

Coal Combustion Residuals Unit Inflow Design Flood Control System Plan

Virginia Electric and Power Company Chesterfield Power Station Upper (East) Pond Chesterfield County, Virginia

> GAI Project Number: C1500035.00 October 2016

Prepared for: Virginia Electric and Power Company 5000 Dominion Boulevard Glen Allen, Virginia 23060

Prepared by: GAI Consultants, Inc. Richmond Office 4198 Cox Road, Suite 114 Glen Allen, Virginia 23060

Table of Contents

1.0	Introduction								
2.0	Purpos	e	3	; -					
3.0	 Initial Inflow Design Flood Control System Plan 3.1 Site Configuration 3.2 Flow Into the Upper (East) Pond 3.3 Flow From the Upper (East) Pond 3.4 Surface Water Requirements 								
4.0	Conclusion5 -								
5.0	Refere	nces	6) -					
Table Table	1 2	Summary Summary	of Channel Geometries and Capacities - of Culvert Properties and Capacities						
Drawi	ng	E1-114	Plan View – Existing Conditions						
Apper	ndix A	Hydrologi	c and Hydraulic Assessment						

© 2016 GAI Consultants

Certification/Statement of Professional Opinion

The Coal Combustion Residuals CCR Unit Inflow Design Flood Control System Plan (Plan) for the -Chesterfield Power Station Upper (East) Pond was prepared by GAI Consultants, Inc. (GAI). The Plan was based on certain information that, other than for information GAI originally prepared, GAI has relied on but not independently verified. This Certification/Statement of Professional Opinion is therefore limited to the information available to GAI at the time the Plan was written. On the basis of and subject to the foregoing, it is my professional opinion as a Professional Engineer licensed in the -Commonwealth of Virginia that the Plan has been prepared in accordance with good and accepted engineering practices as exercised by other engineers practicing in the same discipline(s), under similar circumstances, at the same time, and in the same locale. It is my professional opinion that the Plan was prepared consistent with the requirements of § 257.82(c) of the United States Environmental -Protection Agency's "Standards for the Disposal of Coal Combustion Residuals in Landfills and Surface -Impoundments," published in the Federal Register on April 17, 2015 with an effective date of October -19, 2015 (40 CFR 257 Subpart D). -

The use of the words "certification" and/or "certify" in this document shall be interpreted and - construed as a Statement of Professional Opinion and is not and shall not be interpreted or construed - as a guarantee, warranty or legal opinion. -

GAI Consultants, Inc.

Kévin M. Bortz, P.E. -Assistant Engineering Manager -

Acronyms

Coal Combustion Residuals
"Standards for the Disposal of Coal Combustion Residuals in Landfills and Surface Impoundments," 40 CFR 257 Subpart D (2015)
Code of Federal Regulations
Virginia Department of Environmental Quality
Virginia Electric and Power Company d/b/a Dominion
United States Environmental Protection Agency
GAI Consultants, Inc.
Hydrologic and Hydraulic
Inflow Design Flood Control System
CCR Unit Inflow Design Flood Control System Plan
Dominion Chesterfield Power Station
Upper (East) Pond
Virginia Pollutant Discharge Elimination System
Virginia Pollutant Discharge Elimination System Permit No. VA0004146

1.0 Introduction

The Chesterfield Power Station (Station) is owned by Virginia Electric and Power Company d/b/a Dominion Virginia Power (Dominion) and is located in Chesterfield, VA. The Station includes the Upper (East) Pond (UEP) impoundment, which is used for the long term storage of coal combustion residuals (CCR).

The UEP is located on Dominion property at the Chesterfield Power Station in Chesterfield County, Virginia (coordinates 37° 22' 15.2" North and 77° 22' 8.3" West) and is bounded by the Old Channel of the James River on the south, Henricus Historical Park on the east, and Aiken Swamp on the north.

The UEP is regulated as an existing CCR surface impoundment under the Environmental Protection Agency's "Standards for the Disposal of Coal Combustion Residuals in Landfills and Surface Impoundments" [40 CFR 257 Subpart D] published in the Federal Register on April 17, 2015 with an effective date of October 19, 2015 (CCR Rule). The UEP is currently regulated by Virginia Department of Environmental Quality (DEQ) Virginia Pollutant Discharge Elimination System Permit No. VA0004146 (VPDES Permit).

2.0 Purpose

This CCR Unit Inflow Design Flood Control System Plan (Plan) is prepared pursuant to § 257.82(c) of the CCR Rule [40 CFR § 257.82(c)].

3.0 Initial Inflow Design Flood Control System Plan

In accordance with § 257.73(a)(2), an initial Hazard Potential Classification was prepared for the UEP under current conditions. The UEP was determined to be a "significant hazard potential" CCR impoundment (GAI Consultants, 2016). As required by § 257.82(a)(3), the inflow design flood for a significant hazard potential CCR surface impoundment is a 1,000-year flood.

As required by § 257.82(c)(1), this Plan includes:

- Documentation of how the inflow design flood control system (IDFCS) has been designed, constructed, operated, and maintained to adequately manage flow into the UEP during and following the peak discharge of the inflow design flood [§ 257.82(a)(1)];
- Documentation of how the IDFCS has been designed, constructed, operated, and maintained to adequately manage flow from the UEP so as to collect and control the peak discharge resulting from the inflow design flood [§ 257.82(a)(2)]; and
- Documentation of how the IDFCS has been designed, constructed, operated, and maintained to adequately address the requirements of § 257.3-3 [§ 257.82(b)].

3.1 Site Configuration

The UEP consists of earthen embankments and stored CCR contained within the embankments. Perimeter channels convey stormwater runoff to a stormwater sediment pond situated at the east end of the UEP. The stormwater sediment pond discharges through VPDES Permit Outfall 005. Drawing E1-114 depicts existing conditions at the UEP.

3.2 Flow Into the Upper (East) Pond

The UEP embankment crest is at approximate elevation 41 at its lowest point, and the crest ranges from three feet to 35 feet above the approximate surrounding ground elevation. As such, there is no stormwater flow into the UEP and no need for a corresponding control system. The criteria established in § 257.82(a)(1) are therefore met.

3.3 Flow From the Upper (East) Pond

Interior perimeter channels and culverts, in conjunction with the stormwater sediment pond, comprise the IDFCS for the UEP. Drawing E1-114 depicts existing conditions at the UEP and identifies the interior perimeter channels and culverts and the stormwater sediment pond.

The bottom elevation of the stormwater sediment pond is at approximately 26 feet and the top of stormwater sediment pond containment (coincident with the UEP embankment crest) is at approximate minimum elevation 41 feet. Discharge from the stormwater sediment pond is controlled by a principal spillway riser tower structure, which is a 6 foot by 6 foot square concrete box. The tower structure is fitted with six 16-inch diameter flanged pipe openings (with five being available for discharge) with the lowest available opening at invert elevation 28.33 feet (Virginia Power, 1992). The principal spillway outfall pipe is a 24-inch diameter concrete pipe, which discharges to VPDES Permit Outfall 005.

In this Plan, management of the inflow design flood is defined as having the capacity to convey the peak discharge resulting from the flood. The capacity of each stormwater runoff control feature was evaluated and compared to the peak discharge resulting from the inflow design flood (1,000-year flood). Hydrologic and hydraulic (H&H) analyses are contained in Appendix A. Information for the components of the IDFCS was obtained from the 2003 Closure Plan, "New Ash Pond Stop Log Conversion, DCR-91-20" (Virginia Power, 1992), site topographic mapping, and site observations. Constructed geometry for the interior perimeter channels and culverts is summarized in Table 1 and Table 2 respectively, along with the 1,000-year peak discharges and capacities.

Interior Perimeter Channel	Segment Number	Lining	Channel Slope (ft/ft)	Bottom Width (ft)	Depth* (ft)	Side Slopes (Left, Right H:1V)	1,000 year peak discharge (cubic feet per second)**	Capacity (cubic feet per second)**
	1	Grass	0.005	10	2.7	3,3	170	212
North Perimeter Channel	2	Concrete	0.005	4	1	2,3	223	2,224
	3	Concrete	0.005	6	5	2,2	295	5,562
West Perimeter Channel	1	Grass	0.005	12	1.6	3,2	25	139
	1	Grass	0.005	0	3	3,5	73	119
South Parimeter Channel	2	Concrete	0.005	4	1	3,2	160	806
	3	Concrete	0.005	4	1	3,2	310	1,984
	4	Concrete	0.005	4	2	3,2	424	7,415

 Table 1

 Summary of Channel Geometry and Capacities

*For concrete channels, depth listed is the depth of concrete. Capacity listed includes grassed conveyance above - the top of the concrete lining. -

** Discharge and capacity are listed for the downstream end of a channel reach. -

Culvert	Material	Diameter (ft)	Length (ft)	Culvert Slope (ft/ft)	1,000 year peak discharge (cubic feet per second)	Capacity (cubic feet per second)
East Culvert	CMP	5.5	400	0.005	295	325*
West Culvert	Concrete Ductile Iron	2.5 1.0	140 140	0.005 0.005	25	35
South Culvert	CMP	5.0	360	0.005	424	470*

 Table 2

 Summary of Culvert Properties and Capacities

* Capacity includes overflow channel to stormwater sediment pond.

The analyses indicate that all interior perimeter channels and culverts that are part of the IDFCS are capable of passing the peak discharge from the 1,000-year flood.

