Low Volume Waste Settling Ponds Initial Inflow Design Flood Control System Plan

Mount Storm Power Station Mount Storm, West Virginia

October 2016

Low Volume Waste Settling Ponds Initial Inflow Design Flood Control System Plan

Mount Storm Power Station Mount Storm, West Virginia

October 2016

Prepared For Virginia Electric and Power Company

mathan Hotstream

Jorathan Hotstream Senior Scientist

© 2016 TRC

All Rights Reserved

R. Kent Nilsson, P.E. Senior Engineer

TRC Engineers, Inc. | Virginia Electric and Power Company – Mt. Storm Power Station Low Volume Waste Settling Ponds - Initial Inflow Design Flood Control System Plan Final

\\NTAPA-GRNVILLE\GVL-VOL5\-\WPGVL\PJT2\230765\0000\000001\R2307650000PH1-002.DOCX

30 PATEWOOD DRIVE, SUITE 300, GREENVILLE, SC 29615, • 864.281.0030 PHONE • 864.281.0288 FAX • WWW.TRCsolutions.com

Table of Contents

Revis	ion H	istory	ii
1.	Back	ground	1
	1.1	Existing Conditions	1
	1.2	Pond Retrofit and Reconstruction Design	2
2.	Inflo	w Design Flood Control	3
	2.1	LVWSP Operation	3
	2.2	System Hydraulics	4
	2.3	Storm Water Control	
	2.4	Conclusions	4
3.	Ame	ndment and Periodic Plan Revision	5
4.	Refer	rences	6
5.	Certi	fication	7

List of Figures

Figure 1	Site Location Map
Figure 2	Site Overview Map

List of Appendices

Appendix A	Select Engineering Drawings
Appendix B	Flood Insurance Rate Map
Appendix C	Storm Water Calculations

Revision History

REVISION NUMBER	REVISION DATE	SECTION REVISED	SUMMARY OF REVISIONS

Section 1 Background

Virginia Electric and Power Company d/b/a Dominion Virginia Power (Dominion) owns and operates the Mount Storm Power Station (Station). The Station manages coal combustion residuals (CCR) in five existing low volume waste settling ponds (LVWSP) (Pyrite Pond and Ponds A, B, C, and D). The purpose of this Inflow Design Flood Control System Plan (Plan) is to present the designed and constructed flood control features of the five existing LVWSP and the proposed retrofitted and reconstructed LVWSP at the Station that will be used to manage the inflow design flood as required by the United States Environmental Protection Agency's (USEPA) final coal combustion residual (CCR) rule (Title 40 Code of Federal Regulations (40 CFR) Parts 257 and 261) Subpart D-"Standards for the Disposal of Coal Combustion Residuals in Landfills and Surface Impoundments." The LVWSP are considered existing CCR surface impoundments according to the CCR rule (40 CFR 257.53).

1.1 Existing Conditions

The Station is located in Union District, Grant County, West Virginia (refer to Figure 1). There are currently five LVWSP at the Station (refer to Figure 2). The area including the LVWSP is approximately nine acres with the surrounding terrain sloping down toward Mount Storm Lake to the east and south from the topographic high on the northwest side of the LVWSP. The normal water elevation for Mount Storm Lake is approximately 3245 feet NAVD88 with a maximum elevation of 3248.3 feet NAVD88. The water levels of Mount Storm Lake are controlled by the Mount Storm Lake Dam which is operated by Dominion.

The LVWSP receive influent water from dewatering bin overflows and area sumps, along with water from Station drain systems, the oily water separator system, storm water, and other Station drains. The water flows to a pH neutralizing system before flowing to the primary ponds (Ponds A and B) for settling. After the primary ponds, water flows into a secondary ponds (Ponds C and D) for additional settling. From the secondary ponds, water is discharged into Mount Storm Lake via a National Pollutant Discharge Elimination System permitted outfall. The four pond configuration allows one pond to be dredged and cleaned while maintaining the other LVWSP in service to process wastewaters.

The Pyrite Pond receives primarily storm water inflows upstream of Ponds A through D. The Pyrite Pond discharges to the pH neutralizing system prior to flowing into the primary settling LVWSP.

The wastewater flows though several outlet structures in a circuit through the LVWSP. The water flow is driven by gravity. Station personnel can control flow to and from a pond by operating gates on the outlet structures.

The LVWSP are located on the south side of the station and were constructed in partial cut with an earthen berm constructed on the southern perimeter berm of Pond D and the eastern and western berms of Ponds C and D. The dividing berms between Ponds A and B and Ponds C and D were constructed of fill after the original excavation of the LVWSP. The geometry of each pond varies. The maximum depth of water is maintained in Pond A with an approximate pond bottom elevation of 3244 feet NAVD88 and a top of berm elevation of 3260 feet NAVD88. Appendix A provides the existing conditions for the LVWSP.

1.2 Pond Retrofit and Reconstruction Design

Dominion plans to retrofit the Pyrite Pond, close Ponds A through D, and reconstruct Ponds A and B in accordance with 40 CFR 257.102 between 2016 and 2018. The final configuration of the LVWSP will have three ponds: Pyrite Pond, Pond A, and Pond B. Refer to Appendix A for engineering drawings presenting the proposed retrofit, closure, and reconstruction.

The retrofitted and reconstructed LVWSP were designed to operate at the same flow capacity as the existing conditions. Therefore, the retrofitted and reconstructed LVWSP will provide the same level of flood control as the existing LVWSP.

Section 2 Inflow Design Flood Control

Hydrologic and hydraulic capacity requirements for existing and new CCR surface impoundments are provided in 40 CFR 257.82. The Station LVWSP were classified as low hazard in accordance with 40 CFR 257.73 and 40 CFR 257.74. Based on the low hazard potential classification, the CCR units must adequately manage flow into the unit during and following the peak discharge of the 100-year flood (40 CFR 257.82(a)(3)(iii)).

The Mount Storm LVWSP were designed in a manner consistent with 40 CFR 257.82(a)(1), (2) and (3), which allows CCR units to adequately manage inflows during and following peak discharge and to manage outflows to collect and control peak discharge for a 100 year flood due to the low hazard classification.

The Flood Insurance Rate Map for the Station (National Flood Insurance Program 2009) shows that the LVWSP are located in an area determined to be outside the 0.2% annual chance flood (refer to Appendix B). Figures 1 and 2 show the extent of the 100 year flood plain is not mapped in the vicinity of the station. The existing and retrofitted LVWSP are located in an area that is above the 100 year flood elevation; therefore, a dedicated flood control system is not required. The LVWSP have been designed with several inflow design features presented in the sections below.

2.1 LVWSP Operation

The reconstructed Pond A and Pond B will operate in a manner similar to the current LVWSP configuration. The LVWSP are utilized to treat process waste water following the pH treatment system. The current Ponds A and B are designed to be operated in parallel. The current LVWSP were designed to operate at a maximum water elevation of 3255.1 feet NAVD88, which is approximately five feet below the top of berm height at 3260 feet NAVD88. The maximum water level in Pond A and Pond B is limited by the flow capacity of the upgradient hydraulic system. The water level within the active LVWSP are monitored daily by on-site personnel. High level alarms will be installed on the new filter equipment located downstream of the LVWSP prior to discharge.

The inflow to the Pyrite Pond is controlled by a splitter box from the Station and is also the primary pond for controlling surface water discharge across the site. The Pyrite Pond discharges to the pH treatment system upstream of Ponds A and B.

The following control measures are implemented during pond operations to control the water levels in the LVWSP:

- Regularly drain and clean ash hydrobins, in a manner to not exceed designed flow rate.
- Regularly remove settled solids from Ponds A and B to provide optimal system performance and maximum capacity.
- Operate outlet structures to control the pond water levels.
- Regularly check and maintain grades surrounding the LVWSP to minimize the area contributing to storm water run-on.

2.2 System Hydraulics

Based on instantaneous measurements for the existing LVWSP outlet, the current maximum outflow is approximately 26 million gallons per day (MGD). The system hydraulics for the retrofit and reconstruction has been designed to provide flow capacities up to the design maximum of 26 MGD through the LVWSP.

2.3 Storm Water Control

The LVWSP were designed to control the storm water run-on from a 100 year, 24 hour storm event based upon the Precipitation Frequency Estimates from the National Oceanic and Atmospheric Administration. The Pyrite Pond collects storm water runoff from areas outside of the LVWSP and routes it through the downstream LVWSP. Culverts bring storm water into the Pyrite Pond from across the station with the most significant contribution coming from the coal pad.

The LVWSP were designed to operate with at least two feet of freeboard, height from the design water elevation to the top of berm elevation. The storm water run-on volume calculated for the design storm were compared to the storage capacity above the LVWSP design operating elevation. The evaluation determined that there is sufficient capacity in the LVWSP when operating at the design water elevations (refer to Appendix C).

2.4 Conclusions

The existing and designed retrofit and reconstructed LVWSP meet the requirements of 40 CFR 257.82 of adequately controlling the inflows during and after peak discharge of the 100-year flood at the Mount Storm Power Station for the following reasons:

- The LVWSP are located above the 100 year floodplain.
- The LVWSP were adequately designed to withstand a 100 year, 24 hour storm event.
- The pond capacities are sufficient to control the water levels and provide freeboard.

Section 3 Amendment and Periodic Plan Revision

This Plan was been completed in compliance with the requirements set forth in 40 CFR 257.82. The WV Department of Environmental Protection will be notified once this document has been placed in the operating record and posted to the publicly accessible website. A periodic inflow design flood control system plan must be prepared every 5 years from the completion date of this Plan.

The Plan must be amended whenever the periodic review period is reached or if changes in site conditions occur that will sustainably affect the current written plan.

- National Flood Insurance Program. 2009. Flood Insurance Rate Map: Grant County West Virginia, and Incorporated Areas Panel 135 of 425. Map Number 54023C0135F. Effective Date September 2, 2009. Federal Emergency Management Agency. Washington, D.C.
- TRC Engineers, Inc. 2016. Initial Hazard Potential Classification Low Volume Waste Settling Ponds Mount Storm Power Station. October 2016.

Section 5 Certification

I, the undersigned West Virginia Professional Engineer, hereby certify that I am familiar with the technical requirements of 40 CFR 257 Subpart D. I also certify that it is my professional opinion that, to the best of my knowledge, information, and belief, that the information in this demonstration is in accordance with current good and accepted engineering practice(s) and standard(s) and meets the requirements of paragraph (a) of in 40 CFR 257.82.

For the purpose of this document, "certify" and "certification" shall be interpreted and construed to be a "statement of professional opinion." The certification is understood and intended to be an expression of my professional opinion as a West Virginia Licensed Professional Engineer, based upon knowledge, information, and belief. The statement(s) of professional opinion are not and shall not be interpreted or construed to be a guarantee or a warranty of the analysis herein.

<u>R. Kent Nilsson, P.E.</u> Printed Namd of Professional Engineer

Signature of Professional Engineer

21543

State of West Virginia License Number

October 3, 2016

Date

 TRC Engineers, Inc. | Virginia Electric and Power Company – Mt. Storm Power Station

 Low Volume Waste Settling Ponds - Initial Inflow Design Flood Control System Plan

 7

 \\\NTAPA-GRNVILLE\GVL-VOL5\-\\WPGVL\PJT2\230765\00000\000001\R2307650000PH1-002_DOCX 10/5/16

-BASE MAP FROM USGS 7.5 MINUT -THERE ARE NO 100 YEAR FLOODF			
N 1" = 2,000 ' 0 1:24,000 0	2,000 4,000		
	DOMINION RESOURCES SERVICES, INC.	DRAWN BY:	R SUEMNICHT
	MOUNT STORM POWER STATION MOUNT STORM, GRANT COUNTY, WEST VIRGINIA	APPROVED BY:	R. K. NILSSON
	MOONT STORM, GRANT COONTT, WEST VIRGINIA	PROJECT NO:	230765
Patewood Plaza One, Suite 300 30 Patewood Drive Greenville, SC 29615	INITIAL HAZARD POTENTIAL CLASSIFICATION	FILE NO.	230765-004slm.mxd
Phone: 864.281.0030	SITE LOCATION MAP	DATE:	AUGUST 2016
			FIGURE 1

