

gaiconsultants.com | transforming ideas into reality,

Coal Combustion Residuals (CCR) Run-on and Run-off Control System Plan

Virginia Electric and Power Company d/b/a Dominion Energy Virginia Mount Storm Power Station Phase B Disposal Area Grant County, West Virginia

GAI Project Number: C141182.02

October 2021

Prepared for: Dominion Energy Virginia 600 East Canal Street Richmond, Virginia 23219

Prepared by: GAI Consultants Pittsburgh Office 385 East Waterfront Drive Homestead, Pennsylvania 15120

Coal Combustion Residuals (CCR) Run-on and Run-off Control System Plan

Virginia Electric and Power Company d/b/a Dominion Energy Virginia Mount Storm Power Station Phase B Disposal Area Grant County, West Virginia

GAI Project Number: C141182.02

October 2021

Prepared for: Dominion Energy Virginia 600 East Canal Street Richmond, Virginia 23219

Prepared by: GAI Consultants Pittsburgh Office 385 East Waterfront Drive Homestead, Pennsylvania 15120

Table of Contents

Certif	ication	/Statem	ent of Professional Opinion	. ii
Acron	iyms			. 111
1.0	Introd	duction		1
2.0	Purpo	se		1
3.0	Run-c 3.1 3.2	on and R Run-or 3.1.1 Run-of 3.2.1 3.2.2 3.2.3 3.2.4	un-off Control System Plan (Plan) n Controls Diversion Ditches f Control System Bench Capacity Collection Ditches Collection Culverts Sedimentation Ponds	1 1 2 2 2 2
4.0	Refer	ences		3

Appendix A Hydraulics and Hydrology Calculations

© 2021 GAI CONSULTANTS

Certification/Statement of Professional Opinion

The Coal Combustion Residuals Run-on and Run-off Control System Plan (Plan) for the Mount Storm Phase B Disposal Area was prepared by GAI Consultants (GAI). The Plan was based on certain information that, other than for information GAI originally prepared, GAI has relied on but not independently verified. This Certification/Statement of Professional Opinion is therefore limited to the information available to GAI at the time the Plan was written. On the basis of and subject to the foregoing, it is my professional opinion as a Professional Engineer licensed in the State of West Virginia that the Plan has been prepared in accordance with good and accepted engineering practices as exercised by other engineers practicing in the same discipline(s), under similar circumstances at the same time, and in the same locale. It is my professional opinion that the Plan was prepared consistent with the requirements of the United States Environmental Protection Agency's "Disposal of Coal Combustion Residuals From Electric Utilities," published in the Federal Register on April 17, 2015 with an effective date of October 19, 2015 (40 Code of Federal Regulations 257 Subpart D) § 257.81.

The use of the words "certification" and/or "certify" in this document shall be interpreted and construed as a Statement of Professional Opinion and is not and shall not be interpreted or construed as a guarantee, warranty or legal opinion.

GAI Consultants

John R Klamut, PE Engineering Manager

Date 10/8/2021

Acronyms

CCR	Coal Combustion Residuals
CCR Rule	"Disposal of Coal Combustion Residuals From Electric Utilities" 40 CFR § 257 Subpart D (2015)
CFR	Code of Federal Regulations
Dominion	Dominion Energy Virginia
USEPA	United States Environmental Protection Agency
GAI	GAI Consultants
Phase B	Phase B Disposal Area
Plan	Run-on and Run-off Control System Plan
Station	Mount Storm Power Station
WV	West Virginia

1.0 Introduction

The Mount Storm Power Station (Station) is owned by Virginia Electric and Power Company d/b/a Dominion Energy Virginia (Dominion) and is located in Mount Storm, West Virginia (WV). The Station uses the Phase B Disposal Area (Phase B) for the long term storage of coal combustion residuals (CCR).

Phase B is located on Dominion property at the Station in Grant County, WV (39°11′05″N 79°17′05″W), and is generally bounded by Mount Storm Lake on the east and south, Interstate 48 on the west, and West Virginia Route 93 on the north.