The UEP stormwater sediment pond was modeled for its performance during a 1,000-year flood. Appendix A contains calculations and results of the modeling. The model shows that the pool in the stormwater sediment pond from a 1,000-year flood would attain an estimated peak water surface elevation of 39.58 feet. The UEP embankment crest provides containment from the stormwater sediment pond pool and has a minimum containment at approximate elevation 41 feet.

Channels, culverts, and the stormwater sediment pond are routinely inspected (Dominion, 2014). These inspections meet the IDFCS requirements for maintenance in the CCR Rule.

3.4 Surface Water Requirements

40 CFR 257.3-3 states that "a facility shall not cause a discharge of pollutants into waters of the United States that is in violation of the National Pollutant Discharge Elimination System (NPDES) under section 402 of the Clean Water Act, as amended." DEQ administers the NPDES program in Virginia under the VPDES program. The UEP is regulated under an existing VPDES Permit. Discharges from the UEP are limited and monitored in accordance with the requirements in the VPDES permit, which functions to satisfy the requirements of § 257.82(b) of the CCR Rule.

4.0 Conclusion

It is GAI's opinion, based on a review of available material and additional analyses performed for this Plan, that the existing UEP Inflow Design Flood Control System is in compliance with the requirements in § 257.82 of the CCR Rule for a significant hazard impoundment.

5.0 References

Dominion. 2014. Report of 2014 Safety Inspection, Chesterfield Power Station Upper Ash Pond Dam.

- GAI Consultants Inc. 2015. Dominion Chesterfield Power Station, Upper (East) Pond-Max Drawdown-Stability.
- GAI Consultants Inc. 2016. Initial Hazard Potential Classification Assessment Report, Upper (East) Pond, Chesterfield Power Station, Chesterfield County, Virginia.
- United States Environmental Protection Agency. 2015. *40 CFR Parts 257 and 261 Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule.* April 17, 2015.

Virginia Department of Environmental Quality. Virginia Pollutant Discharge Elimination System (VPDES) - Permit No. VA0004146. -

Virginia Power. 1992. New Ash Pond Stop Log Conversion, DCR-91-20., January 1992. -

DRAWING -

APPENDIX A Hydrologic and Hydraulic Assessment

APPENDIX A

TABLE OF CONTENTS:

SHEET*

1 of 76

Objective	2
Methodology	2
References	2
Rainfall Data	3
Curve Numbers	3
Time of Concentration Data	4
Summary of Hydraulic Calculations	4
Attachment 1 – Drainage Area Map	6
Attachment 2 – Stage-Discharge for Pond	8
Attachment 3 – Hydraflow Routing	10
Attachment 2 – Hydraulic Capacity for Channels	37
Attachment 3 – Hydraulic Capacity for Culverts	62

*Appendix sheet numbers correspond to *italic* numbers in the upper right hand corner of each page.

SUBJECT	CHESTERFIELD	POWE	R STATION-	<u>UPPER (EAS</u>	T) POND	10
	HYDROLOGIC A	ND HYE	DRAULIC CA	PACITY ASS	ESSMENT	
BY B	ERKEME	DATE_	10/05/2016	PROJ. NO.	<u>C150035.00</u>	
CHKD. BY	URBANCE	DATE_	10/07/2016			gai consultants

OBJECTIVE:

The purpose of this assessment is to estimate the hydrologic and hydraulic (H&H) capacity for the current site configuration at the Chesterfield Power Station's Upper (East) Pond (UEP) for the inflow design flood event to show compliance with the updated CCR Rule.

Section 257.82 of the Environmental Protection Agency (EPA) Coal Combustion Residual (CCR) Rule established in April 2015 states that "the inflow design flood control system (for CCR surface impoundments) must adequately manage flow into the Impoundment during and following the peak discharge of the inflow design flood." The UEP (CCR) Impoundment is regulated as a significant hazard CCR surface impoundment, and per the CCR Rule, the inflow design flood is the 1,000-year event.

This calculation will estimate peak discharges for the 1,000-year event for surface runoff control structures (channels, culverts, and stormwater sediment pond) that control and contain stormwater discharge from the impoundment. The peak discharges will be compared to calculated hydraulic capacity for each structure to demonstrate compliance with the CCR Rule.

METHODOLOGY:

Drainage areas to site features requiring evaluation were delineated using project mapping. A Drainage Area Map is included in these calculations (sheet 7). Under the inflow design flood, benches were assumed to be ineffective as diversions when delineating watersheds. The Natural Resources Conservation Service (NRCS) TR-55 method and the computer program Hydraflow Hydrographs were utilized to estimate peak flow rates to each runoff control structure. Hydraflow calculations are included as Attachment 2 to this calculation. Rainfall data for the site location were obtained from NOAA Atlas 14.

REFERENCES

- 1. TR-55, Urban Hydrology For Small Watersheds, Natural Resources Conservation Services, June 1986.
- 2. NOAA Atlas 14. Rainfall data for Dutch Gap Conservation Area, Accessed 12/10/2015 (for Closure Plan Calculations).
- 3. Hydraflow Hydrographs Extension for AutoCAD Civil 3D. Version 10 by Autodesk, Inc. 2013
- 4. Tuck Mapping As-Built Contour Data. March 3, 2016.
- 5. Upper (East) Pond Max Drawdown Stability Calculation, GAI Consultants Inc., December 17, 2015.

SUBJECT	CHESTERFIELD	POWE	R STATION-	<u>UPPER (EAS</u>	ST) POND	(0
	HYDROLOGIC A	ND HY	DRAULIC CA	PACITY ASS	SESSMENT	_
BY BI	ERKEME	DATE_	10/05/2016	PROJ. NO.	<u>C150035.00</u>	
CHKD. BY	URBANCE	DATE_	10/07/2016			gai consultants

3 of 76

- 6. Revised Closure Plan, Upper (East) Pond, Chesterfield Power Station, Chesterfield County, Virginia. GAI Consultants, Inc. 2003.
- 7. Closure Plan Drawings, Upper East Pond, Chesterfield Power Station, Chesterfield County, Virginia. GAI Consultants, Inc. 1997.
- 8. Survey from D & M Surveyors P.C., September 29, 2016.

RAINFALL DATA:

Rainfall data for the site were obtained from Reference 2. These values are summarized below:

2-year, 24-hour event = 3.36 in (for use in Time of Concentration Calculation) 1,000-year, 24-hour event = 13.1 in

PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches) ¹											
Duration	Average recurrence interval (years)										
Duration	1	2	5	10	25	50	100	200	500	1000	
24-hr	2.78 (2.54-3.06)	3.36 (3.08-3.71)	4.31 (3.93-4.76)	5.11 (4.65-5.64)	6.31 (5.69-6.94)	7.33 (6.57-8.05)	8.45 (7.52-9.27)	9.70 (8.55-10.6)	11.6 (10.0-12.6)	13.1 (11.3-14.4)	

CURVE NUMBERS:

The following curve numbers used in the H&H Calculations of Reference 6 were also used for this assessment:

The following curve numbers were used to represent the site conditions currently present:

Coal Combustion Residuals (CCR)	=	85
Vegetated Final Soil Cover (good condition)	=	74
Gravel Haul Roads	=	89

SUBJECT	CHESTERFIELD	POWER S	TATION-L	<u>JPPER (EAS</u>	T) POND		10
	HYDROLOGIC A	ND HYDRA		PACITY ASS	ESSMENT		
BY B	ERKEME	DATE <u>10/</u>	/05/2016	PROJ. NO.	<u>C150035.00</u>	<u>)</u>	
CHKD. BY	URBANCE	DATE <u>10/</u>	/07/2016				gai consultants

4 of 76

Water (Stormwater Sediment Pond) = 98

The Hydraflow model was used to calculate a composite curve number for each watershed.

TIME OF CONCENTRATION DATA:

Time of concentration (TOC) flow paths were estimated within the Hydraflow model using the methods provided in TR-55, incorporating sheet flow, shallow concentrated flow, and channel flow segments. Slopes and channel dimensions were estimated from the project mapping which was developed from survey information (Reference 4). A minimum TOC of 6 minutes was used. The following roughness coefficients were used in the sheet flow calculations (Reference 6):

CCR (No Vegetation)	=	0.03
Final Cover with Good Vegetation	=	0.24

Channel geometry and Manning's values for use in the TOC calculations were taken from Reference 6.

SUMMARY OF HYDRAULIC CALCULATIONS:

Capacity of the channels was estimated using the computer program Bentley FlowMaster (v8i), and capacity of the culverts was estimated using the Federal Highway Administration (FHWA) software HY-8. Channel dimensions and culvert properties were taken from References 4, 6, 7, and 8. Cross sections for each channel segment were taken at the downstream end of the channel segment where the entire watershed has contributed runoff. The stormwater sediment pond was modeled in Hydraflow, using the average end area method to estimate storage. Contour areas were estimated from Reference 4. The following Information on the pond's outlet structures was taken from References 5, 6, and 7 and entered into the Hydraflow model:

- Pond outfall culvert is 24-inches in diameter, with an inlet invert elevation of 12.0' and an outlet invert elevation of 7.6'. The length of the culvert is approximately 192' (Reference 7).
- The riser tower has a crest elevation of 44.0 feet, and the inside of the riser is a 6 foot by 6 foot square (Reference 6).
- The riser has five open 16-inch diameter orifices with inverts at the following elevations 28.33 feet, 32.66 feet, 35.33 feet, 38.58 feet, and 41.41 feet (Reference 5).
- The embankment is at elevation 41.00 ft (Reference 7).