Legend DIRECTION OF SURFACE WATER FLOW

0 WEST VIRGIN A

SURFACE

Saved By: RSUEMNICHT on 8/17/2016, 15:29:10 PM

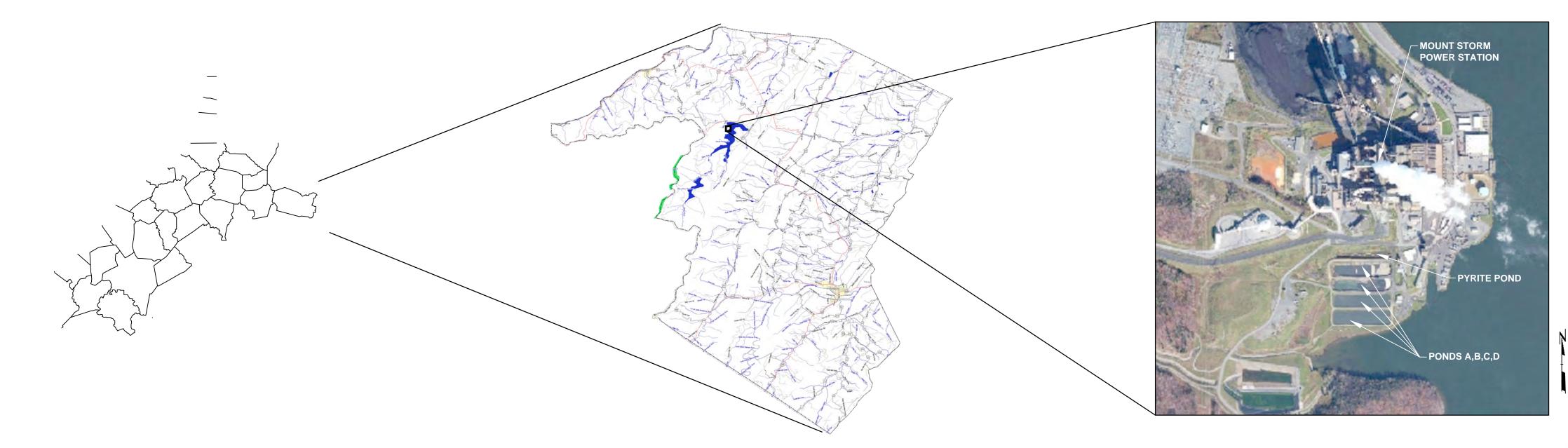

TRC - GIS

FIGURE 2

Appendix A Select Engineering Drawings

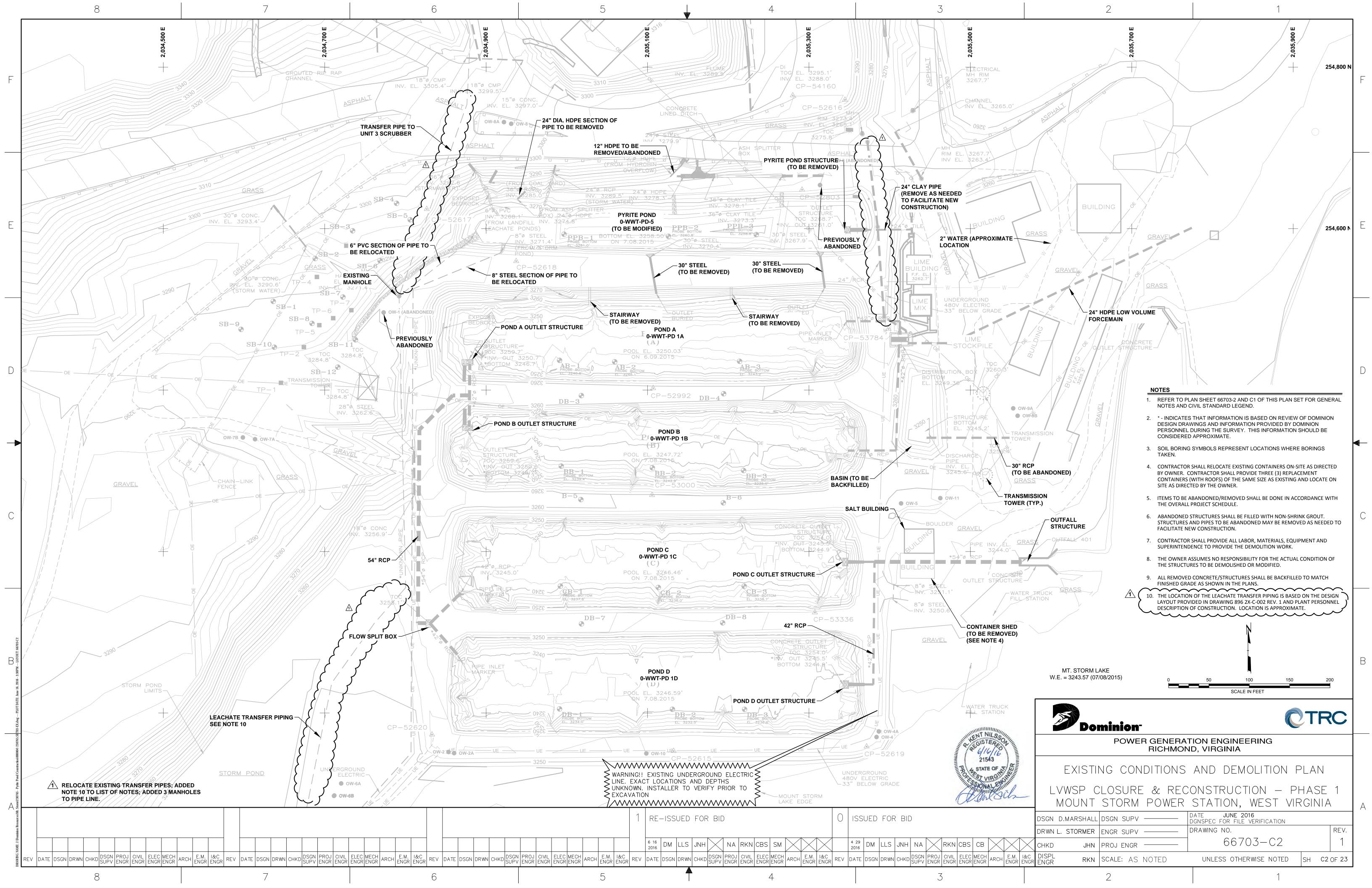
MOUNT STORM POWER STATION CLOSURE AND RECONSTRUCTION LOW VOLUME WASTE SETTLING PONDS (LVWSP) PHASE 1 - 2016 CONSTRUCTION

WEST VIRGINIA

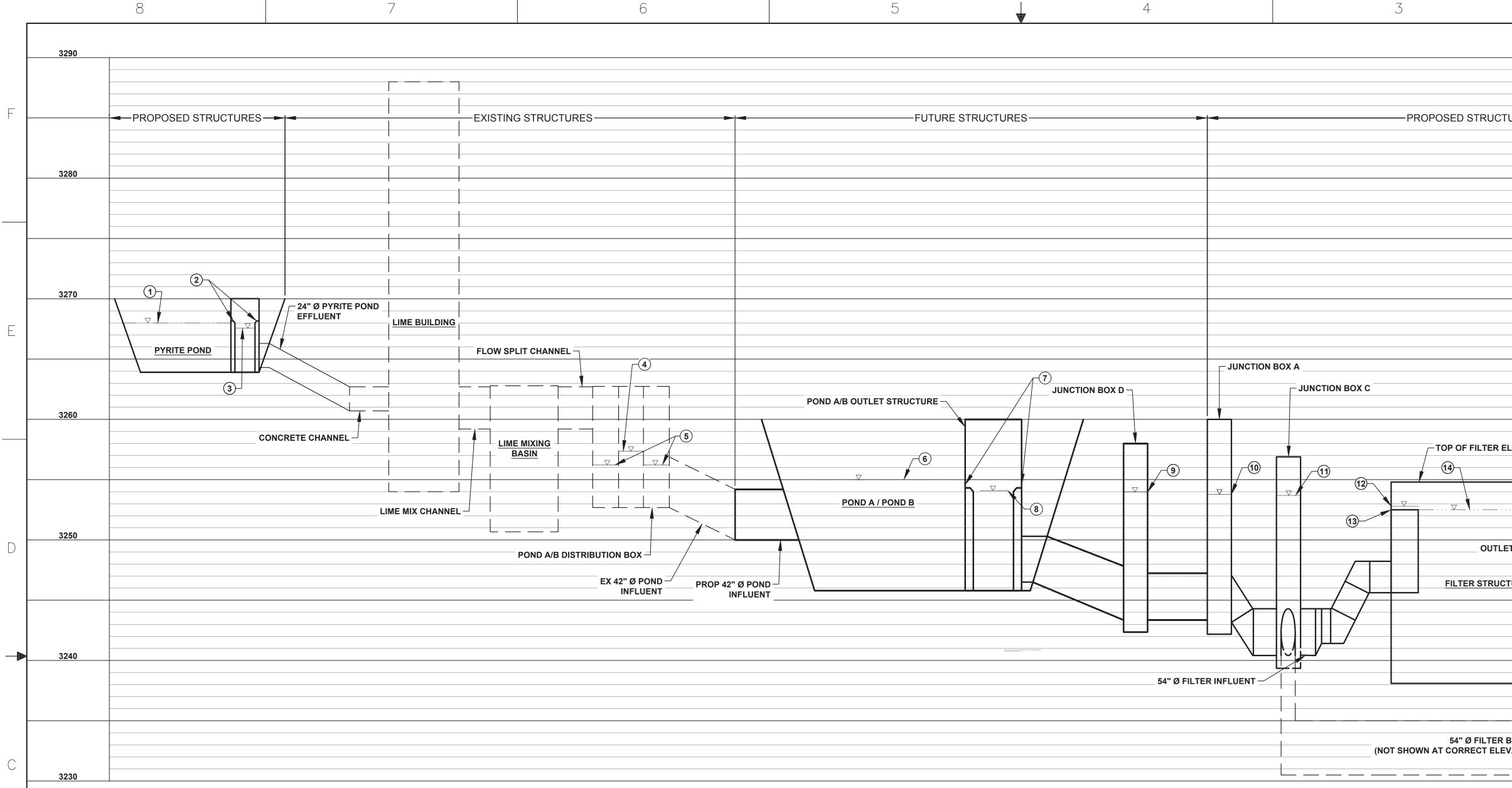
- PREPARED FOR: DOMINION RESOURCES SERVICES, INC. **MOUNT STORM POWER STATION MOUNT STORM, WEST VIRGINIA**
- PREPARED BY: TRC ENGINEERS INC. **GREENVILLE, SOUTH CAROLINA**
 - **DATE: JUNE 2016**

GRANT COUNTY

SITE LOCATION 1" = 600'


RE-ISSUED FOR BID

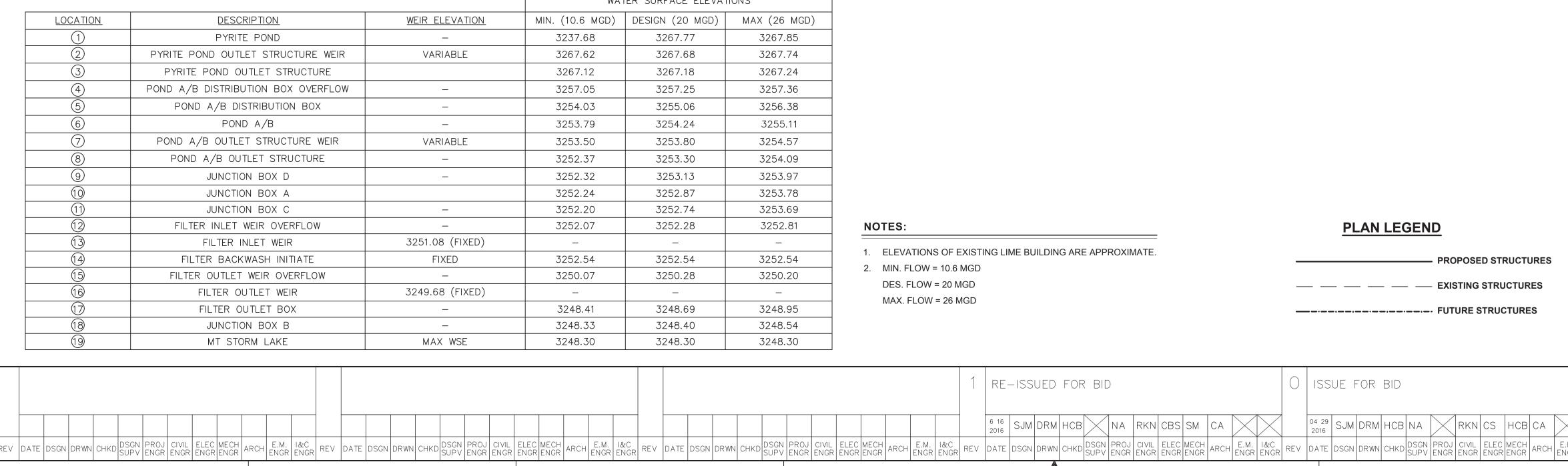
NUMBER	SHEET TITLE	
66703-1	TITLE SHEET	
66703-2	GENERAL NOTES - CIVIL, MECHANICAL, STRUCTURAL	
66703-3	GENERAL NOTES - CIVIL, MECHANICAL, STRUCTURAL	
66703-4	GENERAL NOTES - STRUCTURAL	
66703-5	GENERAL NOTES - STRUCTURAL	
66703-C1	CIVIL STANDARD LEGEND	
66703-C2	EXISTING CONDITIONS AND DEMOLITION PLAN	
66703-C3	PROPOSED HYDRAULIC PROFILE	
66703-C4	CONSTRUCTION EROSION AND SEDIMENTATION CONTROL PLAN	
66703-C5	PYRITE POND SUBBASE PLAN	
66703-C6	PYRITE POND BASE AND PIPING PLAN	
66703-C7	CROSS SECTIONS PYRITE POND	
66703-C8	PYRITE POND INFLUENT DIVERSION PIPE PLAN VIEW AND DETAILS	
66703-C9	PYRITE POND INFLUENT DIVERSION PIPE PROFILE AND DETAILS	
66703-C10	PROPOSED YARD PIPING SITE PLAN	
66703-C11	GRADIENT CONTROL FORCE MAIN PLAN	
66703-C12	WATER LINE & FORCE MAINS PLAN & DETAILS	
66703-C13	BACKWASH PUMP FORCE MAIN PLAN & PROFILE	
66703-C14	GRAVITY LINES PLAN & PROFILE	
66703-C15	FILTER BUILDING CONNECTION PLAN & PROFILE	
66703-C16	POND A & B EFFLUENT STA 0+00 - 1+50	
66703-C17	POND A & B EFFLUENT STA 1+50 - END	
66703-C18		
66703-C19		
66703-C20		
66703-C21		
66703-C22 66703-C23	CIVIL DETAILS CIVIL DETAILS	
66703-C23	GENERAL MECHANICAL NOTES	
66703-MS-0-	General Mechanical NOTES	
	PROCESS FLOW DIAGRAM I	
66703-MS-0-		
	PROCESS FLOW DIAGRAM II	
66703-M4	FILTER BUILDING EQUIPMENT PLAN VIEW @ 3253.00	
66703-M5	FILTER BUILDING EQUIPMENT SECTIONS I	
66703-M6	FILTER BUILDING EQUIPMENT SECTIONS II	
66703-M7	FILTER BUILDING PIPING PLAN VIEW @ 3253.00	
66703-M8	FILTER PIPING SECTIONS I	
66703-M9	FILTER PIPING SECTIONS II	
66703-M10	OUTLET STRUCTURE - PYRITE POND	
66703-M11	JUNCTION BOX DETAILS	
66703-M12	MISCELLANEOUS DETAILS 1	
66703-M13	MISCELLANEOUS DETAILS 2	
66703-M14	MISCELLANEOUS DETAILS 3	
66703-M15	MISCELLANEOUS DETAILS 4	
66703-SA1	STRUCTURAL/ARCHITECTURAL FILTER STRUCTURE	
66703-SA2	STRUCTURAL/ARCHITECTURAL FILTER STRUCTURE	
66703-SA3	STRUCTURAL/ARCHITECTURAL FILTER STRUCTURE	
66703-SA4	STRUCTURAL/ARCHITECTURAL FILTER STRUCTURE	
66703-SA5	STRUCTURAL/ARCHITECTURAL FILTER STRUCTURE	
66703-SA6	STRUCTURAL/ARCHITECTURAL FILTER STRUCTURE	
66703-SA7	STRUCTURAL/ARCHITECTURAL SECTIONS AND DETAILS	
66703-SA8	STRUCTURAL/ARCHITECTURAL SECTIONS AND DETAILS	
66703-S1		
66703-S2		
66703-S3		
66703-S4	STRUCTURAL FILTER STRUCTURE	
66703-S5	STRUCTURAL PYRITE POND OUTFALL	
66703-S6 66703-S7	STRUCTURAL PYRITE POND OUTFALL STRUCTURAL JUNCTION BOX A	
66703-57	STRUCTURAL JUNCTION BOX A STRUCTURAL JUNCTION BOX B	
66703-58	STRUCTURAL JUNCTION BOX B	
66703-S10	STRUCTURAL JUNCTION BOX C	
66703-S11	STRUCTURAL TYPICAL SECTIONS & DETAILS	
66703-S12	STRUCTURAL TYPICAL SECTIONS & DETAILS	
66703-S13	STRUCTURAL TYPICAL SECTIONS & DETAILS	
66703-S14	STRUCTURAL PEDESTRIAN BRIDGE SECTIONS & DETAILS	
66703-E-001	ELECTRICAL SYMBOLS AND ABBREVIATIONS	
66703-E-4500	ELECTRICAL SITE PLAN	
66703-E-4800	ENLARGED ELECTRICAL PLANS #1	
66703-E-4801	ENLARGED ELECTRICAL PLANS #2	
66703-E-0300	EXISTING PYRITE BLDG. ENLARGED ELECTRICAL PLAN	
	ELECTRICAL DUCT BANK AND RACEWAY ROUTING INTERIOR ELEVATIONS AT FILTER	
66703-E-0900		
	ELECTRICAL ONELINE DIAGRAM AND DETAILS	
	PYRITE BLDG. RTU MODIFICATIONS	
	ELECTRICAL PANEL SCHEDULES	
	LIGHTING AND MECHANICAL SCHEDULES	
	ELECTRICAL DUCT BANK SECTIONS	
I 66703-E-4501		
66703-E13 66703-E14	RACEWAY SCHEDULE CABLE SCHEDULE	