Phase B is regulated as an existing CCR landfill under the United States Environmental Protection Agency's (USEPA's) "Disposal of Coal Combustion Residuals From Electric Utilities" published in the Federal Register on April 17, 2015 with an effective date of October 19, 2015 (CCR Rule).

2.0 Purpose

Phase B is a landfill permitted to receive CCR material from Station operations. Phase B was designed to be constructed in two stages. During each stage of operation, diversion channels minimize stormwater from flowing onto the active portion of the landfill, and run-off channels collect and control stormwater that has contacted the active portion of the landfill.

Title 40 of the Code of Federal Regulations (CFR) § 257.81 requires that the run-on control system has been designed, constructed, operated, and maintained to prevent flow onto the active portion of Phase B during peak discharge of a 25-year, 24-hour storm. Similarly, the run-off control system must be designed, constructed, operated, and maintained to collect and control the water volume resulting from a 25-year, 24-hour storm.

This Plan is prepared pursuant to the requirements in the United States Environmental Protection Agency's "Disposal of Coal Combustion Residuals From Electric Utilities" published in the Federal Register on April 17, 2015 with an effective date of October 19, 2015 (CCR Rule), § 257.81(c).

3.0 Run-on and Run-off Control System Plan (Plan)

As required by 40 CFR § 257.81(c), this Plan includes:

- Documentation of how the run-on and run-off control systems have been designed to meet the applicable requirements of § 257.81; and
- Supporting engineering calculations (see Hydrologic and Hydraulic Design Report for Sedimentation Pond 015 and Appendix A).

3.1 Run-on Controls

The run-on control system consists of a series of diversion ditches that minimize stormwater contact with CCR.

3.1.1 Diversion Ditches

Diversion ditches to the northern and southern sides of Sediment Pond 015 are designed to control peak flows to the Pond resulting from at least the 25-year, 24-hour storm event. The diversion ditches direct run-on around the sediment pond and eventually discharge to Mount Storm Lake.

3.2 Run-off Control System

The run-off control system consists of a series of collection ditches that collect and control CCR contact water. The Phase B benches, collection ditches, collection culverts, and sedimentation ponds are designed to control the peak flow from at least the 25-year, 24-hour storm event. The run-off control system meets the applicable requirements of 40 CFR § 257.81.

3.2.1 Bench Capacity

The benches are designed to control peak flows resulting from at least the 25-year, 24-hour storm event. Stormwater that contacts benches is directed toward the collection ditches.

3.2.2 Collection Ditches

Collection ditches are constructed around the perimeter of the active portions of Phase B to direct contact water to the sedimentation ponds. The collection ditches are designed to be lined with vegetation/turf reinforcement, grouted rip-rap, rip-rap, or armor-lined depending on the location, flow velocities, and channel slopes. The collection ditch capacities control at least the 25-year, 24-hour storm during all phases of construction of Phase B. The collection ditches discharge contact water both directly and through a series of culverts to the sedimentation control ponds.

3.2.3 Collection Culverts

Collection culverts control run-off from the collection ditches. The culverts are designed to control at least the 25-year, 24-hour storm. The collection culverts discharge to the sedimentation control ponds.

3.2.4 Sedimentation Ponds

Sedimentation Ponds 014 and 015 control run-off from the collection ditches. The sedimentation ponds are designed to control and discharge the peak flow from a 25-year, 24-hour storm. The primary spillway is a riser and discharge pipe that controls flow during normal operation. The emergency spillway is capable of at least passing the 25-year peak discharge without overtopping the crests of the ponds. Both the primary and emergency spillways discharge to a combined spillway channel, and eventually to Mount Storm Lake.

The sedimentation ponds are maintained by cleaning out sediment as necessary when the wet storage area is reduced below a set volume.