SUBJECT	CHESTERFIELD	POWER STATION-UPPER	<u>≀ (EAS</u>	T) POND	 (0
	HYDROLOGIC A	ID HYDRAULIC CAPACIT	<u>Y ASS</u>	ESSMENT	
BY <u>B</u>	BERKEME	DATE <u>10/05/2016</u> PROJ	. NO.	<u>C150035.00</u>	
CHKD. BY	URBANCE	DATE <u>10/07/2016</u>			gai consultants

A summary of results is provided in Table 1 and Table 2.

Table 1: Summary of Channel/Culvert Hydraulic Capacity

Culvert/Channel	1,000 year peak flow rate (cfs)	Capacity (cfs)
North Perimeter Channel Segment 1	170	212
North Perimeter Channel Segment 2	223	2,224
North Perimeter Channel Segment 3	295	5,562
South Perimeter Channel Segment 1	73	119
South Perimeter Channel Segment 2	160	806
South Perimeter Channel Segment 3	310	1,984
South Perimeter Channel Segment 4	424	7,415
West Perimeter Channel	25	139
East Culvert (North Perimeter Channel)	295	325
West Culvert (West Perimeter Channel)	25	35
South Culvert (South Perimeter Channel)	424	470

Table 2: Stormwater Sediment Basin Hydraulic Capacity

Pond	1,000 year Water Surface Elevation (ft)	Embankment Crest/Allowable WSE (ft)
Stormwater Sediment Pond	39.58	41.00

5 of 76

6 of 76

ATTACHMENT 1

DRAINAGE AREA MAP

DARY	<u> </u>						
roads alc Ied.	OADS ALONG THE SOUTH POND ED.						
ED DURING	G CONSTRUCTION ACTIVITIES						
DEPICTS AN	NTICIPATED CONDITIONS ON						
1" = 12	1" = 120'						
120	240						
ROVED BY:	GAI FILE NUMBER:						
	MBB H&H Worksheet-REV						
SUE DATE:	ALT./CLIENT DRAWING NUMBER:						
//							
//	GAI DRAWING NUMBER:						
-//	GAI DRAWING NUMBER: E1-002						
//	GAI DRAWING NUMBER: E1-002						

____ · ___ · ____

_____X _____

------ OHE ------

——— UE ———

———— BP ————

LEGEND:

N3660000

HENRICUS HISTORICAL PARK N3661500 - EXISTING VPDES OUTFALL 005 ELEV. 7.6' N3661000 N3660500

N3662000

8 of 76

ATTACHMENT 2

STAGE-DISCHARGE FOR POND

SUBJECT CHESTERFIELD POWER STATION-UPPER (EAST) POND

HYDROLOGIC AND HYDRAULIC CAPACITY ASSESSMENT

URBANCE DATE 06/15/2016 PROJ. NO. C150035.00

CHKD. BY BERKEME DATE 06/15/2016

ΒY

gai consultants

1

Chesterfield

SEDIMENTATION POND STAGE-DISCHARGE ANALYSIS

									Head on									Total
	Head on	Flow in	fifth	Flow in		Orifice					Allowable	Orifice						
	first	first	second	second	third	third	fourth	fourth	orifice	fifth	Head on	Flow in	Weir Flow in	Net Flow in	Head on		Flow in	Flow
Elev (ft)	orifice row	row (cfs)	row	row (cfs)	riser	Riser	Riser	Riser	Outlet Pipe	V^2 / 2g	Outlet Pipe	(cfs)						
26.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	7.00	2.19	149.30	0.00
30	1.00	6.73	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	11.00	3.44	187.15	6.73
31	2.00	9.52	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	12.00	3.76	195.48	9.52
32	3.00	11.65	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	13.00	4.07	203.46	11.65
33	4.00	13.45	0.00	0.71	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	14.00	4.38	211.14	14.16
34	5.00	15.04	0.67	5.52	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	15.00	4.70	218.55	20.55
35	6.00	16.47	1.67	8.70	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	16.00	5.01	225.72	25.17
36	7.00	17.79	2.67	10.99	0.00	1.96	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	17.00	5.32	232.66	30.74
37	8.00	19.02	3.67	12.89	1.00	6.73	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	18.00	5.64	239.41	38.64
38	9.00	20.17	4.67	14.53	2.00	9.52	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	19.00	5.95	245.97	44.22
39	10.00	21.26	5.67	16.01	3.00	11.65	0.00	0.97	0.00	0.00	0.00	0.00	0.00	0.00	20.00	6.26	252.36	49.90
40	11.00	22.30	6.67	17.37	4.00	13.45	0.75	5.84	0.00	0.00	0.00	0.00	0.00	0.00	21.00	6.58	258.59	58.96
41	12.00	23.29	7.67	18.62	5.00	15.04	1.75	8.90	0.00	0.00	0.00	0.00	0.00	0.00	22.00	6.89	264.67	65.86
	Orifice		Orifice		Orifice		Orifice		Orifice		RISER DATA				BARREL			
															HDPE - n =	0.011		
	Circular - 16	5"	Circular - 16		Circular - 16	"	Circular - 16	6"	Circular -	16"	Crest	44			Diameter (ft)	2		
	Invert	28.33	Invert	32.66	Invert	35.33	Invert	38.58	Invert	41.41	Area (sf)	36.00			Inlet Invert	12		
	Diam (in)	16.000	Diam (in)	16.000	Perimeter (ft)	24.00			Outlet Invert	7.6								
	Area (sf)	1.396	Area (sf)	1.396	Weir C	3.33			Outlet TW	19.00								
	centroid el.	29.00	centroid el.	33.33	centroid el.	36.00	centroid el.	39.25	centroid e	42.08	Orifice C	0.6			Area (sf)	12.57		
	С	0.6	С	0.6	С	0.6	С	0.6	С	0.6					Length (ft)	192		
	No. holes	1	No. holes	1					Ke	0.5								
L.											1				R (ft)	0.5		

The outlet pipe calculation is based on outlet control The equation used is the outlet control equation in HDS - 5: H = (1 + Ke + (29 * n^2 * L)/R^1.33) * V^2 / 2g

10 of 76

ATTACHMENT 3

HYDRAFLOW ROUTING

Watershed Model Schematic

11 of 76

Hydrograph Summary Report

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	72.81	1	717	155,489				South Perimeter Channel 1
2	SCS Runoff	86.36	1	717	184,418				South Perimeter Channel 2
3	Combine	159.17	1	717	339,907	1, 2			SPC 2 Total
4	SCS Runoff	272.18	1	734	1,233,292				South Perimeter Channel 3
5	Combine	309.81	1	719	1,573,200	3, 4			Total flow to South Perimeter Channe
6	SCS Runoff	135.94	1	737	666,227				South Perimeter Channel 4
7	Combine	424.60	1	734	2,239,426	5, 6			South Perimeter Total
8	SCS Runoff	25.40	1	717	54,240				West Perimeter Channel (West Culve
9	SCS Runoff	147.25	1	721	403,196				North Perimeter Channel 1
10	Combine	168.27	1	720	457,436	8, 9			NPC 1 Total
11	SCS Runoff	74.16	1	730	288,896				North Perimeter Channel 2
12	Combine	223.01	1	721	746,334	10, 11			NPC 2 Total
13	SCS Runoff	94.52	1	731	384,385				North Perimeter Channel 3
14	Combine	294.52	1	722	1,130,716	12, 13			North Perimeter Channel Total
15	SCS Runoff	247.03	1	726	887,493				Temporary Sed Pond
16	Combine	898.08	1	723	4,257,634	7, 14, 15			Total To Sed Pond
17	Reservoir	55.19	1	859	3,653,877	16	39.58	3,247,439	<no description=""></no>
					No	te: Hvdra	flow does r	l ot have an	
					inp	ut option	for a 1,000	yr return	
					inte	erval, so t	the 1,000yr	rainfall was	5
					period.				
					P.S.				
Che	esterfield Hydr	aulic Cap	bacity RE	EV-1000yr	g pæ turn P	eriod: 10 Y	′ear	Tuesday, 00	6 / 14 / 2016

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Hyd. No. 1

South Perimeter Channel 1

Hydrograph type	= SCS Runoff	Peak discharge	= 72.81 cfs
Storm frequency	= 10 yrs	Time to peak	= 717 min
Time interval	= 1 min	Hyd. volume	= 155,489 cuft
Drainage area	= 4.300 ac	Curve number	= 74*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 6.00 min
Total precip.	= 13.10 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(3.600 x 85) + (7.300 x 74)] / 4.300

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Hyd. No. 2

South Perimeter Channel 2

Hydrograph type	= SCS Runoff	Peak discharge	= 86.36 cfs
Storm frequency	= 10 yrs	Time to peak	= 717 min
Time interval	= 1 min	Hyd. volume	= 184,418 cuft
Drainage area	= 5.100 ac	Curve number	= 74
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 6.00 min
Total precip.	= 13.10 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Tuesday, 06 / 14 / 2016

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Hyd. No. 3

SPC 2 Total

Hydrograph type	= Combine	Peak discharge	 = 159.17 cfs = 717 min = 339,907 cuft = 9.400 ac
Storm frequency	= 10 yrs	Time to peak	
Time interval	= 1 min	Hyd. volume	
Inflow hyds.	= 1, 2	Contrib. drain. area	
innow nyas.	= 1, 2	Contrib. drain. area	= 9.400 ac