SHEET INDEX

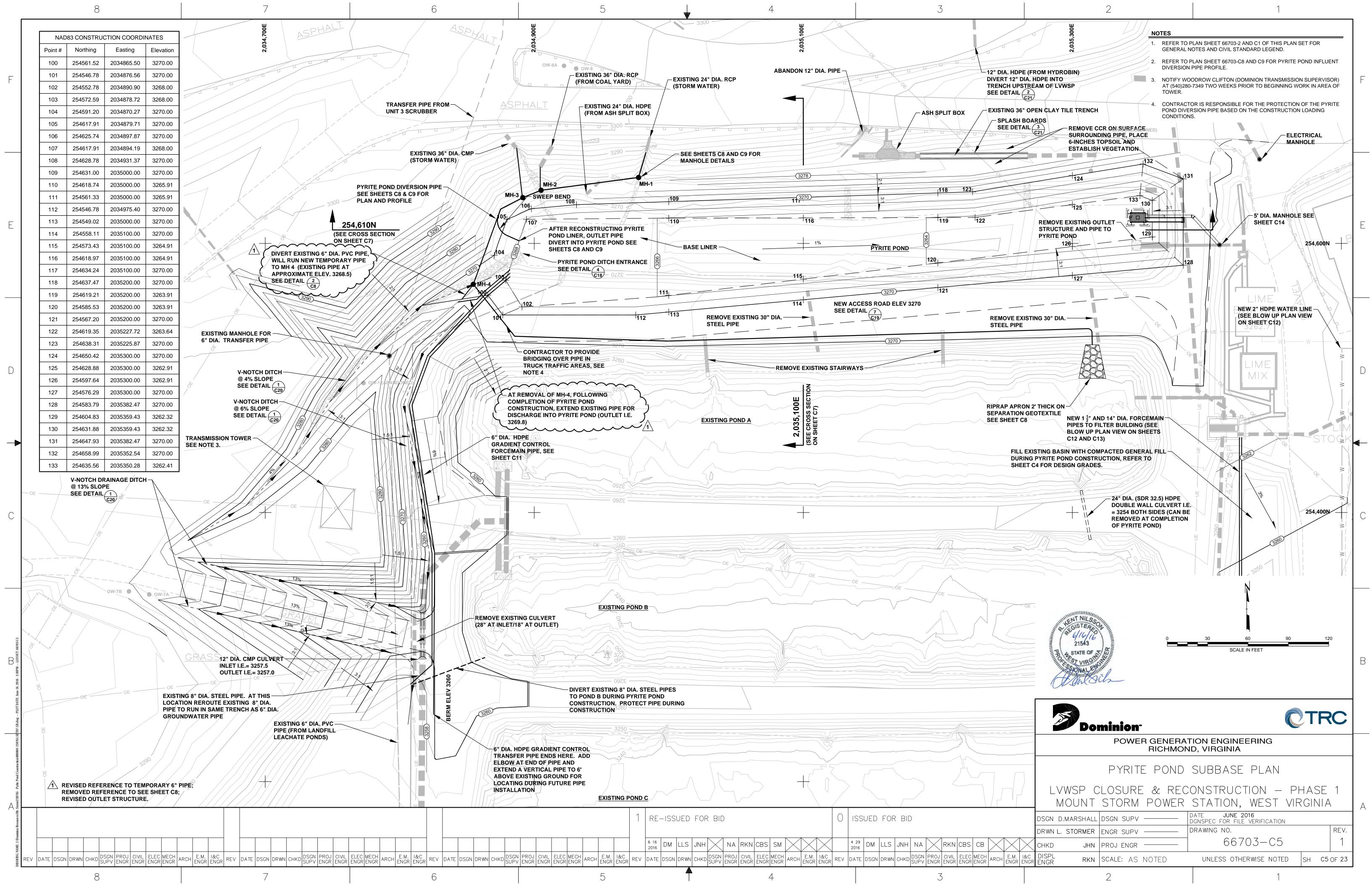
30 Patewood

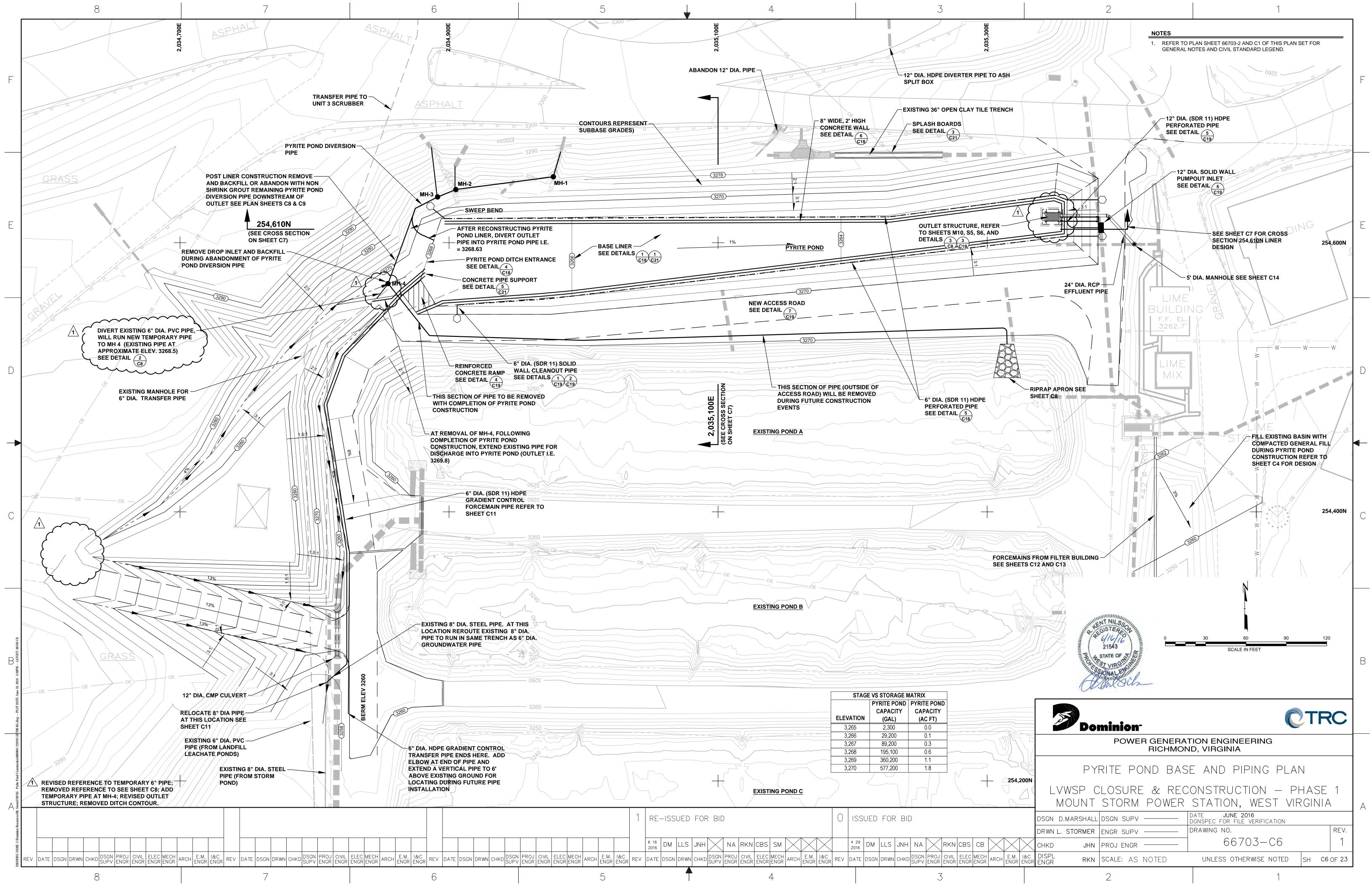
7

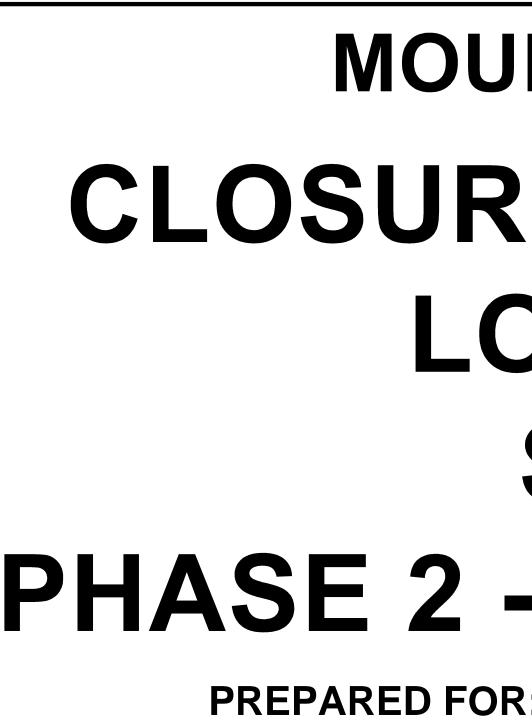
WATER SURFACE ELEVATIONS			
WATER SURFACE ELEVATIONS	WATER	ER SURFACE	ELEVATIONS

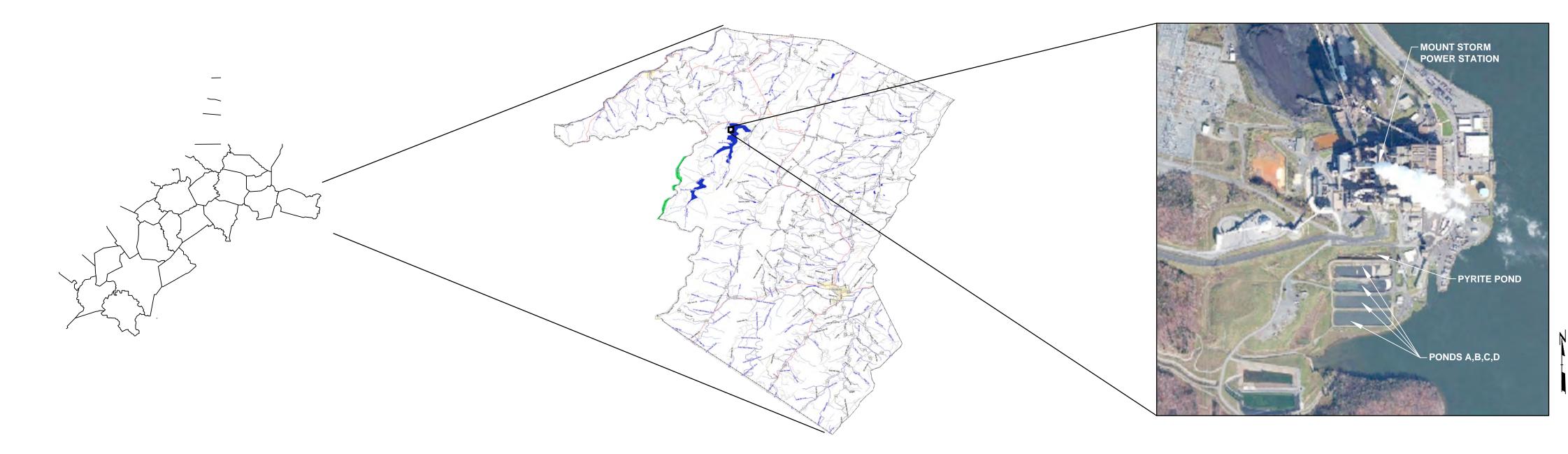

			WA	TER SURFACE ELEVAT	IONS
LOCATION	DESCRIPTION	WEIR ELEVATION	MIN. (10.6 MGD)	DESIGN (20 MGD)	MAX
1	PYRITE POND	_	3237.68	3267.77	32
2	PYRITE POND OUTLET STRUCTURE WEIR	VARIABLE	3267.62	3267.68	32
3	PYRITE POND OUTLET STRUCTURE		3267.12	3267.18	32
4	POND A/B DISTRIBUTION BOX OVERFLOW	_	3257.05	3257.25	32
5	POND A/B DISTRIBUTION BOX	_	3254.03	3255.06	32
6	POND A/B	_	3253.79	3254.24	3:
7	POND A/B OUTLET STRUCTURE WEIR	VARIABLE	3253.50	3253.80	32
8	POND A/B OUTLET STRUCTURE	_	3252.37	3253.30	32
9	JUNCTION BOX D	_	3252.32	3253.13	32
10	JUNCTION BOX A		3252.24	3252.87	32
(1)	JUNCTION BOX C	-	3252.20	3252.74	32
(12)	FILTER INLET WEIR OVERFLOW	-	3252.07	3252.28	32
13	FILTER INLET WEIR	3251.08 (FIXED)	-	-	
14	FILTER BACKWASH INITIATE	FIXED	3252.54	3252.54	32
(15)	FILTER OUTLET WEIR OVERFLOW	-	3250.07	3250.28	32
16	FILTER OUTLET WEIR	3249.68 (FIXED)	-	-	
17	FILTER OUTLET BOX	_	3248.41	3248.69	32
18	JUNCTION BOX B	_	3248.33	3248.40	32
19	MT STORM LAKE	MAX WSE	3248.30	3248.30	32

8


В


А


6



		2			1		
						3290	
URES-			EXISTIN	NG STRUCTURE	S		F
UKL3-							
						3280	
						3270	
							Ŀ
						3260	
1 2254 (20						
E 3254.6		JUNCTION BOX B					
· · · ·				STRUCTURE		3250	
				···· - ··· · · · · · · · · · · · · · ·	<u> </u>		D
TURE							
					RM LAKE		
			54" Ø LA OUTFAL			3240	
	54" Ø EFFLL						
		I					
BYPASS			 				
VATION) 			<u> </u>			3230	С
					i		
				SUPHENS	TEALO		
				PR STAT	EOF R		
				() I	6/2016		В
				6/1	6/2016		
	Do	minion ⁻			C	FRC	
		POWER GE	NERATION E HMOND, VIF		G		
		PROPOSED			- F		
		CLOSURE &				SF 1	
		STORM PO					А
	DSGN SMOBLEY		DATE JU DGNSPEC	C FOR FILE VERIFI	CATION	REV.	
	DRWN AREYES CHKD CBELL	engr supv Proj engr		66703-	- C3	rev. 1	
M. I&C GR ENGR	DISPL ENGR	SCALE: NONE	UNL	ESS OTHERWISE	NOTED SH	C3 OF 23	