4.0 References

- GAI Consultants. *Coal Combustion Residuals (CCR) Run-on Run-off Control System Plan, Phase B Disposal Area, Mount Storm Power Station*; October 2016
- GAI Consultants. Phase B Ditch Design Calculations 88-108-70; March 1994.
- GAI Consultants. Application for Class F Industrial Waste Landfill Facility, Life of Station Ash Disposal Facility Phase A & B; December 1990.
- GAI Consultants. *Hydrologic and Hydraulic Design Report, Sedimentation Pond 015, NPDES Permit No. WV0110256;* January 2007.
- GAI Consultants. Phase B Pond #3 Modification Design Calculations; February 1992.
- State of West Virginia, Department of Environmental Protection. *Solid Waste National Pollutant Discharge Elimination System Permit No. WV0110256*; April 2014.
- United States Environmental Protection Agency (EPA). 40 CFR Parts 257 and 261, *Hazardous and Solid Waste Management Disposal System; Disposal of Coal Combustion Residual from Electric Utilities, Final Rule*; April 2015.

Page 4

APPENDIX A Hydraulics and Hydrology Calculations

HYDRAULICS AND HYDROLOGY CALCULATIONS

CHANNELS

Calculation package includes: 1. Design Calculations, Ditches A through F - Phase B

TRANSMITTAL MEMO

X attached

under separate cover

MRL CC. JZ (pains only)

ACCT

Ret to

		GAI CONSULTANTS, INC. Engineers • Geologists Planners • Environmental Specialists	-
To: Mr. B	ob Williams	570 Beatty Road • Pittsburgh Monroeville, Pa. 15146 412-856-6400	1 5 2
Virgi 5000 I Glen J	nia Power Company Dominion Boulevard Allen, Virginia 23060	Project No	
Project No.	88-108-70	DUS CC:32 (TRUNS. 0 DUS CC:32 (TRUNS. 0	only,
Date: March	2, 1994	(TRUNS. ONLY) DWO CC- JZ 000 000 000 000 000 000 000 00000000	1.1

We are sending you the materials listed below:

Drawing No. Dated No. Copies Description 1 Each 1986 - Design Calculations, Ditches A through F - Phase B 1990 - Redesign for Ditches B & C - Phase B 1991 - Evaluation of Existing Ditch 3B - Phase B 1992 - Redesign of Ditch F - Phase B

as per your request
Ν
GAI QONSULTANTS / INC.
BY: Amona Anolinare
James L. Snodgrass, P.E.
//

1986 DESIGN CALCULATIONS

Calculation Designation	Drawing Designation
SED 2P	DITCH A
SED 1S	DITCH B
SED 1P	DITCH C
SED 1T	DITCH D
SED 2Q	DITCH E
SED 1Q	DITCH F

NOTE: All ditches will be redesigned to post-mining conditions.

SUBJECT REVISE BY NOS DAT CHKD. BY DAT	Lannel SEDIP Morth area 	INC.
Chan	I SED1P revised to match final layort Refer to worksheet # 624	
WATERSHED	AREA (acres)	
Ъ	9-6	
C	3.8	
L	24.3	
Μ	9.4	
N	4.8	
0	1.7	
P	7.6	
Q	17.7	
R	10.3	
S	12.8	
TOTAL	102 ac.	

-

1

4

SUBJECT CONSULTANTS, INC. 6/24/00 DATE PROJ. NO. BY Engineers · Geologists · Planners CHKD. BY DATE SHEET NO. OF Environmental Specialists Channel SEDIS Watershel = area N Longest Path - Channel flow from HP 3591 to entrance of channel SEDIU. length of channel = 3300' arg. slope ~ 2.52 estimate velocity = 3.5fis. Te = 3300' 943 suc = .26 hr. use Te=0.3 hr 3.5 Fps HOp 658 RO = 2.89 in (P=5", CN=80) DA= 4.8ac.