Tuesday, 06 / 14 / 2016

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Hyd. No. 4

South Perimeter Channel 3

Hydrograph type	= SCS Runoff	Peak discharge	= 272.18 cfs
Storm frequency	= 10 yrs	Time to peak	= 734 min
Time interval	= 1 min	Hyd. volume	= 1,233,292 cuft
Drainage area	= 33.200 ac	Curve number	= 78*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 34.10 min
Total precip.	= 13.10 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(10.600 x 85) + (22.600 x 74)] / 33.200

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Hyd. No. 4

South Perimeter Channel 3

Description	<u>A</u>		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.240 = 100.0 = 3.36 = 2.50 = 12.74	+	0.011 0.0 0.00 0.00 0.00	+	0.011 0.0 0.00 0.00 0.00	=	12.74
Shallow Concentrated Flow							
Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 507.00 = 0.10 = Unpaved =0.51	ł	202.00 0.50 Unpave 1.14	d	163.00 33.00 Unpave 9.27	ed	
Travel Time (min)	= 16.56	+	2.95	+	0.29	=	19.81
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 114.00 = 37.00 = 0.50 = 0.035 =6.40		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.035 0.00		
Flow length (ft)	({0})600.0		0.0		0.0		
Travel Time (min)	= 1.56	+	0.00	+	0.00	=	1.56
Total Travel Time, Tc							34.10 min

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Hyd. No. 5

Total flow to South Perimeter Channel 3

Hydrograph type	= Combine= 10 yrs= 1 min	Peak discharge	= 309.81 cfs
Storm frequency		Time to peak	= 719 min
Time interval		Hyd. volume	= 1,573,200 cuft
Inflow hyds.	= 3, 4	Contrib. drain. area	= 33.200 cult = 33.200 ac

Tuesday, 06 / 14 / 2016

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Hyd. No. 6

South Perimeter Channel 4

Hydrograph type	= SCS Runoff	Peak discharge	= 135.94 cfs
Storm frequency	= 10 yrs	Time to peak	= 737 min
Time interval	= 1 min	Hyd. volume	= 666,227 cuft
Drainage area	= 19.000 ac	Curve number	= 74
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 40.50 min
Total precip.	= 13.10 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Hyd. No. 6

South Perimeter Channel 4

Description	<u>A</u>		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%) Travel Time (min)	= 0.240 = 100.0 = 3.36 = 1.00 = 18.38	+	0.011 0.0 3.36 0.00 0.00	+	0.011 0.0 0.00 0.00 0.00	=	18.38
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 603.00 = 0.10 = Unpaved =0.51		208.00 33.00 Unpave 9.27	d	0.00 0.00 Paved 0.00		
Travel Time (min)	= 19.70	+	0.37	+	0.00	=	20.07
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 239.00 = 53.00 = 0.50 = 0.034 =8.50		0.00 0.00 0.00 0.034 0.00		0.00 0.00 0.00 0.035 0.00		
Flow length (ft)	({0})1023.0		0.0		0.0		
Travel Time (min)	= 2.01	+	0.00	+	0.00	=	2.01
Total Travel Time, Tc							40.50 min

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Hyd. No. 7

South Perimeter Total

Hydrograph type Storm frequency	= Combine = 10 yrs	Peak discharge Time to peak	= 424.60 cfs = 734 min
Time interval	= 1 min	Hyd. volume	= 2,239,426 cuft
Inflow hyds.	= 5,6	Contrib. drain. area	= 19.000 ac
innow nyus.	= 5, 0	Contrib. Grain. area	= 19.000 ac

Tuesday, 06 / 14 / 2016

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Hyd. No. 8

West Perimeter Channel (West Culvert)

Hydrograph type	= SCS Runoff	Peak discharge	= 25.40 cfs
Storm frequency	= 10 yrs	Time to peak	= 717 min
Time interval	= 1 min	Hyd. volume	= 54,240 cuft
Drainage area	= 1.500 ac	Curve number	= 74
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 6.00 min
Total precip.	= 13.10 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

22 of 76

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Hyd. No. 9

North Perimeter Channel 1

Hydrograph type =	SCS Runoff	Peak discharge	= 147.25 cfs
Storm frequency =	= 10 yrs	Time to peak	= 721 min
Time interval =	= 1 min	Hyd. volume	= 403,196 cuft
Drainage area =	= 10.200 ac	Curve number	= 84*
Basin Slope =	= 0.0 %	Hydraulic length	= 0 ft
Tc method =	= TR55	Time of conc. (Tc)	= 12.40 min
Total precip. =	= 13.10 in	Distribution	= Type II
Storm duration =	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(4.300 x 85) + (0.630 x 89) + (5.270 x 74)] / 10.200

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Hyd. No. 9

North Perimeter Channel 1

<u>Description</u>	A		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.030 = 100.0 = 3.36 = 2.00		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 2.64	+	0.00	+	0.00	=	2.64
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 116.00 = 2.00 = Unpaved =2.28	d	211.00 0.50 Unpave 1.14	d	0.00 0.00 Paved 0.00		
Travel Time (min)	= 0.85	+	3.08	+	0.00	=	3.93
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 4.50 = 4.80 = 10.00 = 0.040 =11.28		18.00 15.00 0.50 0.040 2.98		0.00 0.00 0.00 0.015 0.00		
Flow length (ft)	({0})540.0		903.0		0.0		
Travel Time (min)	= 0.80	+	5.06	+	0.00	=	5.85
Total Travel Time, Tc							12.40 min

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Hyd. No. 10

NPC 1 Total

Hydrograph type	= Combine	Peak discharge	= 168.27 cfs
Storm frequency	= 10 yrs	Time to peak	= 720 min
Time interval	= 1 min	Hyd. volume	= 457,436 cuft
Inflow hyds.	= 8, 9	Contrib. drain. area	= 11.700 ac
	-, -		

25 of 76
Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Hyd. No. 11

North Perimeter Channel 2

Hydrograph type =	SCS Runoff	Peak discharge	= 74.16 cfs
Storm frequency =	= 10 yrs	Time to peak	= 730 min
Time interval =	1 min	Hyd. volume	= 288,896 cuft
Drainage area =	8.300 ac	Curve number	= 74
Basin Slope =	0.0 %	Hydraulic length	= 0 ft
Tc method =	• TR55	Time of conc. (Tc)	= 27.70 min
Total precip. =	: 13.10 in	Distribution	= Type II
Storm duration =	24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Hyd. No. 11

North Perimeter Channel 2

Description	<u>A</u>		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.240 = 100.0 = 3.36 = 2.00		0.011 0.0 0.00 0.00		0.011 0.0 3.90 0.00		40.00
Travel Time (min)	= 13.93	+	0.00	+	0.00	=	13.93
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 23.00 = 17.00 = Unpaved =6.65	d	345.00 0.10 Unpave 0.51	d	71.00 33.00 Unpave 9.27	d	
Travel Time (min)	= 0.06	+	11.27	+	0.13	=	11.45
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 11.50 = 23.20 = 1.00 = 0.040 =2.33		12.00 11.00 33.00 0.015 60.49		114.00 36.00 0.50 0.032 7.13		
Flow length (ft)	({0})155.0		143.0		495.0		
Travel Time (min)	= 1.11	+	0.04	+	1.16	=	2.31
Total Travel Time, Tc							27.70 min

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Hyd. No. 12

NPC 2 Total

Hydrograph type	= Combine	Peak discharge	= 223.01 cfs
Storm frequency	= 10 yrs	Time to peak	= 721 min
Time interval	= 1 min	Hyd. volume	= 746,334 cuft
Inflow hyds.	= 10, 11	Contrib. drain. area	= 8.300 ac
- J	- /		

Tuesday, 06 / 14 / 2016

28 of 76

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Hyd. No. 13

North Perimeter Channel 3

Hydrograph type	= SCS Runoff	Peak discharge	= 94.52 cfs
Storm frequency	= 10 yrs	Time to peak	= 731 min
Time interval	= 1 min	Hyd. volume	= 384,385 cuft
Drainage area	= 10.800 ac	Curve number	= 75*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 29.20 min
Total precip.	= 13.10 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.700 x 89) + (10.100 x 74)] / 10.800

Tuesday, 06 / 14 / 2016

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Hyd. No. 13

North Perimeter Channel 3

Description	Δ		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%) Travel Time (min)	= 0.240 = 100.0 = 3.36 = 2.00 = 13.93	+	0.011 0.0 0.00 0.00 0.00	+	0.011 0.0 0.00 0.00 0.00	=	13.93
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 23.00 = 17.00 = Unpaved =6.65	d	345.00 0.10 Unpave 0.51	d	71.00 33.00 Paved 11.68		
Travel Time (min)	= 0.06	+	11.27	+	0.10	=	11.43
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 11.50 = 23.20 = 1.00 = 0.040 =2.33		12.00 11.00 33.00 0.015 60.49		264.00 55.00 0.50 0.033 9.13		
Flow length (ft)	({0})155.0		143.0		1450.0		
Travel Time (min)	= 1.11	+	0.04	+	2.65	=	3.80
Total Travel Time, Tc							29.20 min

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Hyd. No. 14

North Perimeter Channel Total

Hydrograph type= CombinePeak discharge= 294.Storm frequency= 10 yrsTime to peak= 722Time interval= 1 minHyd. volume= 1,13Inflow hyds.= 12, 13Contrib. drain. area= 10.8	?94.52 cfs 722 min 1,130,716 cuft 10.800 ac
---	--