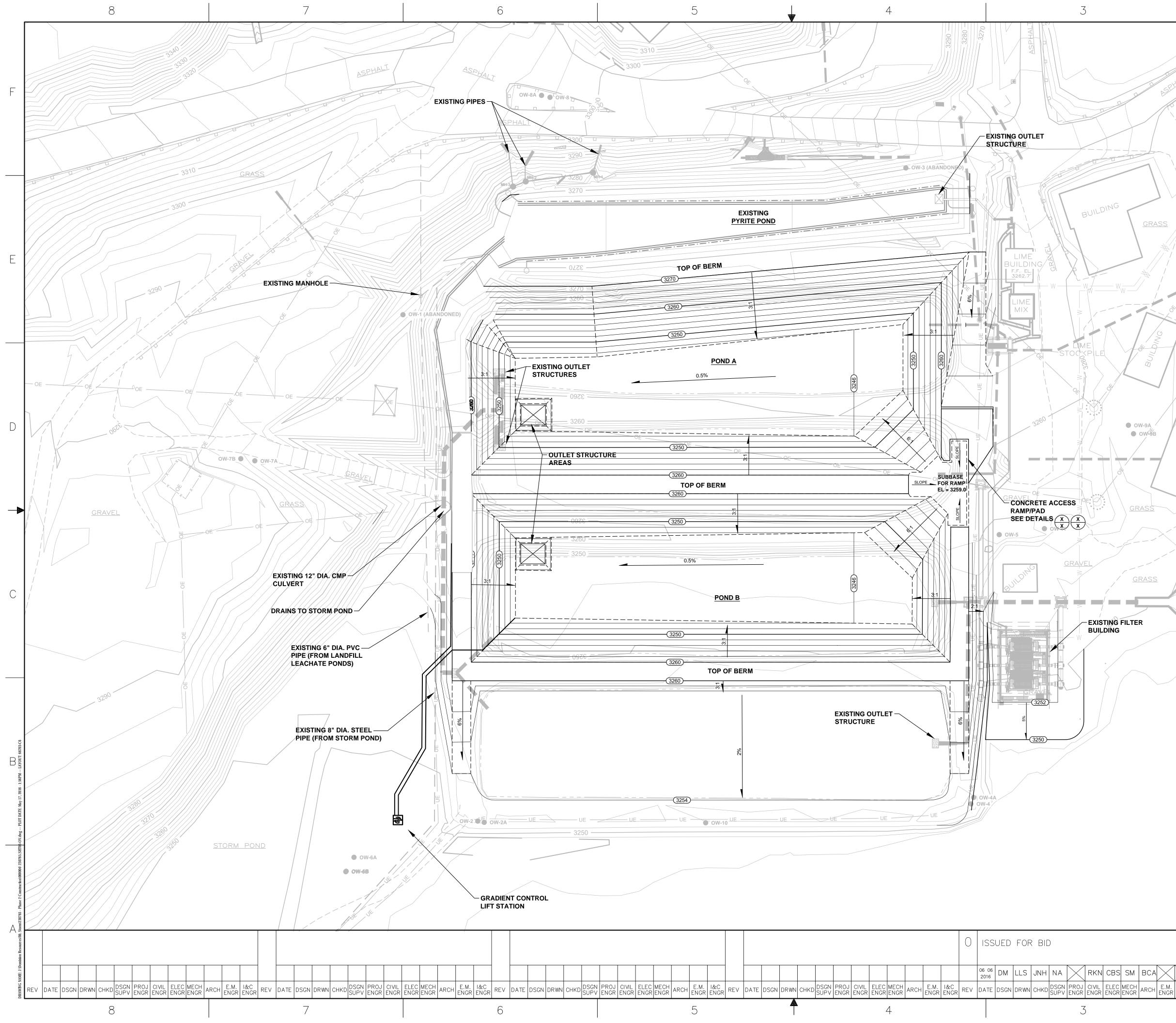
WEST VIRGINIA

GRANT COUNTY

MOUNT STORM POWER STATION CLOSURE AND RECONSTRUCTION LOW VOLUME WASTE **SETTLING PONDS** PHASE 2 - 2017/2018 CONSTRUCTION

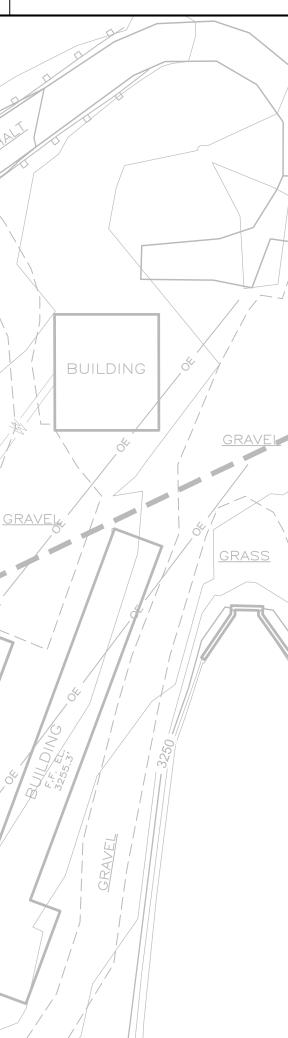
- PREPARED FOR: DOMINION RESOURCES SERVICES, INC. **MOUNT STORM POWER STATION MOUNT STORM, WEST VIRGINIA**
- PREPARED BY: TRC ENGINEERS INC. **GREENVILLE, SOUTH CAROLINA**
 - **DATE: JUNE 2016**

SITE LOCATION 1" = 600'


ISSUED FOR BID

DRAWING NUMBER SHEET TITLE 66703-1 TITLE SHEET 66703-2 GENERAL NOTES - CIVIL, MECHANICAL, STRUCTURAL 66703-3 GENERAL NOTES - CIVIL, MECHANICAL, STRUCTURAI 66703-4 GENERAL NOTES - STRUCTURAL 66703-5 **GENERAL NOTES - STRUCTURAL** 66703-C1 CIVIL STANDARD LEGEND EXISTING CONDITIONS AND DEMOLITION PLAN 66703-C2 66703-C3 PROPOSED HYDRAULIC PROFILI CONSTRUCTION EROSION AND SEDIMENTATION CONTROL PLAN 66703-C4 66703-C5 PYRITE POND SUBBASE PLAN 66703-C6 PYRITE POND BASE AND PIPING PLAN 66703-C7 CROSS SECTIONS PYRITE POND 66703-C8 PYRITE POND INFLUENT DIVERSION PIPE PLAN VIEW AND DETAILS PYRITE POND INFLUENT DIVERSION PIPE PROFILE AND DETAILS 66703-C10 PROPOSED YARD PIPING SITE PLAN 66703-C12 WATER LINE & FORCE MAINS PLAN & DETAIL 66703-C13 BACKWASH PLIMP FORCE MAIN PLAN & PROFI 66703-C14 GRAVITY LINES PLAN & PROFIL 66703-C15 |FILTER BUILDING CONNECTION PLAN & PROFILE 66703-C16 POND A & B EFFLUENT STA 0+00 - 1+50 66703-C17 POND A & B EFFLUENT STA 1+50 - END 66703-C18 CIVIL DETAILS 66703-C19 CIVIL DETAILS 66703-C20 **CIVIL DETAILS** 66703-C21 CIVIL DETAILS 66703-C22 CIVIL DETAILS 66703-C23 CIVIL DETAILS 66703-M1 GENERAL MECHANICAL NOTES 66703-MS-0-FL-WWT-120 PROCESS FLOW DIAGRAM 66703-MS-0-FL-WWT-121 PROCESS FLOW DIAGRAM II 66703-M4 | FILTER BUILDING EQUIPMENT PLAN VIEW @ 3253.00 66703-M5 FILTER BUILDING EQUIPMENT SECTIONS 66703-M6 ILTER BUILDING EQUIPMENT SECTIONS II 66703-M7 FILTER BUILDING PIPING PLAN VIEW @ 3253.0 66703-M8 ILTER PIPING SECTIONS 66703-M9 FILTER PIPING SECTIONS II 66703-M10 OUTLET STRUCTURE - PYRITE POND JUNCTION BOX DETAILS 66703-M11 66703-M12 MISCELLANEOUS DETAILS : 66703-M13 MISCELLANEOUS DETAILS 2 66703-M14 MISCELLANEOUS DETAILS 3 66703-M15 MISCELLANEOUS DETAILS 4 66703-SA1 STRUCTURAL/ARCHITECTURAL FILTER STRUCTURE 66703-SA2 STRUCTURAL/ARCHITECTURAL FILTER STRUCTURE 66703-SA3 STRUCTURAL/ARCHITECTURAL FILTER STRUCTURE 66703-SA4 STRUCTURAL/ARCHITECTURAL FILTER STRUCTURE 66703-SA5 STRUCTURAL/ARCHITECTURAL FILTER STRUCTURE STRUCTURAL/ARCHITECTURAL FILTER STRUCTURE 66703-SA6 66703-SA7 STRUCTURAL/ARCHITECTURAL SECTIONS AND DETAIL 66703-SA8 STRUCTURAL/ARCHITECTURAL SECTIONS AND DETAILS 66703-S1 STRUCTURAL FILTER STRUCTURE 66703-S2 STRUCTURAL FILTER STRUCTURE 66703-S3 STRUCTURAL FILTER STRUCTURE STRUCTURAL FILTER STRUCTURE 66703-S4 66703-S5 STRUCTURAL PYRITE POND OUTFAL 66703-S6 STRUCTURAL PYRITE POND OUTFAL 66703-S7 STRUCTURAL JUNCTION BOX A STRUCTURAL JUNCTION BOX B 66703-S8 66703-S9 STRUCTURAL JUNCTION BOX (66703-S10 STRUCTURAL JUNCTION BOX (66703-S11 STRUCTURAL TYPICAL SECTIONS & DETAILS 66703-S12 STRUCTURAL TYPICAL SECTIONS & DETAILS 66703-S13 STRUCTURAL TYPICAL SECTIONS & DETAILS 66703-S14 STRUCTURAL PEDESTRIAN BRIDGE SECTIONS & DETAILS 66703-E-001 ELECTRICAL SYMBOLS AND ABBREVIATIONS 66703-E-4500 ELECTRICAL SITE PLAN 66703-E-4800 ENLARGED ELECTRICAL PLANS #1 66703-E-4801 ENLARGED ELECTRICAL PLANS #2 66703-E-0300 EXISTING PYRITE BLDG. ENLARGED ELECTRICAL PLAN ELECTRICAL DUCT BANK AND RACEWAY ROUTING INTERIOR ELEVATIONS AT FILTEF 66703-E-0900 BUILDING 66703-E-4803 ELECTRICAL ONELINE DIAGRAM AND DETAILS 66703-E-1400 PYRITE BLDG. RTU MODIFICATIONS 66703-E-1401 ELECTRICAL PANEL SCHEDULES 66703-E-4805 LIGHTING AND MECHANICAL SCHEDULES 66703-E-6000 ELECTRICAL DUCT BANK SECTIONS 66703-E-4501 ELECTRICAL DETAILS 66703-E13 RACEWAY SCHEDULE 66703-E14 CABLE SCHEDULE

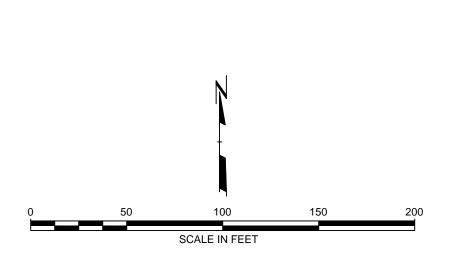
SHEET INDEX



JU I ALGWUUU

NOTES

<u>GRASS</u>


REFER TO PLAN SHEET 66703-C21 FOR NEW PIPING LAYOUTS	•

1. REFER TO PLAN SHEET 66703-2 AND C1 OF THIS PLAN SET FOR

GENERAL NOTES AND CIVIL STANDARD LEGEND.

STAGE VS STORAGE MATRIX					
	POND A	POND A			
	CAPACITY	CAPACITY			
ELEVATION	(GAL)	(AC FT)			
3,247	40,400	0.1			
3,248	198,500	0.6			
3,249	502,500	1.5			
3,250	844,000	2.6			
3,251	1,211,100	3.7			
3,252	1,604,100	4.9			
3,253	2,023,700	6.2			
3,254	2,470,200	7.6			
3,255	2,944,000	9.0			
3,256	3,445,500	10.6			
3,257	3,975,300	12.2			

STAGE VS STORAGE MATRIX					
	POND B	POND B			
	CAPACITY	CAPACITY			
ELEVATION	(GAL)	(AC FT)			
3,247	43,100	0.1			
3,248	207,300	0.6			
3,249	507,800	1.6			
3,250	846,400	2.6			
3,251	1,210,400	3.7			
3,252	1,600,400	4.9			
3,253	2,016,700	6.2			
3,254	2,460,000	7.5			
3,255	2,930,600	9.0			
3,256	3,429,200	10.5			
3,257	3,956,100	12.1			

В

	Do	minion	•		C	TR	С
		POWE		TION ENGINE D, VIRGINIA	ERING		
	OVERVIEW – PYRITE POND, PONDS A AND B SUBGRADE PLAN						
	LVWSP – PHASE 2 – 2017 & 2018 CONSTRUCTION MOUNT STORM POWER STATION, WEST VIRGINIA						
	DSGN D.MARSHALL	DSGN SUPV		DATE JUNE 20 DGNSPEC FOR FILE			
	DRWN L. STORMER	ENGR SUPV		DRAWING NO.			REV.
	СНКД ЈИН	PROJ ENGR		667	03-C6		0
I&C ENGF	DISPL ENGR RKN	SCALE: AS	NOTED	UNLESS OTHE	RWISE NOTED	SH C6 (DF 71
		2			1		

Appendix B Flood Insurance Rate Map

NOTES TO USERS

This map is for use in administering the National Flood Insurance Program. It does not necessarily identify all areas subject to flooding, particularly from local drainage sources of small size. The community map repository should be consulted for possible updated or additional flood hazard information.

To obtain more detailed information in areas where Base Flood Elevations (BFEs) and/or floodways have been determined, users are encouraged to consult the Flood Profiles and Floodway Data and/or Summary of Stillwater Elevations tables contained within the Flood Insurance Study (FIS) report that accompanies this FIRM. Users should be aware that BFEs shown on the FIRM represent rounded whole-foot elevations. These BFEs are intended for flood insurance rating purposes only and should not be used as the sole source of flood elevation information. Accordingly, flood elevation data presented in the FIS report should be utilized in conjunction with the FIRM for purposes of construction and/or floodplain management.

Boundaries of the **floodways** were computed at cross sections and interpolated between cross sections. The floodways were based on hydraulic considerations with regard to requirements of the National Flood Insurance Program. Floodway widths and other pertinent floodway data are provided in the Flood Insurance Study report for this jurisdiction.

Certain areas not in Special Flood Hazard Areas may be protected by flood control structures. Refer to Section 2.4 "Flood Protection Measures" of the Flood Insurance Study report for information on flood control structures for this jurisdiction.

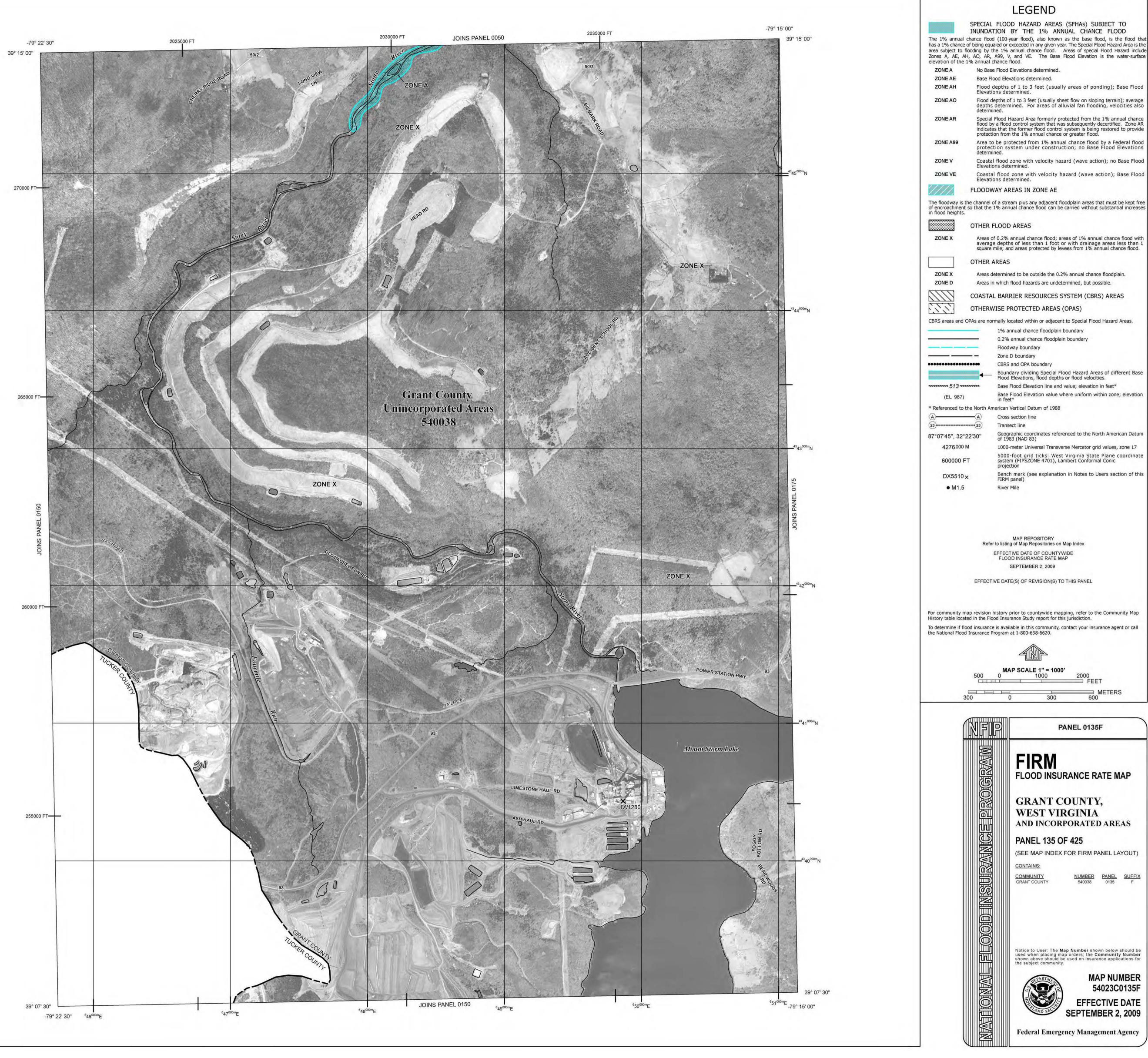
The projection used in the preparation of this map was Universal Transverse Mercator (UTM) Zone 17. Horizontal datum was NAD 83, GRS80 spheroid. Differences in datum, spheroid, projection or UTM zones used in the production of FIRMs for adjacent jurisdictions may result in slight positional differences in map features across jurisdiction boundaries. These differences do not affect the accuracy of this FIRM.

