G Williams Station New FGD Pond, Goose Creek, South Carolina. O'Brein & Gere Inc. (OBG), October 17, 2017.
- TRC 2023a. *Class III Landfill Groundwater Monitoring System Certification* per 40 CFR 257.91 (f), Williams Generating Station, Goose Creek, South Carolina. TRC Environmental Corporation (TRC), September 29, 2023.