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Hyd. No. 15

Temporary Sed Pond

Hydrograph type =	SCS Runoff	Peak discharge :	= 247.03 cfs
Storm frequency =	10 yrs	Time to peak :	= 726 min
Time interval =	1 min	Hyd. volume :	= 887,493 cuft
Drainage area =	22.300 ac	Curve number :	= 84*
Basin Slope =	0.0 %	Hydraulic length :	= 0 ft
Tc method =	TR55	Time of conc. (Tc)	= 22.10 min
Total precip. =	13.10 in	Distribution :	= Type II
Storm duration =	24 hrs	Shape factor :	= 484

* Composite (Area/CN) = [(6.800 x 100) + (15.500 x 74)] / 22.300

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Hyd. No. 15

Temporary Sed Pond

Description	A		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%) Travel Time (min)	= 0.240 = 100.0 = 3.36 = 1.00 = 18.38	+	0.011 0.0 0.00 0.00 0.00	+	0.011 0.0 0.00 0.00 0.00	=	18.38
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 322.00 = 1.00 = Unpave =1.61	d	33.00 6.00 Unpave 3.95	ed	156.00 33.00 Unpave 9.27	ed	
Travel Time (min)	= 3.33	+	0.14	+	0.28	=	3.75
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.00 = 0.00 = 0.015 =0.00		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015 0.00		
Flow length (ft)	({0})0.0		0.0		0.0		
Travel Time (min)	= 0.00	+	0.00	+	0.00	=	0.00
Total Travel Time, Tc							22.10 min

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Hyd. No. 16

Total To Sed Pond

Hydrograph type=Storm frequency=Time interval=Inflow hyds.=	= Combine	Peak discharge	= 898.08 cfs
	= 10 yrs	Time to peak	= 723 min
	= 1 min	Hyd. volume	= 4,257,634 cuft
	= 7, 14, 15	Contrib. drain. area	= 22.300 ac
	- 7, 14, 15		- 22.300 ac

Tuesday, 06 / 14 / 2016

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Hyd. No. 17

<no description>

Hydrograph type	= Reservoir	Peak discharge	= 55.19 cfs
Storm frequency	= 10 yrs	Time to peak	= 859 min
Time interval	= 1 min	Hyd. volume	= 3,653,877 cuft
Inflow hyd. No.	= 16 - Total To Sed Pond	Max. Elevation	= 39.58 ft
Reservoir name	= SW Sed Pond (with Rating Cu	ı Ma x. Storage	= 3,247,439 cuft

Storage Indication method used. Wet pond routing start elevation = 28.00 ft.

Tuesday, 06 / 14 / 2016

Pond Report

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Pond No. 6 - SW Sed Pond (with Rating Curve)

Pond Data

Contours -User-defined contour areas. Average end area method used for volume calculation. Begining Elevation = 26.00 ft

Stage / Storage Table

Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)		
26.00	200,376	0	0		
28.00	209,204	409,580	409,580		
30.00	218,032	427,236	836,816		
31.00	223,192	220,612	1,057,428		
32.00	230,301	226,747	1,284,175		
33.00	236,244	233,272	1,517,447		
34.00	243,972	240,108	1,757,555		
35.00	251,103	247,538	2,005,093		
36.00	257,115	254,109	2,259,202		
37.00	263,413	260,264	2,519,466		
38.00	270,347	266,880	2,786,346		
39.00	284,785	277,566	3,063,912		
40.00	343,743	314,264	3,378,176		
41.00	634,318	489,030	3,867,206		
42.00	634,318	634,318	4,501,524		
43.00	634,318	634,318	5,135,842		
44.00	634,318	634,318	5,770,160		
	Elevation (ft) 26.00 28.00 30.00 31.00 32.00 33.00 34.00 35.00 36.00 37.00 38.00 39.00 40.00 41.00 42.00 43.00 44.00	Elevation (ft)Contour area (sqft)26.00200,37628.00209,20430.00218,03231.00223,19232.00230,30133.00236,24434.00243,97235.00251,10336.00257,11537.00263,41338.00270,34739.00284,78540.00343,74341.00634,31842.00634,31843.00634,31844.00634,318	Elevation (ft)Contour area (sqft)Incr. Storage (cuft)26.00200,376028.00209,204409,58030.00218,032427,23631.00223,192220,61232.00230,301226,74733.00236,244233,27234.00243,972240,10835.00257,115254,10937.00263,413260,26438.00270,347266,88039.00284,785277,56640.00343,743314,26441.00634,318634,31843.00634,318634,31844.00634,318634,318		

Culvert / Orifice Structures

Weir Structures

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 0.00	0.00	0.00	0.00	Crest Len (ft)	= 0.00	0.00	0.00	0.00
Span (in)	= 0.00	0.00	0.00	0.00	Crest El. (ft)	= 0.00	0.00	0.00	0.00
No. Barrels	= 0	0	0	0	Weir Coeff.	= 3.33	3.33	3.33	3.33
Invert El. (ft)	= 0.00	0.00	0.00	0.00	Weir Type	=			
Length (ft)	= 0.00	0.00	0.00	0.00	Multi-Stage	= No	No	No	No
Slope (%)	= 0.00	0.00	0.00	n/a					
N-Value	= .013	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.000 (by	Wet area)		
Multi-Stage	= n/a	No	No	No	TW Elev. (ft)	= 0.00			

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s). Stage / Storage / Discharge Table

J -		J.											
Stage ft	Storage cuft	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
0.00	0	26.00											0.000
2.00	409,580	28.00											0.000
4.00	836,816	30.00										6.730	6.730
5.00	1,057,428	31.00										9.520	9.520
6.00	1,284,175	32.00										11.65	11.65
7.00	1,517,447	33.00										14.16	14.16
8.00	1,757,555	34.00										20.55	20.55
9.00	2,005,093	35.00										25.17	25.17
10.00	2,259,202	36.00										30.74	30.74
11.00	2,519,466	37.00										38.64	38.64
12.00	2,786,346	38.00										44.22	44.22
13.00	3,063,912	39.00										49.90	49.90
14.00	3,378,176	40.00										58.96	58.96
15.00	3,867,206	41.00										65.86	65.86
16.00	4,501,524	42.00										73.27	73.27
17.00	5,135,842	43.00										83.33	83.33
18.00	5,770,160	44.00										90.99	90.99

37 of 76

ATTACHMENT 4

HYDRAULIC CAPACITY FOR CHANNELS

North Perimeter Channel Seg #1

Project Description			
Friction Method	Manning Formula		
Solve For	Discharge		
Input Data			
Channel Slope		0.00500	ft/ft
Normal Depth		2.74	ft

Section Definitions

Station (ft)	Elevation (ft)
-0+59	42.03
-0+31	41.40
-0+15	40.91
-0+05	38.17
0+00	38.17
0+05	38.17
0+13	40.91
0+24	44.46

Roughness Segment Definitions

Start Station	End	ding Station		Roughness Coefficient	
(-0+59, 42	2.03)	(-0+1	5, 40.91)		0.015
(-0+15, 40).91)	(0+13, 40.91)			0.040
(0+13, 40	0.91)	(0+2	4, 44.46)		0.040
Options					
Current Rougnness Weighted Method	Pavlovskii's Method				
Open Channel Weighting Method	Pavlovskii's Method				
Closed Channel Weighting Method	Pavlovskii's Method				
Results					
Discharge		211.91	ft³/s		
Elevation Range	38.17 to 44.46 ft				
Flow Area		54.03	ft²		

Bentley Systems, Inc. Haestad Methods SolBteatlegeFitter/Master V8i (SELECTseries 1) [08.11.01.03]

10/7/2016 9:24:23 AM

27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2

P	North Perimeter Chann	el Seg #1
Results		
Wetted Perimeter	29.62	ft
Hydraulic Radius	1.82	ft
Top Width	28.80	ft
Normal Depth	2.74	ft
Critical Depth	1.89	ft
Critical Slope	0.02164	ft/ft
Velocity	3.92	ft/s
Velocity Head	0.24	ft
Specific Energy	2.98	ft
Froude Number	0.50	
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	2.74	ft
Critical Depth	1.89	ft
Channel Slope	0.00500	ft/ft
Critical Slope	0.02164	ft/ft

Cross Section for North Perimeter Channel Seg #1

Project Description		
Friction Method Solve For	Manning Formula Discharge	
Input Data		
Channel Slope Normal Depth	0.00500 2.74	ft/ft ft
Discharge	211.91	ft³/s

North Perimeter Channel Seg #2

9.23 ft

Project Description			
Friction Method Solve For	Manning Formula Discharge		
Input Data			
Channel Slope		0.00500	ft/ft

Station (ft)		Elevation (ft)	
-0+2	6		40.65
-0+0	6		32.50
-0+0	4		31.42
0+0	0		31.50
0+0	3		32.46
0+4	6		44.36

Roughness Segment Definitions

Normal Depth

Section Definitions

Start Station	En	ding Station		Roughness Coefficient	
(-0+26, 4	0.65)	(-0+0	6, 32.50)		0.040
(-0+06, 3	2.50)	(0+0	3, 32.46)		0.015
(0+03, 3	2.46)	(0+4	6, 44.36)		0.040
Options					
Current Rougnness weigntea Method	Pavlovskii's Method				
Open Channel Weighting Method	Pavlovskii's Method				
Closed Channel Weighting Method	Pavlovskii's Method				
Results					
Discharge		2224.00	ft³/s		
Elevation Range	31.42 to 44.36 ft				
Flow Area		285.41	ft²		
Wetted Perimeter		62.14	ft		
Hydraulic Radius		4.59	ft		

Bentley Systems, Inc. Haestad Methods SolBteotleGeFittewMaster V8i (SELECTseries 1) [08.11.01.03]