Flood elevations on this map are referenced to the North American Vertical Datum of 1988. These flood elevations must be compared to structure and ground elevations referenced to the same vertical datum. For information regarding conversion between the National Geodetic Vertical Datum of 1929 and the North American Vertical Datum of 1988, visit the National Geodetic Survey website at http://www.ngs.noaa.gov/ or contact the National Geodetic Survey at the following address:

Spatial Reference System Division National Geodetic Survey, NOAA Silver Spring Metro Center 1315 East-West Highway Silver Spring, Maryland 20910 (301) 713-3191

To obtain current elevation, description, and/or location information for bench marks shown on this map, please contact the Information Services Branch of the National Geodetic Survey at (301) 713-3242, or visit its website at http://www.ngs.noaa.gov/.

BASE MAP SOURCE: Digital data were obtained from the U.S. Census Bureau, the West Virginia Statewide Addressing and Mapping Board (WV SAMB), the WV Dept. of Environmental Protection (WV DEP), the U.S. Forest Service (USFS), and Michael Baker Jr., Inc.(Baker). Corporation boundaries and road names were obtained from Census Tiger/Line 2000 data sets. The 1:4800 scale 2003 orthophoto base map imagery was obtained from the WV SAMB, as was the orthophoto based hydrographic vector data. County boundaries were digitized by the WV DEP from the U.S. Geological Survey 1:24000 scale topographic map Digital Raster Graphics. National Forest Boundary data were created by the Monongahela National Forest Geographic Information Systems Program, (USFS) Levee data were created by Baker for The Federal Emergency Management Agency.


Based on the above mentioned digital orthophotographs, this map reflects more detailed and up-to-date stream channel configurations than those shown on the previous FIRM for this jurisdiction. The floodplains and floodways that were transferred from the previous FIRM may have been adjusted to conform to these new stream channel configurations. As a result, the Flood Profiles and Floodway Data tables (where applicable) for South Branch Potomac River in the Flood Insurance Study report (which contains authoritative hydraulic data) may reflect stream channel distances that differ from what is shown on the map.

Corporate limits shown on this map are based on the best data available at the time of publication. Because changes due to annexations or de-annexations may have occurred after this map was published, map users should contact appropriate community officials to verify current corporate limit locations.

Please refer to the separately printed Map Index for an overview map of the county showing the layout of map panels; community map repository addresses; and a Listing of Communities table containing National Flood Insurance Program dates for each community as well as a listing of the panels on which each community is located.

Contact the FEMA Map Service Center at 1-800-358-9616 for information on available products associated with this FIRM. Available products may include previously issued Letters of Map Change, a Flood Insurance Study report, and /or digital versions of this map. The FEMA Map Service Center may also be reached by Fax at 1-800-358-9620 and its website at http://msc.fema.gov/.

If you have questions about this map or questions concerning the National Flood Insurance Program in general, please call 1-877-FEMA MAP (1-877-336-2627) or visit the FEMA website at http://www.fema.gov/business/nfip.

0135

Table of Contents

- Storm Water Capacity of the Existing LVWSP
- Storm Water Capacity of Reconstructed Ponds A and B

Storm Water Capacity of the Existing LVWSP

30 Patewood Drive, Suite 300, Greenville, SC 29615 • www	w.TRCsolutions.com	SHEET 1 OF 3
PROJECT / LOCATION: Mount Storm Power Station - Mount Storm, West Virginia - LVWSP	PROJECT / PROPOSAL NO.	
SUBJECT: Storm Water Capacity of Existing Ponds A through D	230765.0000	
PREPARED BY: S. Sellner	FINAL 🗆	
CHECKED BY: J. Hotstream	DATE: 8/19/2016	REVISION 🗆

<u>Purpose</u>: Determine if there is sufficient capacity to contain the runoff volume collected in the LVWSP from the 100 year, 24 hour storm event for the existing LVSWP (Ponds A, B, C, and D)

<u>Methodology</u>: Calculate inflow for the 100 year, 24 hour storm event. Determine the available capacity for the volume of storm water by estimating additional flow that can be provided from the outlet and available freeboard capacity of Ponds A, B, C, and D.

INFLOWS

1.) Determine storm water inflows into the retrofitted Pyrite Pond

- Station storm water flows into Pyrite Pond (Refer to Attached Figure).
- The drainage area is approximately 75.4 acres.
- Volume of runoff determined by HydroCAD output (See Attached). This output was performed based upon values determined in the storm water analysis

 V_{Runoff} = Volume of Runoff (acre feet) for the 100 year, 24 hour storm event

 V_{Runoff} = 31.0 acre feet

2.) Determine storm water inflow into Ponds A, B, C, and D

Effective area of storm water based upon midpoint of outside berms from CAD drawing.It is assumed that ther is no infiltration

V_{Pond Inflow} = iA

V i A	 Storm Water Inflow to Pyrite Pond Precipitation Frequency (inches/day) 100 year, 24 hour storm event Area (acre) 				
i A	= 6.19 inches/day = 7.5 acres				
V _{Pond Inflow} V _{Pond Inflow}	= 46.4 acre inches = 3.87 acre feet				
V_{Inflow} V_{Inflow}	 Volume of Total Inflows V_{Runoff} + V_{Pond Inflow} 				
V_{Inflow}	= 34.9 acre feet				

Note:

Areas and volumes are from the Civil 3D existing conditions model, refer to attached sheets Design storm data from NOAA, refer to attached sheets ī.

© TRC	30 Patewood Drive, Suite 300, Greenville, SC 29615 • ww	w.TRCsolutions.com		SHEET 2 OF 3
PROJECT / LOCATION: Mount Storm Power Station - Mount Storm, West Virginia - LVWSP				PROJECT / PROPOSAL NO.
SUBJECT: Storm W	ater Capacity of Existing Ponds A through D		230765.0000	
PREPARED BY: S. Sellner DATE: 8/15/2016			FINAL	
CHECKED BY: J. H	lotstream	DATE: 8/19/2016	REVISION	

OUTFLOWS

3.) Determine volume out of the LVWSP outlet - Volume of flow based on the difference between the max flow and normal operating flow. This difference provides the additional outflow capacity from the LVWSP that is available during a storm event. The normal operational flow is based on instantaneous readings and assumed to equal the average + 2 standard deviations

Volumes based upon Settling Capcacity Analysis calculation performed on 9/23/2015, see attachments
Maximum outflow rate assumed to be 26 million gallons per day (MGD)

Q_{Outflow}	= A	= Available Outflow Rate (MGD)				
Ave.+2σ	= A	= Average + 2 Standard Deviations Flow Rate (MGD)				
Q _{Max}	= N.	laximum	n Outflow Rate (MGD)			
Ave.+ 2σ	=	18	MGD			
Q_{Max}	=	26	MGD			
Q_{Outflow}	=	8	MGD			

-Convert available flow rate to available volume for outflow (Assuming flow for 24 hours - 1 day)

 $V_{Outflow} = Q_{Outflow} * Days of Flow$

-Convert million gallons per day (MGD) to Acre-Feet

V _{Outflow}	=	Available Outflow Volume			
Q_{Outflow}	=	Available Outflow Rate			
V _{Outflow}	=	24.5	acre feet		

AVAILABLE FREEBOARD

4.) Determine volume of available freeboard in the existing LVSWP (Pond A, B, C, and D)

- Pond Elevations and Volumes deteremined by Civil 3D, see attached

- Top of operating water level based on station measurements

Pond Elevations (feet NAVD88)

	Pond A	Pond B	Pond C	Pond D
Top of Berm Elevation	3,260	3,260	3,254	3,254
Top of Water Elevation	3,255	3,255	3,252	3,252

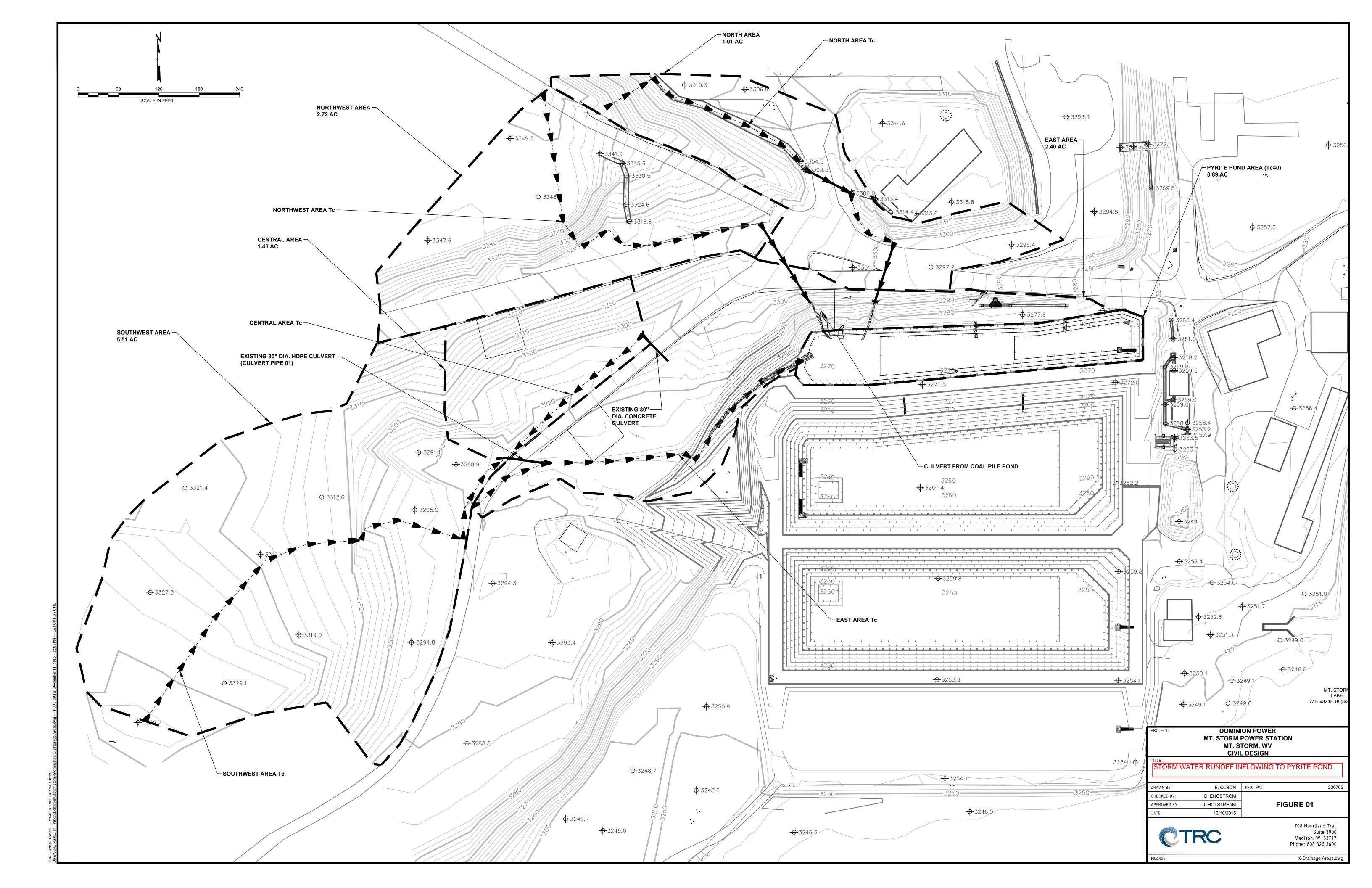
T.

© TRC	30 Patewood Drive, Suite 300, Greenville, SC 29615 • wu	w.TRCsolutions.com		SHEET 3 OF 3
PROJECT / LOCAT	ION: Mount Storm Power Station - Mount Storm, West Virginia - LVV	Ι	PROJECT / PROPOSAL NO.	
SUBJECT: Storm W	Vater Capacity of Existing Ponds A through D		230765.0000	
PREPARED BY: S. Sellner DATE: 8/15/2016				
CHECKED BY: J. H	Iotstream	DATE: 8/19/2016	REVISION	

Pond Capacities						
Pond A Pond B Pond C Pond D						
Top of Berm (cubic yards)	20,670	28,120	26,418	27,893		
Top of Water (cubic yards)	11,700	18,365	22,080	23,110		

Freeboard Volumes (S_{FB}) = Top of Berm Volume (cy) - Bottom of Pond Volume (cy)

S_{FB-A}	=	8,970	cy
S_{FB-B}	=	9,755	cy
S_{FB-C}	=	4,338	cy
S _{FB-D}	=	4,783	cy


Total Storage of Existing Freeboard = $S_{FB-A} + S_{FB-B} + S_{FB-C} + S_{FB-D}$

S _{FB}	=	27,846	cy
S_{FB}	=	17	acre feet

5.) Compare the calculated inflow volumes vs. the outflow volumes considering the volume from the Freeboard Capacity

-Determine the Freeboard Volume Capacity compare to the flow difference

<u>Conclusion</u>: Based upon the inflow, outflow, and freeboard capacity of the existing LVWSP, the system has sufficient capacity to accommodate the runoff associated with a 100 year,24 hour storm event.

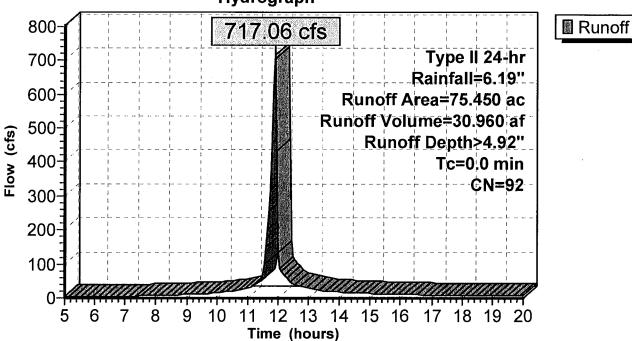
Pyrite Pond Bypass SW Model Prepared by TRC HydroCAD® 10.00 s/n 08043 © 2013 HydroCAD Software Solutions LLC

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
11.341	84	50-75% Grass cover, Fair, HSG D (S-3, S-4, S-5, S-8)
0.746	98	Paved parking, HSG D (S-3, S-5)
60.862	93	Urban industrial, 72% imp, HSG D (S-1, S-7)
2.499	98	Water Surface, HSG D (S-2, S-6)
75.448	92	TOTAL AREA

Summary for Subcatchment 1S: Drainage Area to Ponds

30.960 af, pepth> 4.92"


[46] Hint: Tc=0 (Instant runoff peak depends on dt)

Runoff = 717.06 cfs @ 11.89 hrs, Volume=

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr Rainfall=6.19"

	Area (ac)	CN	Description
*	75.450	92	Weighted Average from Permit
	75.450		100.00% Pervious Area

Subcatchment 1S: Drainage Area to Ponds

Hydrograph

Precipitation Frequency Data Server

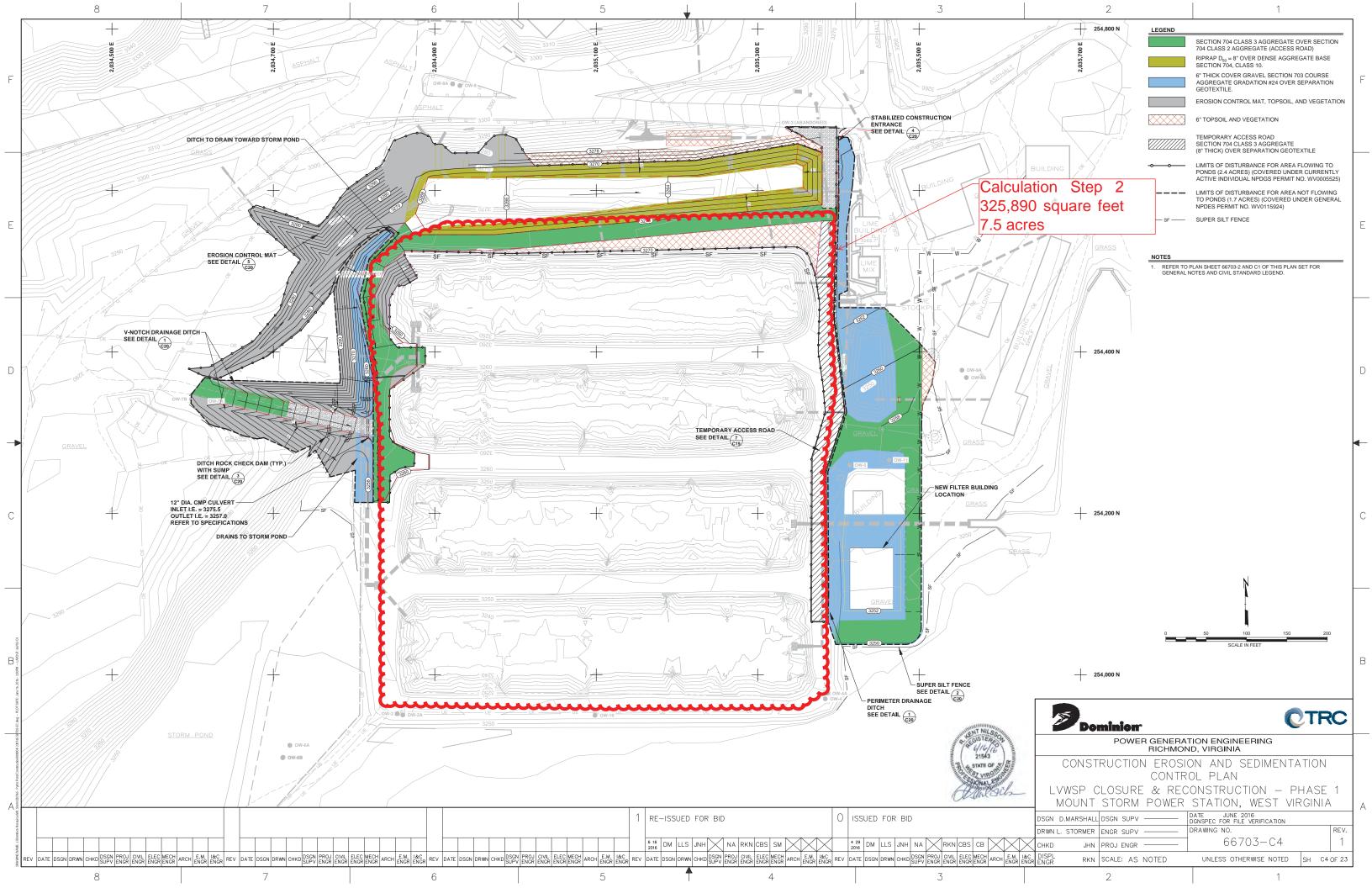
STORM Station ID: 46-6293 Location name: Mount Storm, West Virginia, US* Latitude: 39.2833°, Longitude: -79.2333° Elevation: Elevation: Elevation (station metadata): 2851 ft* * source: Google Maps

NOAA Atlas 14, Volume 2, Version 3 MOUNT

POINT PRECIPITATION FREQUENCY ESTIMATES

G.M. Bonnin, D. Martin, B. Lin, T. Parzybok, M.Yekta, and D. Riley

NOAA, National Weather Service, Silver Spring, Maryland


PF_tabular | PF_graphical | Maps_& aerials

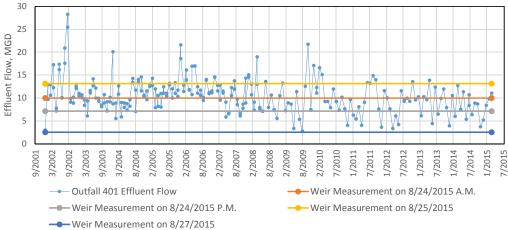
PF tabular

Duration	Average recurrence interval (years)									
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	0.301 (0.268-0.339)	0.355 (0.314-0.400)	0.427 (0.378-0.480)	0.488 (0.431-0.549)	0.570 (0.500-0.637)	0.639 (0.559-0.713)	0.708 (0.616-0.790)	0.785 (0.678-0.875)	0.893 (0.764-0.993)	0.981 (0.832-1.09
10-min	0.469 (0.417-0.527)	0.554 (0.490-0.626)	0.664 (0.587-0.747)	0.755 (0.666-0.848)	0.872 (0.766-0.975)	0.970 (0.848-1.08)	1.07 (0.929-1.19)	1.17 (1.01-1.31)	1.31 (1.13-1.46)	1.44 (1.22-1.60)
15-min	0.575 (0.511-0.646)	0.678 (0.599-0.765)	0.816 (0.722-0.918)	0.929 (0.820-1.04)	1.08 (0.946-1.21)	1.20 (1.05-1.34)	1.33 (1.15-1.48)	1.46 (1.26-1.62)	1.64 (1.40-1.82)	1.79 (1.52-2.00)
30-min	0.761 (0.676-0.856)	0.908 (0.803-1.02)	1.12 (0.989-1.26)	1.29 (1.14-1.45)	1.52 (1.34-1.70)	1.72 (1.50-1.92)	1.92 (1.67-2.14)	2.13 (1.84-2.38)	2.43 (2.08-2.71)	2.69 (2.28-3.00)
60-min	0.930 (0.827-1.05)	1.11 (0.986-1.26)	1.40 (1.24-1.58)	1.64 (1.45-1.85)	1.98 (1.74-2.21)	2.27 (1.98-2.53)	2.57 (2.23-2.86)	2.90 (2.50-3.23)	3.37 (2.88-3.75)	3.79 (3.21-4.22)
2-hr	1.10 (0.976-1.24)	1.32 (1.17-1.49)	1.66 (1.47-1.87)	1.97 (1.74-2.20)	2.39 (2.10-2.66)	2.77 (2.41-3.08)	3.17 (2.75-3.52)	3.61 (3.11-4.00)	4.26 (3.63-4.70)	4.84 (4.08-5.34)
3-hr	1.19 (1.05-1.34)	1.42 (1.26-1.60)	1.77 (1.57-2.00)	2.09 (1.85-2.35)	2.54 (2.23-2.85)	2.94 (2.56-3.28)	3.37 (2.92-3.76)	3.85 (3.32 <u>-4.2</u>	4.56 alculatior	5.20 Step 2
6-hr	1.48 (1.28-1.73)	1.76 (1.53-2.06)	2.17 (1.88-2.53)	2.55 (2.20-2.96)	3.08 (2.64-3.57)	3.55 (3.04-4.10)	4.07 (3.45-4.69)	4.64 (3.91-5.35)	5.48 (4.57-6.30)	6.24 (5.14-7.16)
12-hr	1.83 (1.60-2.15)	2.17 (1.90-2.54)	2.66 (2.33-3.11)	3.12 (2.72-3.64)	3.79 (3.27-4.40)	4.38 (3.76-5.07)	5.03 (4.28-5.87)	5.76 (4.85-6.64)	6.86 (5.69-7.89)	7.86 (6.44-9.02)
24-hr	2.18 (1.96-2.45)	2.61 (2.34-2.94)	3.25 (2.91-3.65)	3.80 (3.39-4.26)	4.63 (4.09-5.18)	5.37 (4.69-6.0)	6.19 (5.33-6.93)) 11 (6.05-7.97)	8.54 (7.09-9.61)	9.78 (7.98-11.0)
2-day	2.55 (2.32-2.83)	3.05 (2.78-3.38)	3.79 (3.44-4.20)	4.42 (4.00-4.90)	5.39 (4.82-5.97)	6.24 (5.53-6.91)	7 9 (6.30-7.97)	8.26 (7.13-9.18)	9.92 (8.39-11.1)	11.4 (9.45-12.8)
3-day	2.77 (2.56-3.03)	3.31 (3.05-3.61)	4.06 (3.74-4.43)	4.70 (4.31-5.13)	5.64 (5.12-6.16)	6.45 (5.79-7.06)	7.33 (6.51-8.06)	8.30 (7.26-9.23)	9.97 (8.40-11.1)	11.4 (9.49-12.8)
4-day	3.00 (2.80-3.23)	3.57 (3.33-3.85)	4.34 (4.04-4.67)	4.98 (4.62-5.36)	5.89 (5.42-6.36)	6.66 (6.06-7.22)	7.46 (6.72-8.15)	8.33 (7.39-9.27)	10.0 (8.41-11.2)	11.5 (9.54-12.9)
7-day	3.49 (3.27-3.74)	4.14 (3.87-4.44)	4.96 (4.63-5.32)	5.63 (5.24-6.05)	6.57 (6.06-7.07)	7.32 (6.70-7.91)	8.09 (7.34-8.80)	8.89 (7.98-9.75)	10.1 (8.82-11.3)	11.6 (9.63-13.0)
10-day	4.03 (3.80-4.29)	4.75 (4.48-5.06)	5.60 (5.28-5.96)	6.28 (5.90-6.68)	7.19 (6.70-7.67)	7.89 (7.32-8.45)	8.60 (7.91-9.26)	9.32 (8.49-10.1)	10.3 (9.26-11.4)	11.7 (9.91-13.1)
20-day	5.65 (5.37-5.96)	6.61 (6.28-6.98)	7.60 (7.22-8.04)	8.41 (7.96-8.90)	9.47 (8.92-10.0)	10.3 (9.63-11.0)	11.1 (10.3-11.9)	11.9 (11.0-12.8)	12.9 (11.8-14.1)	13.7 (12.3-15.0)
30-day	7.11 (6.78-7.46)	8.28 (7.90-8.71)	9.40 (8.95-9.89)	10.3 (9.78-10.8)	11.4 (10.8-12.0)	12.3 (11.6-13.0)	13.1 (12.3-13.9)	13.9 (13.0-14.8)	14.9 (13.8-16.0)	15.6 (14.3-16.9)
45-day	9.09 (8.70-9.50)	10.5 (10.1-11.0)	11.8 (11.3-12.4)	12.8 (12.3-13.5)	14.1 (13.4-14.8)	15.1 (14.3-15.9)	15.9 (15.1-16.9)	16.8 (15.8-17.8)	17.8 (16.6-19.0)	18.5 (17.1-19.9)
60-day	10.9 (10.5-11.4)	12.7 (12.2-13.3)	14.1 (13.5-14.8)	15.3 (14.6-16.0)	16.7 (15.9-17.5)	17.7 (16.8-18.7)	18.7 (17.7-19.7)	19.6 (18.4-20.8)	20.6 (19.3-22.0)	21.4 (19.9-22.9)

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values. Please refer to NOAA Atlas 14 document for more information.

©TRC	708 Heartland Trail, Suit	e 3000, Madison, WI 53717 • www.TRCsolutions.com	
PROJECT / PROPOSAL	NAME / LOCATION:	PROJECT / PROPOSAL NO.	FINAL
Mount Storm - Settling	Capacity Analysis	230765.0000 Phase 4	
PREPARED BY:	D. Engstrom	DATE: 9/21/2015	REVISION
CHECKED BY:	J. Hotstream	DATE: 9/23/2015	10/28/2015


SUMMARY OF FLOW DATA AND CALCULATIONS

Method:

Flow data into the primary settling ponds (Ponds A and B) were not available to estimate treatability of influent. Flow ranges are estimated based on monthly monitoring of the permited outfall to Mt. Storm Lake since 2001 and calculated flows from the weir in the Pond A/B distribution box.

Data from Monitoring Point 401 represents the outfall after Ponds C and D. It is assumed that this flow is equal to the inflow to the ponds. Calculated influent flow values are based on water heights over the weir in the Pond A/B distribution box obtained on 8/24, 8/25, and 8/27/15. Several calculated flows are plotted on Figure 1

Table 1. Statistical	summary of the	Outfall 401 flow	v data.
----------------------	----------------	------------------	---------

STATISTICAL PARAMETER	FLOW (MGD)
Average	10.6
Maximum	28.3
Minimum	2.8
Median	10.3
Standard Deviation	3.7
Lower Quartile	8.04
Upper Quartile	13.5
Average Plus Two Standard Deviations	18.0
Adjusted Maximum	28.3

Calculation Step 3.

Discussion:

Fifteen years of data from Outfall 401 provides maximum flow of 28.3 MGD, a minimum flow of 2.8 MGD, and an average flow of 10.6 MGD. These data from Outfall 401 are normally distributed. Therefore considering a value of the mean and 2 standard deviations, **18 MGD**, captures 95%+ of the population. Recent data, from 2010 to present, suggest maximum flows of 15 MGD. Comparing this analysis to field measurements at the weir support a maximum flow value of 18 MGD (27.85 cfs).