10/7/2016 9:25:26 AM

27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2

North Perimeter Channel Seg #2 Results Top Width 59.04 ft Normal Depth 9.23 ft Critical Depth 7.57 ft Critical Slope 0.01363 ft/ft Velocity 7.79 ft/s Velocity Head 0.94 ft Specific Energy 10.17 ft Froude Number 0.62 Flow Type Subcritical **GVF** Input Data 0.00 ft Downstream Depth 0.00 ft Length Number Of Steps 0 GVF Output Data Upstream Depth 0.00 ft **Profile Description Profile Headloss** 0.00 ft Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s Normal Depth 9.23 ft Critical Depth 7.57 ft Channel Slope 0.00500 ft/ft Critical Slope 0.01363 ft/ft

Cross Section for North Perimeter Channel Seg #2

Project Description		
Friction Method Solve For	Manning Formula Discharge	
Input Data		
Channel Slope Normal Depth Discharge	0.00500 9.23 2224.00	ft/ft ft ft³/s

North Perimeter Channel Seg #3

Project Description	

Friction Method	Manning Formula	
Solve For	Discharge	
Input Data		
Channel Slope	0.00500	ft/ft
Normal Depth	13.83	ft
Section Definitions		

Station (ft)	Elevation (ft)	
-0+38		41.43
-0+18		33.50
-0+06		27.90
0+00		27.60
0+11		33.52
0+46		45.00

Roughness Segment Definitions

Start Station	End	ing Station		Roughness Coefficient	
(-0+38, 41	.43)	(-0+1	8, 33.50)		0.040
(-0+18, 33	5.50)	(0+1	1, 33.52)		0.015
(0+11, 33	5.52)	(0+4	6, 45.00)		0.040
Options					
Current Rougnness weigntea Method Open Channel Weighting Method	Pavlovskii's Method Pavlovskii's Method				
Closed Channel Weighting Method	Pavlovskii's Method				
Results					
Discharge		5561.57	ft³/s		
Elevation Range	27.60 to 45.00 ft				
Flow Area		499.46	ft²		
Wetted Perimeter		78.31	ft		
Hydraulic Radius		6.38	ft		

 Bentley Systems, Inc.
 Haestad Methods SolBteotle@eFitewMaster V8i (SELECTseries 1) [08.11.01.03]

 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666
 Page 1 of 2

10/7/2016 9:26:34 AM

	North Perimeter	Chann	nel Seg #3
Results			
Top Width		72.71	ft
Normal Depth		13.83	ft
Critical Depth		12.31	ft
Critical Slope		0.00927	ft/ft
Velocity		11.14	ft/s
Velocity Head		1.93	ft
Specific Energy		15.76	ft
Froude Number		0.75	
Flow Type	Subcritical		
GVF Input Data			
Downstream Depth		0.00	ft
Length		0.00	ft
Number Of Steps		0	
GVF Output Data			
Upstream Depth		0.00	ft
Profile Description			
Profile Headloss		0.00	ft
Downstream Velocity		Infinity	ft/s
Upstream Velocity		Infinity	ft/s
Normal Depth		13.83	ft
Critical Depth		12.31	ft
Channel Slope		0.00500	ft/ft
Critical Slope		0.00927	ft/ft

Cross Section for North Perimeter Channel Seg #3

Project Description		
Friction Method Solve For	Manning Formula Discharge	
Input Data		
Channel Slope	0.00500	ft/ft
Normal Depth	13.83	ft
Discharge	5561.57	ft³/s

South Perimeter Channel Seg #1 Project Description Friction Method Manning Formula Solve For Discharge Input Data 0.00500 ft/ft **Channel Slope** 2.86 ft Normal Depth Section Definitions Station (ft) Elevation (ft) -0+14 45.00 0+00 40.44 0+09 42.00 0+16 43.30 **Roughness Segment Definitions** Start Station **Ending Station Roughness Coefficient** (-0+14, 45.00) (0+16, 43.30)0.040 Options Current Roughness weighted Pavlovskii's Method Method Pavlovskii's Method Open Channel Weighting Method Pavlovskii's Method **Closed Channel Weighting Method** Results 118.65 ft³/s Discharge **Elevation Range** 40.44 to 45.00 ft 36.02 ft² Flow Area Wetted Perimeter 25.64 ft 1.40 ft Hydraulic Radius Top Width 24.94 ft Normal Depth 2.86 ft Critical Depth 2.14 ft 0.02360 ft/ft Critical Slope Bentley Systems, Inc. Haestad Methods SolBtentleOveFiltervMaster V8i (SELECTseries 1) [08.11.01.03] 10/7/2016 9:18:25 AM Page 1 of 2 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

	South Perimet	ter Chann	el Seg #1	
Results				
Velocity		3.29	ft/s	
Velocity Head		0.17	ft	
Specific Energy		3.03	ft	
Froude Number		0.48		
Flow Type	Subcritical			
GVF Input Data				
Downstream Depth		0.00	ft	
Length		0.00	ft	
Number Of Steps		0		
GVF Output Data				
Upstream Depth		0.00	ft	
Profile Description				
Profile Headloss		0.00	ft	
Downstream Velocity		Infinity	ft/s	
Upstream Velocity		Infinity	ft/s	
Normal Depth		2.86	ft	
Critical Depth		2.14	ft	
Channel Slope		0.00500	ft/ft	
Critical Slope		0.02360	ft/ft	

49 of 76

Cross Section for South Perimeter Channel Seg #1

Project Description

Friction Method Solve For	Manning Formula Discharge	
Input Data		
Channel Slope	0.00500	ft/ft
Normal Depth	2.86	ft
Discharge	118.65	ft³/s

South Perimeter Channel Seg #2

Project Description	
Friction Method	Manning Formula

Solve For	Discharge	
Input Data		
Channel Slope	0.00500	ft/ft
Normal Depth	6.06	ft

Section D	Definitions
-----------	-------------

Station (ft)	Elevation (ft)
-0+59	52.50
-0+30	43.19
-0+07	36.64
-0+04	35.63
0+00	35.63
0+02	36.57
0+16	41.69

Roughness Segment Definitions

Start Station	E	nding Station		Roughness Coefficient	
(-0+59, 52	2.50)	(-0+0	7, 36.64)		0.040
(-0+07, 3	6.64)	(0+0)	2, 36.57)		0.015
(0+02, 30	6.57)	(0+1	6, 41.69)		0.040
Options					
Current Rougnness Weighted	Pavlovskii's Method				
Open Channel Weighting Method	Pavlovskii's Method				
Closed Channel Weighting Method	Pavlovskii's Method				
Results					
Discharge		806.29	ft³/s		

			-
Wetted Perimeter		42.84	ft
Flow Area		131.58	ft²
Elevation Range	35.63 to 52.50 ft		
0			

Bentley Systems, Inc. Haestad Methods SolBteatleGeFittewMaster V8i (SELECTseries 1) [08.11.01.03]

10/7/2016 9:20:53 AM

27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Pa

South Perimeter Channel Seg #2					
Results					
Hydraulic Radius	3.07	ft			
Top Width	40.86	ft			
Normal Depth	6.06	ft			
Critical Depth	4.88	ft			
Critical Slope	0.01476	ft/ft			
Velocity	6.13	ft/s			
Velocity Head	0.58	ft			
Specific Energy	6.64	ft			
Froude Number	0.60				
Flow Type	Subcritical				
GVF Input Data					
Downstream Depth	0.00	ft			
Length	0.00	ft			
Number Of Steps	0				
GVF Output Data					
Upstream Depth	0.00	ft			
Profile Description					
Profile Headloss	0.00	ft			
Downstream Velocity	Infinity	ft/s			
Upstream Velocity	Infinity	ft/s			
Normal Depth	6.06	ft			
Critical Depth	4.88	ft			
Channel Slope	0.00500	ft/ft			
Critical Slope	0.01476	ft/ft			

Cross Section for South Perimeter Channel Seg #2

Project Description

Friction Method Solve For	Manning Formula Discharge	
Input Data		
Channel Slope	0.00500	ft/ft
Normal Depth	6.06	ft
Discharge	806.29	ft³/s

South Perimeter Channel Seg #3

Project Description	

Friction Method	Manning Formula	
Solve For	Discharge	
Input Data		
Channel Slope	0.00500	ft/ft
Normal Depth	8.85	ft

Station (ft)	Elevation (ft)
-0+34	42.16
-0+07	32.84
-0+04	31.91
0+00	31.90
0+02	32.87
0+25	40.75

Roughness Segment Definitions

Start Station	Endi	ng Station		Roughness Coefficient	
(-0+34, 42	2.16)	(-0+0	7, 32.84)		0.040
(-0+07, 32	2.84)	(0+0	2, 32.87)		0.015
(0+02, 32	2.87)	(0+2	5, 40.75)		0.040
Options					
Current Rougnness weighted Method	Pavlovskii's Method				
Open Channel Weighting Method	Pavlovskii's Method				
Closed Channel Weighting Method	Pavlovskii's Method				
Results					
Discharge		1983.84	ft³/s		
Elevation Range	31.90 to 42.16 ft				
Flow Area		258.77	ft²		
Wetted Perimeter		58.02	ft		
Hydraulic Radius		4.46	ft		

Bentley Systems, Inc. Haestad Methods Sol BreatlegeFitzer/Master V8i (SELECTseries 1) [08.11.01.03]