Cut/Fill Report

Generated: 2016-08-19 09:56:48

By user:

LStormer

 J:\Dominion Resources\Mt. Storm\230765 - Liner Construction\000004

 Drawing:
 \DTM\Volumes\J:\Dominion Resources\Mt. Storm\230765 - Liner Construction\000004

 \DTM\Volumes\Pond Hydraulic Height Volumes.dwg
 Calculation Step 4

Volume 8	Summary						
Name	Туре	Cut Factor	Fill Factor	2d Area (Sq. Ft.)	Cut (Cu. Yd.)	Fill (Cu. Yd.)	Net (Cu. Yd.)
Pond A Existing to Elev 3255	full	1.000	1.000	43601.65	0.00	11692.46	11692.46 <fill></fill>
Pond B Existing to Elev 3255	full	1.000	1.000	48576.36	0.00	18361.99	18361.99 <fill></fill>
Pond C Existing to Elev 3252	full	1.000	1.000	56818.44	0.00	22078.87	22078.87 <fill></fill>
Pond D Existing to Elev 3252	full	1.000	1.000	62375.13	0.00	23108.98	23108.98 <fill></fill>

Totals				
	2d Area (Sq. Ft.)	Cut (Cu. Yd.)	Fill (Cu. Yd.)	Net (Cu. Yd.)
Total	211371.58	0.00	75242.30	75242.30 <fill></fill>

* Value adjusted by cut or fill factor other than 1.0

Cut/Fill Report.

Generated:	2016-08-18 14:25:17
By user:	LStormer
Drawing:	J:\Dominion Resources\Mt. Storm\230765 - Liner\Construction\000004 \DTM\Volumes\J:\Dominion Resources\Mt. Storm\230765 - Liner Construction\000004 \DTM\Volumes\Pond Hydraulic Height Volumes.dwg

Name	Туре	Cut Factor	Fill Factor	2d Area (Sq. Ft.)	Cut (Cu. Yd.)	Fill (Cu. Yd.)	Net (Cu. Yd.)	
		1			1	<u> </u>		
Pond C Existing to Elev 3254	full	1.000	1.000	60355.76 Calculation S	0.00 Step 4	26417.68	26417.68 <fill></fill>	
	1	1		L				
Pond D Existing to Elev 3254	full	1.000	1.000	66865.99	0.00	27893.24	27893.24 <fill></fill>	
	I		<u></u>		1		1	
Pond A Existing to Elev 3260	full	1.000	1.000	53379.92	0.00	20670.05	20670.05 <fill></fill>	

file:///C:/Users/LStormer/AppData/Local/Temp/CutFillReport.xml

Totals				
	2d Area (Sq. Ft.)	Cut (Cu. Yd.)	Fill (Cu. Yd.)	Net (Cu. Yd.)
Total	452032.86	11.85	144860.13	144848.27 <fill></fill>

* Value adjusted by cut or fill factor other than 1.0

1 age 2 VI 2

Storm Water Capacity of Reconstructed Ponds A and B

	30 Patewood Drive, Suite 300, Greenville, SC 29615 • www.TRCsolutions.com			
PROJECT / LOCATION: Mount Storm Power Station - Mount Storm, West Virginia - LVWSP			PROJECT / PROPOSAL NO.	
SUBJECT: Storm Wa	ater Capacity of Reconstructed Pond A and Pond B		230765.0000	
PREPARED BY: S. Se	ellner	DATE: 8/18/2016	16 FINAL	
CHECKED BY: J. He	otstream	DATE: 8/18/2016	6 REVISION 🛛	

<u>Purpose</u>: Determine if there is sufficient capacity to contain the runoff volume collected in the LVWSP from the 100 year, 24 hour storm event for the reconstructed LVWSP (Pond A and Pond B)

<u>Methodology</u>: Calculate inflow for the 100 year, 24 hour storm event. Determine the available capacity for the volume of storm water by estimating additional flow that can be provided from the outlet and available freeboard capacity of the reconstructed Ponds A and B.

INFLOWS

....

1.) Determine storm water inflows into the retrofitted Pyrite Pond

- Site storm water flows into Pyrite Pond (Refer to Attached Figure).
- The drainage area is approximately 75.4 acres.
- Volume of runoff determined by HydroCAD output (See Attached). This output was performed based upon values determined in the storm water analysis

V_{Runoff} = Volume of Runoff (acre feet)

 V_{Runoff} = 31.0 acre feet

2.) Determine storm water inflow into Pond A and Pond B

. .

- Effective area of storm water based upon midpoint of outside berms from CAD drawing. Runoff coefficient assumed to be 1.0 as the entire area flows inward and there is no infiltration

V	=	iA	
V	=	Storm Wate	er Inflow to Pyrite Pond
i	=	Precipitatio	on Frequency (inches/day) 100 year, 24 hour storm event
А	=	Area (acre)	
i	=	6.19	inches/day
А	=	5.5	acres
$V_{Pond\ Inflow}$	=	34.05	acre inches
V _{Pond Inflow}	=	2.84	acre feet
V _{Inflow}	=	Volume of	Total Inflows
V _{Inflow}	=	$V_{Runoff} + V_{F}$	
 Inflow 		• Kunon • P	ond Inflow
V _{Inflow}	=	33.8	acre feet
• Inflow		00.0	

Note:

Areas and volumes are from the Civil 3D pond reconstruction model, refer to attached sheets Design storm data from NOAA, refer to attached sheets

6	30 Patewood Drive, Suite 300, Greenville, SC 29615 • www.TRCsolutions.com				
PROJECT / LOCATION: Mou	nt Storm Power Station - Mount Storm, West Virginia - LVWSF		PROJECT / PROPOSAL NO.		
SUBJECT: Storm Water Capacity of Reconstructed Pond A and Pond B				230765.0000	
PREPARED BY: S. Sellner DATE: 8/18/2016					
CHECKED BY: J. Hotstream		CHECKED BY: J. Hotstr	REVISION		

OUTFLOWS

3.) Determine volume out of the LVWSP outlet - Volume of flow based on the difference between the max flow and normal operating flow. This difference provides the additional outflow capacity from the LVWSP that is available during a storm event. The normal operational flow is based on instantaneous readings and assumed to equal the average + 2 standard deviations

Volumes based upon Settling Capcacity Analysis calculation performed on 9/23/2015, see attachments
Maximum design outflow rate is 26 million gallons per day (MGD)

 $Q_{\text{Outflow}} = Q_{\text{Max}} - \text{Ave.} + 2\sigma$

Q_{Outflow}	= A	vailable	Outflow Rate (MGD)			
Ave.+ 2σ	= A	= Average + 2 Standard Deviations Flow Rate (MGD)				
Q_{Max}	= N	laximum	n Outflow Rate (MGD)			
Ave.+ 2σ	=	18	MGD			
Q _{Max}	=	26	MGD			
Q _{Outflow}	=	8	MGD			

-Convert available flow rate to available volume for Outflows (Assuming flow for 1 day)

 $V_{Outflow} = Q_{Outflow} * Days of Flow$

-Convert million gallons per day (MGD) to Acre-Feet

V _{Outflow}	=	Available Outflow Volume
Q _{Outflow}	=	Available Outflow Rate

 $V_{Outflow}$ = 24.5 acre feet

AVAILABLE FREEBOARD

4.) Determine volume of available freeboard in the reconstructed LVSWP (Pond A and B)

- Pond Elevations and Volumes deteremined by Civil 3D, see attachments

- Top of operating water level based on design maximum levels.

Pond Elevations (feet NAVD88)

	Pond A	Pond B
Top of Berm Elevation	3,260	3,260
Top of Water Elevation	3,255	3,255

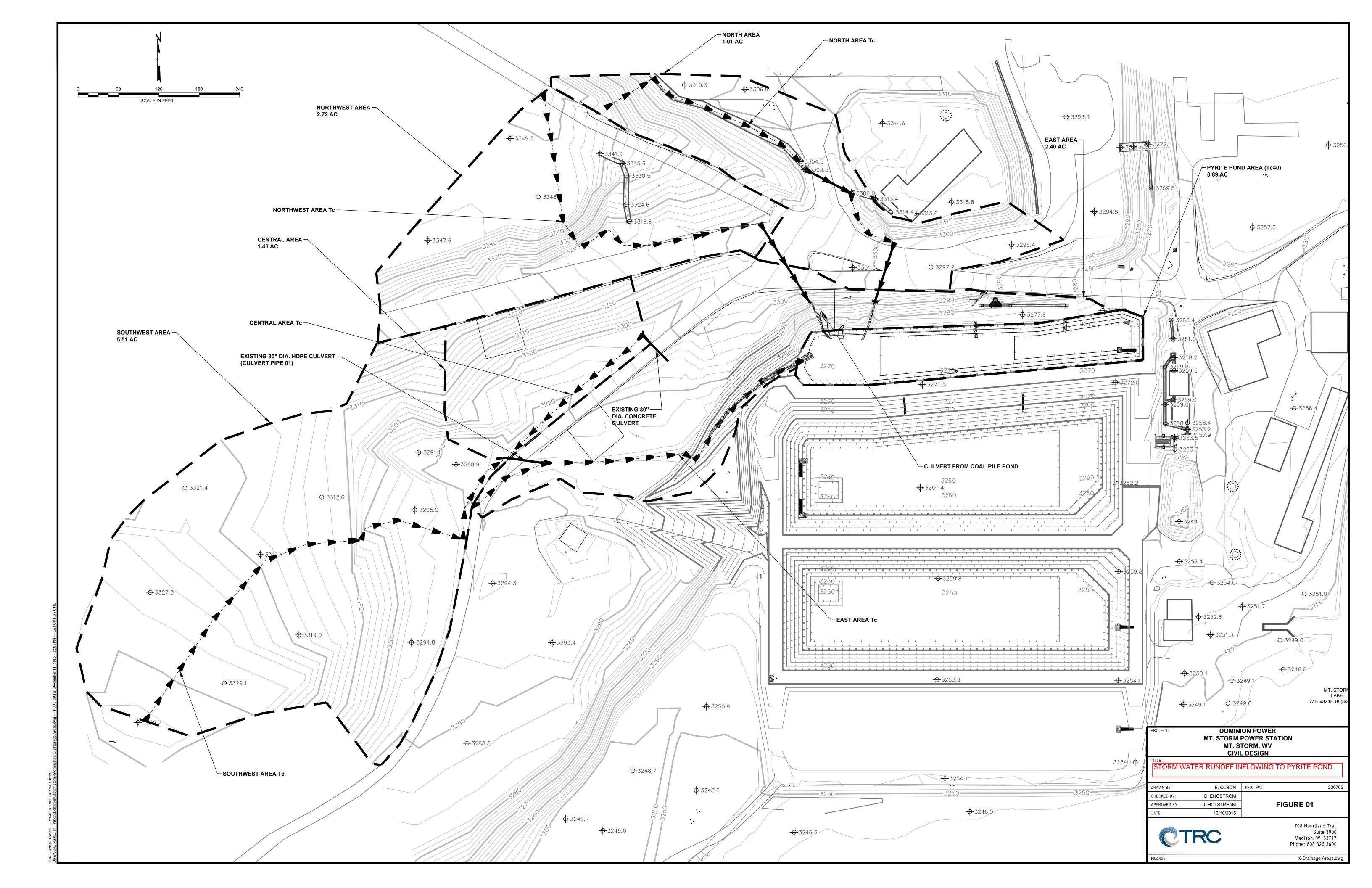
30 Patewood Drive, Suite 300, Greenville, SC 29615 • www	v.TRCsolutions.com		SHEET 3 C
PROJECT / LOCATION: Mount Storm Power Station - Mount Storm, West Virginia - LVWSP			ROJECT / PROPOSAL NO.
SUBJECT: Storm Water Capacity of Reconstructed Pond A and Pond B		230765.0000	
PREPARED BY: S. Sellner DATE: 8/18/2016]
CHECKED BY: J. Hotstream	CHECKED BY: J. Hotstr	REVISION	

Pond Capacities

	Pond A	Pond B
Top of Berm (cubic yards)	35,559	35,358
Top of Water (cubic yards)	14,577	14,511

Freeboard Volumes (S_{FB}) = Top of Berm Volume (cy) - Top of Water Volume (cy)

Total Storage of Existing Freeboard = $S_{FB-A} + S_{FB-B} + S_{FB-C} + S_{FB-D}$


S_{FB}	=	41,829	cy
S_{FB}	=	26	acre feet

5.) Compare the calculated inflow volumes vs. the outflow volumes considering the volume from the Freeboard Capacity

-Determine the Freeboard Volume Capacity compare to the flow difference

V _{Inflow}	<	$V_{outflow} + S_{FB}$	
V_{Inflow}	=	33.8	acre feet
$V_{outflow} + S_{FB}$	=	50.4	acre feet
33.8	<	50.4	OK

<u>Conclusion</u>: Based upon the inflow, outflow, and freeboard capacity of the reconstructed LVWSP, the system has sufficient capacity to accommodate the runoff associated with a 100 year,24 hour storm event.

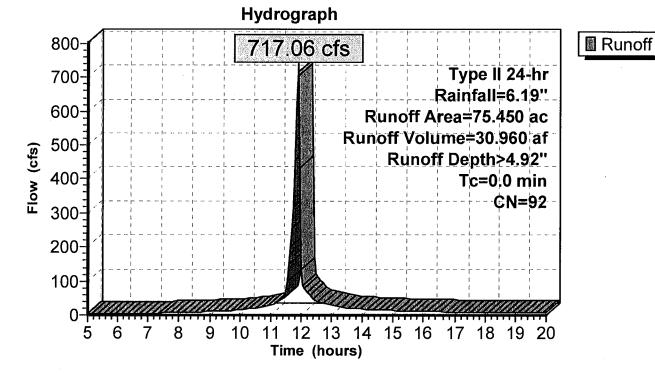
Pyrite Pond Bypass SW Model Prepared by TRC HydroCAD® 10.00 s/n 08043 © 2013 HydroCAD Software Solutions LLC

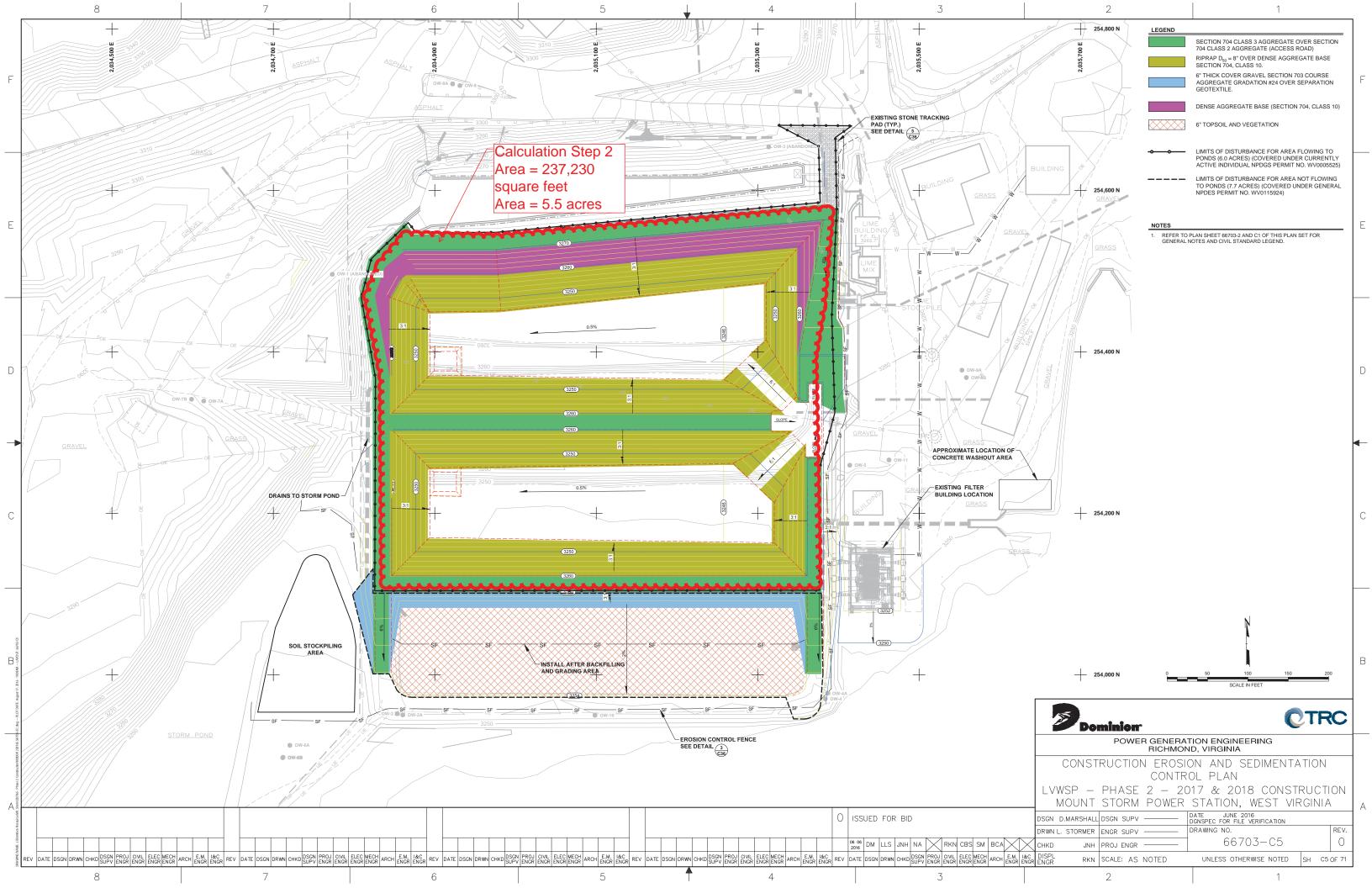
Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
11.341	84	50-75% Grass cover, Fair, HSG D (S-3, S-4, S-5, S-8)
0.746	98	Paved parking, HSG D (S-3, S-5)
60.862	93	Urban industrial, 72% imp, HSG D (S-1, S-7)
2.499	98	Water Surface, HSG D (S-2, S-6)
75.448	92	TOTAL AREA <

Summary for Subcatchment 1S: Drainage Area to Ponds

30.960 af, pepth> 4.92"


[46] Hint: Tc=0 (Instant runoff peak depends on dt)


Runoff = 717.06 cfs @ 11.89 hrs, Volume=

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr Rainfall=6.19"

	Area (ac)	CN	Description
*	75.450	92	Weighted Average from Permit
	75.450		100.00% Pervious Area

Subcatchment 1S: Drainage Area to Ponds

Precipitation Frequency Data Server

STORM Station ID: 46-6293 Location name: Mount Storm, West Virginia, US* Latitude: 39.2833°, Longitude: -79.2333° Elevation: Elevation: Elevation (station metadata): 2851 ft* * source: Google Maps

NOAA Atlas 14, Volume 2, Version 3 MOUNT

POINT PRECIPITATION FREQUENCY ESTIMATES

G.M. Bonnin, D. Martin, B. Lin, T. Parzybok, M.Yekta, and D. Riley

NOAA, National Weather Service, Silver Spring, Maryland

PF_tabular | PF_graphical | Maps_& aerials

PF tabular

Duration	Average recurrence interval (years)										
Duration	1	2	5	10	25	50	100	200	500	1000	
5-min	0.301 (0.268-0.339)	0.355 (0.314-0.400)	0.427 (0.378-0.480)	0.488 (0.431-0.549)	0.570 (0.500-0.637)	0.639 (0.559-0.713)	0.708 (0.616-0.790)	0.785 (0.678-0.875)	0.893 (0.764-0.993)	0.981 (0.832-1.09	
10-min	0.469 (0.417-0.527)	0.554 (0.490-0.626)	0.664 (0.587-0.747)	0.755 (0.666-0.848)	0.872 (0.766-0.975)	0.970 (0.848-1.08)	1.07 (0.929-1.19)	1.17 (1.01-1.31)	1.31 (1.13-1.46)	1.44 (1.22-1.60)	
15-min	0.575 (0.511-0.646)	0.678 (0.599-0.765)	0.816 (0.722-0.918)	0.929 (0.820-1.04)	1.08 (0.946-1.21)	1.20 (1.05-1.34)	1.33 (1.15-1.48)	1.46 (1.26-1.62)	1.64 (1.40-1.82)	1.79 (1.52-2.00)	
30-min	0.761 (0.676-0.856)	0.908 (0.803-1.02)	1.12 (0.989-1.26)	1.29 (1.14-1.45)	1.52 (1.34-1.70)	1.72 (1.50-1.92)	1.92 (1.67-2.14)	2.13 (1.84-2.38)	2.43 (2.08-2.71)	2.69 (2.28-3.00)	
60-min	0.930 (0.827-1.05)	1.11 (0.986-1.26)	1.40 (1.24-1.58)	1.64 (1.45-1.85)	1.98 (1.74-2.21)	2.27 (1.98-2.53)	2.57 (2.23-2.86)	2.90 (2.50-3.23)	3.37 (2.88-3.75)	3.79 (3.21-4.22)	
2-hr	1.10 (0.976-1.24)	1.32 (1.17-1.49)	1.66 (1.47-1.87)	1.97 (1.74-2.20)	2.39 (2.10-2.66)	2.77 (2.41-3.08)	3.17 (2.75-3.52)	3.61 (3.11-4.00)	4.26 (3.63-4.70)	4.84 (4.08-5.34)	
3-hr	1.19 (1.05-1.34)	1.42 (1.26-1.60)	1.77 (1.57-2.00)	2.09 (1.85-2.35)	2.54 (2.23-2.85)	2.94 (2.56-3.28)	3.37 (2.92-3.76)	3.85 (3.32 <u>-4.2</u>	4.56 alculation	5.20 Step 2	
6-hr	1.48 (1.28-1.73)	1.76 (1.53-2.06)	2.17 (1.88-2.53)	2.55 (2.20-2.96)	3.08 (2.64-3.57)	3.55 (3.04-4.10)	4.07 (3.45-4.69)	4.64 (3.91-5.35)	5.48 (4.57-6.30)	6.24 (5.14-7.16)	
12-hr	1.83 (1.60-2.15)	2.17 (1.90-2.54)	2.66 (2.33-3.11)	3.12 (2.72-3.64)	3.79 (3.27-4.40)	4.38 (3.76-5.07)	5.03 (4.28-5.87)	5.76 (4.85-6.64)	6.86 (5.69-7.89)	7.86 (6.44-9.02)	
24-hr	2.18 (1.96-2.45)	2.61 (2.34-2.94)	3.25 (2.91-3.65)	3.80 (3.39-4.26)	4.63 (4.09-5.18)	5.37 (4.69-6.0)	6.19 (5.33-6.93)	111 (6.05-7.97)	8.54 (7.09-9.61)	9.78 (7.98-11.0)	
2-day	2.55 (2.32-2.83)	3.05 (2.78-3.38)	3.79 (3.44-4.20)	4.42 (4.00-4.90)	5.39 (4.82-5.97)	6.24 (5.53-6.91)	7 9 (6.30-7.97)	8.26 (7.13-9.18)	9.92 (8.39-11.1)	11.4 (9.45-12.8)	
3-day	2.77 (2.56-3.03)	3.31 (3.05-3.61)	4.06 (3.74-4.43)	4.70 (4.31-5.13)	5.64 (5.12-6.16)	6.45 (5.79-7.06)	7.33 (6.51-8.06)	8.30 (7.26-9.23)	9.97 (8.40-11.1)	11.4 (9.49-12.8)	
4-day	3.00 (2.80-3.23)	3.57 (3.33-3.85)	4.34 (4.04-4.67)	4.98 (4.62-5.36)	5.89 (5.42-6.36)	6.66 (6.06-7.22)	7.46 (6.72-8.15)	8.33 (7.39-9.27)	10.0 (8.41-11.2)	11.5 (9.54-12.9)	
7-day	3.49 (3.27-3.74)	4.14 (3.87-4.44)	4.96 (4.63-5.32)	5.63 (5.24-6.05)	6.57 (6.06-7.07)	7.32 (6.70-7.91)	8.09 (7.34-8.80)	8.89 (7.98-9.75)	10.1 (8.82-11.3)	11.6 (9.63-13.0)	
10-day	4.03 (3.80-4.29)	4.75 (4.48-5.06)	5.60 (5.28-5.96)	6.28 (5.90-6.68)	7.19 (6.70-7.67)	7.89 (7.32-8.45)	8.60 (7.91-9.26)	9.32 (8.49-10.1)	10.3 (9.26-11.4)	11.7 (9.91-13.1)	
20-day	5.65 (5.37-5.96)	6.61 (6.28-6.98)	7.60 (7.22-8.04)	8.41 (7.96-8.90)	9.47 (8.92-10.0)	10.3 (9.63-11.0)	11.1 (10.3-11.9)	11.9 (11.0-12.8)	12.9 (11.8-14.1)	13.7 (12.3-15.0)	
30-day	7.11 (6.78-7.46)	8.28 (7.90-8.71)	9.40 (8.95-9.89)	10.3 (9.78-10.8)	11.4 (10.8-12.0)	12.3 (11.6-13.0)	13.1 (12.3-13.9)	13.9 (13.0-14.8)	14.9 (13.8-16.0)	15.6 (14.3-16.9)	
45-day	9.09 (8.70-9.50)	10.5 (10.1-11.0)	11.8 (11.3-12.4)	12.8 (12.3-13.5)	14.1 (13.4-14.8)	15.1 (14.3-15.9)	15.9 (15.1-16.9)	16.8 (15.8-17.8)	17.8 (16.6-19.0)	18.5 (17.1-19.9)	
60-day	10.9 (10.5-11.4)	12.7 (12.2-13.3)	14.1 (13.5-14.8)	15.3 (14.6-16.0)	16.7 (15.9-17.5)	17.7 (16.8-18.7)	18.7 (17.7-19.7)	19.6 (18.4-20.8)	20.6 (19.3-22.0)	21.4 (19.9-22.9)	

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values. Please refer to NOAA Atlas 14 document for more information.

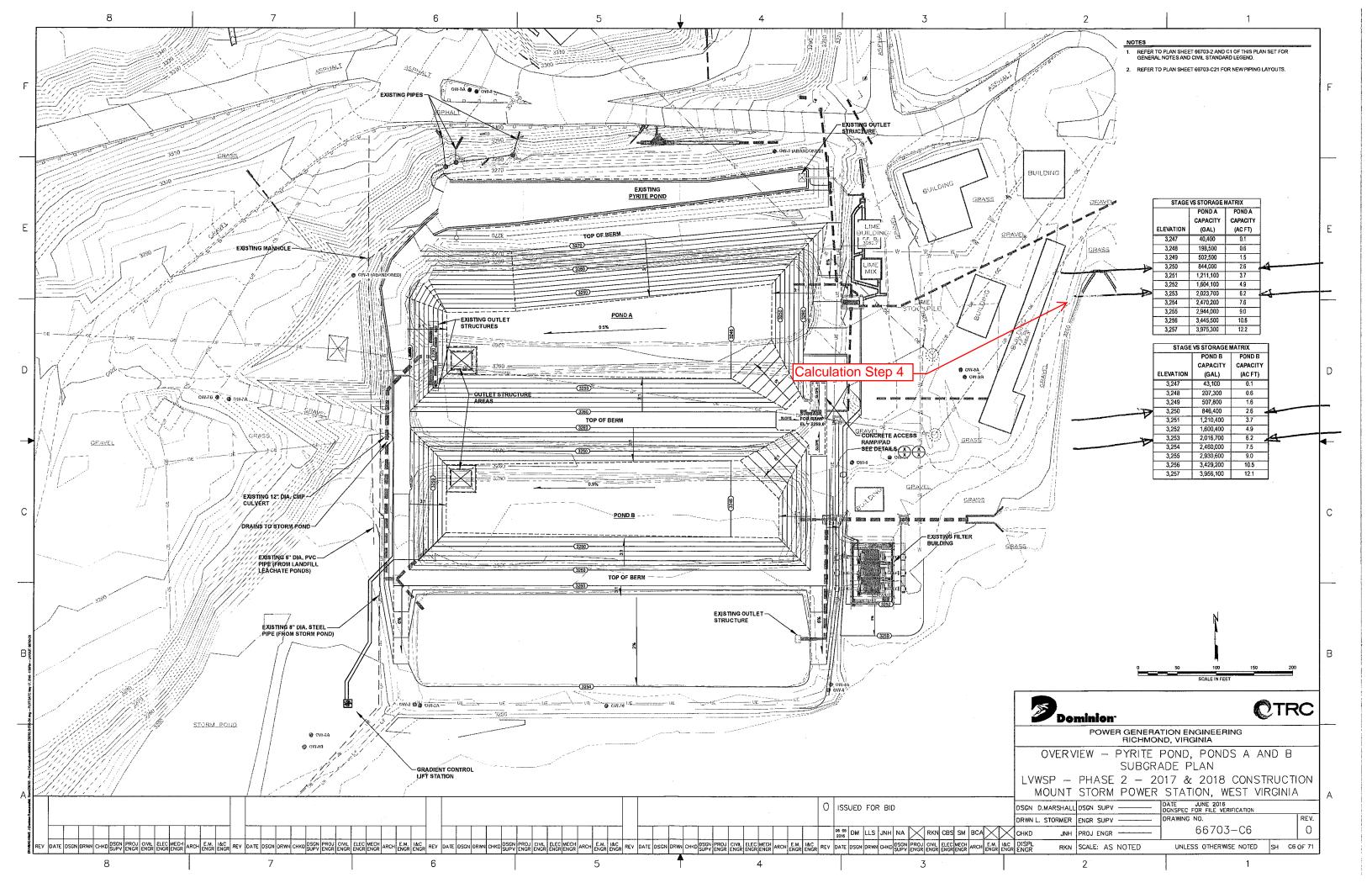
©TRC	708 Heartland Trail, Suit	e 3000, Madison, WI 53717 • www.TRCsolutions.com	
PROJECT / PROPOSAL	NAME / LOCATION:	PROJECT / PROPOSAL NO.	FINAL
Mount Storm - Settling	Capacity Analysis	230765.0000 Phase 4	
PREPARED BY:	D. Engstrom	DATE: 9/21/2015	REVISION
CHECKED BY:	J. Hotstream	DATE: 9/23/2015	10/28/2015


SUMMARY OF FLOW DATA AND CALCULATIONS

Method:

Flow data into the primary settling ponds (Ponds A and B) were not available to estimate treatability of influent. Flow ranges are estimated based on monthly monitoring of the permited outfall to Mt. Storm Lake since 2001 and calculated flows from the weir in the Pond A/B distribution box.

Data from Monitoring Point 401 represents the outfall after Ponds C and D. It is assumed that this flow is equal to the inflow to the ponds. Calculated influent flow values are based on water heights over the weir in the Pond A/B distribution box obtained on 8/24, 8/25, and 8/27/15. Several calculated flows are plotted on Figure 1



STATISTICAL PARAMETER	FLOW (MGD)
Average	10.6
Maximum	28.3
Minimum	2.8
Median	10.3
Standard Deviation	3.7
Lower Quartile	8.04
Upper Quartile	13.5
Average Plus Two Standard Deviations	18.0 <
Adjusted Maximum	28.3

Calculation Step 3.

Discussion:

Fifteen years of data from Outfall 401 provides maximum flow of 28.3 MGD, a minimum flow of 2.8 MGD, and an average flow of 10.6 MGD. These data from Outfall 401 are normally distributed. Therefore considering a value of the mean and 2 standard deviations, **18 MGD**, captures 95%+ of the population. Recent data, from 2010 to present, suggest maximum flows of 15 MGD. Comparing this analysis to field measurements at the weir support a maximum flow value of 18 MGD (27.85 cfs).