10/7/2016 9:22:04 AM

27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2

South Perimeter Channel Seg #3					
Results					
Top Width	55.03	ft			
Normal Depth	8.85	ft			
Critical Depth	7.23	ft			
Critical Slope	0.01370	ft/ft			
Velocity	7.67	ft/s			
Velocity Head	0.91	ft			
Specific Energy	9.76	ft			
Froude Number	0.62				
Flow Type	Subcritical				
GVF Input Data					
Downstream Depth	0.00	ft			
Length	0.00	ft			
Number Of Steps	0				
GVF Output Data					
Upstream Depth	0.00	ft			
Profile Description					
Profile Headloss	0.00	ft			
Downstream Velocity	Infinity	ft/s			
Upstream Velocity	Infinity	ft/s			
Normal Depth	8.85	ft			
Critical Depth	7.23	ft			
Channel Slope	0.00500	ft/ft			
Critical Slope	0.01370	ft/ft			

Cross Section for South Perimeter Channel Seg #3

Project Description

Friction Method Solve For	Manning Formula Discharge	
Input Data		
Channel Slope	0.00500	ft/ft
Normal Depth	8.85	ft
Discharge	1983.84	ft³/s

Worksheet for South Perimeter Channel Seg #4

Project Description		
Friction Method Solve For	Manning Formula Discharge	
Input Data	-	
Channel Slope	0.00500	ft/ft
Normal Depth	13.67	ft
Section Definitions		

Station (ft)	Elevation (ft)
-0+48	42.00
-0+27	34.26
-0+17	30.00
-0+12	27.83
0+00	27.71
0+10	33.01
0+30	41.38

Roughness Segment Definitions

Start Station	Er	nding Station		Roughness Coefficient	
(-0+48, 4)	2.00)	(-0+2	7, 34.26)		0.040
(-0+27, 3-	4.26)	(0+1	0, 33.01)		0.015
(0+10, 3	3.01)	(0+3	0, 41.38)		0.040
Options					
Current Rougnness Weighted	Pavlovskii's Method				
Open Channel Weighting Method	Pavlovskii's Method				
Closed Channel Weighting Method	Pavlovskii's Method				
Results					
Discharge		7415.08	ft³/s		
Elevation Range	27.71 to 42.00 ft				
Flow Area		581.59	ft²		

81.72 ft

Bentley Systems, Inc. Haestad Methods Sol BientlegeFitzewMaster V8i (SELECTseries 1) [08.11.01.03]

10/7/2016 9:23:22 AM

Wetted Perimeter

27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2

Results		
Hydraulic Radius	7.12	ft
Top Width	76.13	ft
Normal Depth	13.67	ft
Critical Depth	12.45	ft
Critical Slope	0.00777	ft/ft
Velocity	12.75	ft/s
Velocity Head	2.53	ft
Specific Energy	16.20	ft
Froude Number	0.81	
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	13.67	ft
Critical Depth	12.45	ft
Channel Slope	0.00500	ft/ft
Critical Slope	0.00777	ft/ft

Worksheet for South Perimeter Channel Seg #4

Cross Section for South Perimeter Channel Seg #4

Project Description

Friction Method Solve For	Manning Formula Discharge	
Input Data		
Channel Slope	0.00500	ft/ft
Normal Depth	13.67	ft
Discharge	7415.08	ft³/s

West Perimeter Channel Seg #1

Project Description			
Friction Method	Manning Formula		
Solve For	Discharge		
Input Data			
Channel Slope	0.0	0500	ft/ft
Normal Depth		1.45	ft

Section Definitions

Station (ft)	Elevation (ft)
-0+13	41.28
0+00	41.30
0+02	39.89
0+06	39.55
0+14	39.68
0+16	40.99
0+21	41.65
0+37	44.02

Roughness Segment Definitions

Start Station		Ending Station		Roughness Coefficient	Roughness Coefficient	
(-0+13, 4	1.28)	(0+1	6, 40.99)		0.015	
(0+16, 4)	0.99)	(0+3	37, 44.02)		0.040	
Ontiona						
Options						
Current Rougnness weighted Method	Pavlovskii's Method					
Open Channel Weighting Method	Pavlovskii's Method					
Closed Channel Weighting Method	Pavlovskii's Metho	bd				
Results						
Discharge		138.63	ft³/s			
Elevation Range	39.55 to 44.02 ft					
Flow Area		18.63	ft²			
Wetted Perimeter		16.73	ft			

Bentley Systems, Inc. Haestad Methods SolBteatlegeFitter/Master V8i (SELECTseries 1) [08.11.01.03]

10/7/2016 10:16:11 AM

27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2

	West Perimeter Channe	el Seg #1
Results		
Hydraulic Radius	1.11	ft
Top Width	16.05	ft
Normal Depth	1.45	ft
Critical Depth	1.84	ft
Critical Slope	0.00369	ft/ft
Velocity	7.44	ft/s
Velocity Head	0.86	ft
Specific Energy	2.31	ft
Froude Number	1.22	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	1.45	ft
Critical Depth	1.84	ft
Channel Slope	0.00500	ft/ft
Critical Slope	0.00369	ft/ft

Cross Section for West Perimeter Channel Seg #1

Project Description		
Friction Method Solve For	Manning Formula Discharge	
Input Data		
Channel Slope	0.00500	ft/ft
Normal Depth	1.45	ft
Discharge	138.63	ft³/s

62 of 76

ATTACHMENT 5

HYDRAULIC CAPACITY FOR CULVERTS

HY-8 Culvert Analysis Report West Culvert

Crossing Front View (Roadway Profile): West Culvert

HY-8 Culvert Analysis Report East Culvert

Crossing Front View (Roadway Profile): East Culvert

Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)	Tailwater Velocity (ft/s)
0.00	0.00	39.58	0.000	12.780	0-NF	0.000	0.000	5.500	14.950	0.000	0.000
32.50	32.50	39.75	2.117	12.951	4-FFf	1.831	1.538	5.500	14.950	1.368	0.000
65.00	59.72	40.16	2.937	13.356	4-FFf	2.568	2.110	5.500	14.950	2.514	0.000
97.50	72.28	40.42	3.279	13.624	4-FFf	2.872	2.328	5.500	14.950	3.042	0.000
130.00	81.01	40.64	3.507	13.840	4-FFf	3.082	2.475	5.500	14.950	3.410	0.000
162.50	87.82	40.83	3.680	14.025	4-FFf	3.245	2.583	5.500	14.950	3.696	0.000
195.00	93.46	40.99	3.821	14.190	4-FFf	3.380	2.668	5.500	14.950	3.934	0.000
227.50	98.31	41.14	3.940	14.341	4-FFf	3.496	2.739	5.500	14.950	4.138	0.000
260.00	102.61	41.28	4.045	14.480	4-FFf	3.606	2.800	5.500	14.950	4.319	0.000
292.50	106.45	41.41	4.138	14.610	4-FFf	3.704	2.853	5.500	14.950	4.481	0.000
294.50	106.68	41.42	4.143	14.618	4-FFf	3.710	2.856	5.500	14.950	4.490	0.000

Table 1 - Culvert Summary Table: East Culvert

Straight Culvert -

Inlet Elevation (invert): 26.80 ft, Outlet Elevation (invert): 24.63 ft -

Culvert Length: 400.01 ft, Culvert Slope: 0.0054 -

Culvert Performance Curve Plot: East Culvert

Crossing - East Culvert, Design Discharge - 294.5 cfs Culvert - East Culvert, Culvert Discharge - 106.7 cfs

Water Surface Profile Plot for Culvert: East Culvert

Site Data - East Culvert

42

Site Data Option: Culvert Invert Data Inlet Station: 0.00 ft Inlet Elevation: 26.80 ft Outlet Station: 400.00 ft Outlet Elevation: 24.63 ft Number of Barrels: 1

Culvert Data Summary - East Culvert

Barrel Shape: Circular Barrel Diameter: 5.50 ft Barrel Material: Corrugated Steel Embedment: 0.00 in Barrel Manning's n: 0.0240 Culvert Type: Straight Inlet Configuration: Square Edge with Headwall Inlet Depression: NONE

Table 2 - Downstream Channel Rating Curve (Crossing: East

Flow (cfs)	Water Surface Elev (ft)	Depth (ft)
0.00	39.58	14.95
32.50	39.58	14.95
65.00	39.58	14.95
97.50	39.58	14.95
130.00	39.58	14.95
162.50	39.58	14.95
195.00	39.58	14.95
227.50	39.58	14.95
260.00	39.58	14.95
292.50	39.58	14.95
294.50	39.58	14.95

Culvert)

Tailwater Channel Data - East Culvert

Tailwater Channel Option: Enter Constant Tailwater Elevation Constant Tailwater Elevation: 39.58 ft

Roadway Data for Crossing: East Culvert

Roadway Profile Shape: Irregular Roadway Shape (coordinates)

Irregular Roadway Cross-Section:

Coord No.	Station (ft)	Elevation (ft)	
0	-43.00	41.50	
1	-27.00	41.50	
2	-18.00	40.00	
3	14.00	40.00	
4	36.00	43.00	
5	47.00	44.40	

Roadway Surface: Gravel

Roadway Top Width: 20.00 ft

Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)	Tailwater Velocity (ft/s)
0.00	0.00	38.40	0.000	0.000	0-NF	0.000	0.000	0.000	0.000	0.000	0.000
3.50	3.35	39.21	0.815	0.016	1-S2n	0.559	0.597	0.559	0.295	4.046	1.106
7.00	6.16	39.53	1.128	0.281	1-S2n	0.770	0.819	0.770	0.444	4.778	1.421
10.50	8.80	39.79	1.392	0.511	1-S2n	0.935	0.983	0.935	0.562	5.260	1.638
14.00	11.39	40.04	1.636	0.746	1-S2n	1.076	1.131	1.076	0.664	5.630	1.807
17.50	14.15	40.27	1.868	0.998	1-S2n	1.220	1.266	1.220	0.756	5.951	1.948
21.00	17.37	40.52	2.120	1.307	1-S2n	1.380	1.408	1.380	0.839	6.247	2.069
24.50	20.47	40.92	2.357	1.629	1-S2n	1.534	1.534	1.534	0.916	6.485	2.176
25.40	21.36	40.98	2.426	2.576	7-M2c	1.578	1.568	1.568	0.935	6.591	2.202
31.50	27.10	41.37	2.896	2.970	7-M2c	1.896	1.773	1.773	1.056	7.281	2.359
35.00	30.36	41.61	3.197	3.209	7-M2c	2.147	1.876	1.876	1.121	7.685	2.439

Table 1 - Culvert Summary Table: West Culvert

Straight Culvert -

Inlet Elevation (invert): 38.40 ft, Outlet Elevation (invert): 37.80 ft -

Culvert Length: 137.00 ft, Culvert Slope: 0.0044 -

Culvert Performance Curve Plot: West Culvert

69 of 76

Water Surface Profile Plot for Culvert: West Culvert

Site Data - West Culvert

Site Data Option: Culvert Invert Data Inlet Station: 0.00 ft Inlet Elevation: 38.40 ft Outlet Station: 137.00 ft Outlet Elevation: 37.80 ft Number of Barrels: 1

Culvert Data Summary - West Culvert

Barrel Shape: Circular Barrel Diameter: 2.50 ft Barrel Material: Concrete Embedment: 0.00 in Barrel Manning's n: 0.0120 Culvert Type: Straight Inlet Configuration: Square Edge with Headwall Inlet Depression: NONE

Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)	Tailwater Velocity (ft/s)
0.00	0.00	38.40	0.000	0.000	0-NF	0.000	0.000	0.000	0.000	0.000	0.000
3.50	0.16	39.21	0.215	0.0*	1-S2n	0.142	0.159	0.142	0.295	2.202	1.106
7.00	0.84	39.53	0.527	0.0*	1-S2n	0.346	0.380	0.346	0.444	3.459	1.421
10.50	1.68	39.79	0.792	0.0*	1-S2n	0.513	0.550	0.513	0.562	4.154	1.638
14.00	2.60	40.04	1.035	0.538	5-S2n	0.682	0.685	0.682	0.664	4.543	1.807
17.50	3.34	40.27	1.261	1.268	7-M2c	0.868	0.779	0.779	0.756	5.091	1.948
21.00	3.64	40.52	1.367	1.519	7-M2c	1.000	0.811	0.811	0.839	5.340	2.069
24.50	3.98	40.92	1.499	1.918	7-M2c	1.000	0.844	0.844	0.916	5.635	2.176
25.40	4.04	40.98	1.520	1.975	7-M2c	1.000	0.848	0.848	0.935	5.681	2.202
31.50	4.39	41.37	1.671	2.372	7-M2c	1.000	0.877	0.877	1.056	6.005	2.359
35.00	4.58	41.61	1.763	2.609	7-M2t	1.000	0.892	0.921	1.121	6.060	2.439

Table 2 - Culvert Summary Table: West Culvert (relief)

* Full Flow Headwater elevation is below inlet invert.

Straight Culvert -

Inlet Elevation (invert): 39.00 ft, Outlet Elevation (invert): 38.00 ft -

Culvert Length: 144.00 ft, Culvert Slope: 0.0069 -

Culvert Performance Curve Plot: West Culvert (relief)

Crossing - West Culvert, Design Discharge - 25.4 cfs Culvert - West Culvert (relief), Culvert Discharge - 4.0 cfs 42.0 41.5 40.0 40.5 39.5 39.5 39.0 38.5 38.0 -38.0 -50 Station (ft)

Water Surface Profile Plot for Culvert: West Culvert (relief)

Site Data - West Culvert (relief)

Site Data Option: Culvert Invert Data Inlet Station: 0.00 ft Inlet Elevation: 39.00 ft Outlet Station: 144.00 ft Outlet Elevation: 38.00 ft Number of Barrels: 1

Culvert Data Summary - West Culvert (relief)

Barrel Shape: Circular Barrel Diameter: 1.00 ft Barrel Material: Concrete Embedment: 0.00 in Barrel Manning's n: 0.0120 Culvert Type: Straight Inlet Configuration: Grooved End Projecting Inlet Depression: NONE

Flow (cfs)	Water Surface Elev (ft)	Depth (ft)	Velocity (ft/s)	Shear (psf)	Froude Number
0.00	37.80	0.00	0.00	0.00	0.00
3.50	38.09	0.29	1.11	0.09	0.37
7.00	38.24	0.44	1.42	0.14	0.39
10.50	38.36	0.56	1.64	0.18	0.41
14.00	38.46	0.66	1.81	0.21	0.42
17.50	38.56	0.76	1.95	0.24	0.43
21.00	38.64	0.84	2.07	0.26	0.43
24.50	38.72	0.92	2.18	0.29	0.44
25.40	38.74	0.94	2.20	0.29	0.44
31.50	38.86	1.06	2.36	0.33	0.44
35.00	38.92	1.12	2.44	0.35	0.45

Table 3 - Downstream Channel Rating Curve (Crossing: West Culvert)

Tailwater Channel Data - West Culvert

Tailwater Channel Option: Trapezoidal Channel Bottom Width: 10.00 ft Side Slope (H:V): 2.50 (_:1) Channel Slope: 0.0050 Channel Manning's n: 0.0400 Channel Invert Elevation: 37.80 ft

Roadway Data for Crossing: West Culvert

Roadway Profile Shape: Constant Roadway Elevation Crest Length: 60.00 ft Crest Elevation: 41.88 ft Roadway Surface: Gravel Roadway Top Width: 50.00 ft

HY-8 Culvert Analysis Report South Culvert

Crossing Front View (Roadway Profile): South Culvert

Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)	Tailwater Velocity (ft/s)
0.00	0.00	39.58	0.000	12.780	0-NF	0.000	0.000	5.000	14.230	0.000	0.000
47.00	9.72	39.60	1.156	12.803	4-FFf	1.090	0.850	5.000	14.230	0.495	0.000
94.00	19.36	39.67	1.655	12.870	4-FFf	1.563	1.208	5.000	14.230	0.986	0.000
141.00	31.85	39.82	2.156	13.023	4-FFf	2.048	1.566	5.000	14.230	1.622	0.000
188.00	43.36	40.03	2.552	13.230	4-FFf	2.444	1.837	5.000	14.230	2.208	0.000
235.00	52.40	40.24	2.843	13.437	4-FFf	2.741	2.027	5.000	14.230	2.669	0.000
282.00	59.68	40.43	3.067	13.632	4-FFf	2.977	2.170	5.000	14.230	3.039	0.000
329.00	65.79	40.62	3.249	13.816	4-FFf	3.175	2.286	5.000	14.230	3.351	0.000
376.00	71.08	40.79	3.403	13.989	4-FFf	3.359	2.381	5.000	14.230	3.620	0.000
423.00	75.76	40.95	3.537	14.153	4-FFf	3.521	2.462	5.000	14.230	3.858	0.000
424.60	75.92	40.96	3.541	14.159	4-FFf	3.527	2.464	5.000	14.230	3.866	0.000

Table 1 - Culvert Summary Table: South Culvert

Straight Culvert -

Inlet Elevation (invert): 26.80 ft, Outlet Elevation (invert): 25.35 ft -

Culvert Length: 358.00 ft, Culvert Slope: 0.0041 -

Culvert Performance Curve Plot: South Culvert

Water Surface Profile Plot for Culvert: South Culvert

Site Data - South Culvert

Site Data Option: Culvert Invert Data Inlet Station: 0.00 ft Inlet Elevation: 26.80 ft Outlet Station: 358.00 ft Outlet Elevation: 25.35 ft Number of Barrels: 1

Culvert Data Summary - South Culvert

Barrel Shape: Circular Barrel Diameter: 5.00 ft Barrel Material: Corrugated Steel Embedment: 0.00 in Barrel Manning's n: 0.0240 Culvert Type: Straight Inlet Configuration: Square Edge with Headwall Inlet Depression: NONE

Flow (cfs)	Water Surface Elev (ft)	Depth (ft)
0.00	39.58	14.23
47.00	39.58	14.23
94.00	39.58	14.23
141.00	39.58	14.23
188.00	39.58	14.23
235.00	39.58	14.23
282.00	39.58	14.23
329.00	39.58	14.23
376.00	39.58	14.23
423.00	39.58	14.23
424.60	39.58	14.23

Table 2 - Downstream Channel Rating Curve (Crossing: South Culvert)

Tailwater Channel Data - South Culvert

Tailwater Channel Option: Enter Constant Tailwater Elevation Constant Tailwater Elevation: 39.58 ft

Roadway Data for Crossing: South Culvert

Roadway Profile Shape: Irregular Roadway Shape (coordinates)

Irregular Roadway Cross-Section:

Coord No.	Station (ft)	Elevation (ft)	
0	-40.00	41.00	
1	-25.00	41.00	
2	-10.00	38.50	
3	10.00	38.50	
4	25.00	41.00	
5	40.00	41.00	

Roadway Surface: Gravel

Roadway Top Width: 312.00 ft