	SUBJECT			
****	вү	DATE6/24/83	PROJ. NO.	CONSULTANTS, INC.
	CHKD, BY	DATE	SHEET NO OF	Engineers • Geologists • Planners Environmental Specialists

Channel SED 1T
Wateshed is Run M
Congret Path:
$$45' \oplus 5 = 33\%$$
 estimated velocity = 20 fps
 $470' \oplus 5 = 1\%$ V=1,5 fps
 $720' \oplus 5 = 7.2\%$ V= 7 fps
Te = $\frac{45}{20} + \frac{470}{1.5} + \frac{720}{7} = 2.25 + 313 + 103 = 418$ sec = 0.12 hr
Lag Te = 0.1 hr
 $Mop = 991$
DA = 9.4 ac
 $R0 = 2.89\%$
 $Qp = 991 cfs/mi^2 - ih × 9.4 ac/640 ac/mi^2 × 2.89 in
= 42 cfs$

-

SUBJECT DATE 6/24/76 CONSULTANTS, INC. PROJ. NO. BY ____ 4 OF Engineers · Geologists · Planners CHKD. BY DATE SHEET NO. Environmental Specialists channel SED IR Watershed = area L for green reach To > see Parth # 2, Sed Pard#1 sheet 2 of 2 Flows from HP @ 3571.5 to 2 3563.5 TC= 530 + 295+205 +70 +163= 1263 suc= 0.35hr use Tc= 0.3 hr, Hop= 658 cfs/in12 in CN=80 → R0=2.89 m Area = 24.3 ac. Qp= 658 cfs/mi2-in × 2.89 in × 24.3 ac/640 ac/mi2 = 72 cfs yellow reach: add area S > 12. Jac. DA=12.8 + 24.3 = 37.1 ac do not increase Te Qp= 658 × 2.89× 37.1 /640= 110 cfs.

BUBET ______ DATE _____ GIZ4/SE PROJ.NO. ______ Engineer CONSULTATE, INC.
BV ______ DATE _____ SHEET NO. ______ OF ____ Engineer & CONSULTATE, INC.
BV ______ DATE _____ SHEET NO. _____ OF ____ Engineer & CASULTATE, INC.
BV ______ DATE _____ SHEET NO. _____ OF ____
Channel S20 1P Lottuskel is area
$$R + c + 0 + s + L$$

from 2l, 3505.5 + 3446.7
 $Dec. + 10.3 + 3.8 + 1.7 + 24.3 + 12.8 = 52.9 \text{ ac.}$
 $CN = (3.8 + (.7)(65) + (10.3 + 24.3 + 12.8)(50) = 78.4$
 52.9
 $S = 1000 - 10 = 2.76$ $P = 5'''$
 $Ro = (P - .25)^{-} = 2.74$ in
 $P = 1000 \text{ get}$ draining peth is from HPC J592.5 in drem L
 P_{ath} Stoll green = 1263 enc
 $Stoll R$ utilize = 560'C S = 10.477 was V = 12 fps
 $Stoll R$ Utilize = 560'C S = 10.477 was V = 12 fps
 $Stoll R$ Utilize = 560'C S = 10.477 was V = 12 fps
 $Stoll R$ HI 3505.5 th 3446.7 mg = 0.39 hr
was Tc = 0.4 hr \Rightarrow HOp \cdot 575
 $Q_{T} = 0A \times RO \times HOp$
 $= 52A/640 \times a.74 \times 575 = 130 cfs$

1.24

r-

Sec. 1

SUBJECT						-	r	
ву снко ву ј <u>⊥</u>	DATE	6/24/86	_ PROJ _ SHEET	NO	OF		Engineers • Geolo Environmental Spec	jJ ULTANTS. IN gists • Planners transts
perior DEF14							ð	
MAL DEPLIN (ET)	50		2.6	L'S			۲.۱	3.2 3.1
11111 YELOGITY (FTDS)	3.5 S=2-1		S:0:5	6.9 S= 5.5			9.0 5=4.5	6.8 7.5 5=2.0
MiN DEPTH (FT)	0.8	1.05	9.	l.3	2.2	J.L	1-8	2.6
NAN + NA	3.8 S=2.97	7.8 5.7.22	6.3 5=3.8	8.9 S= 7.4	4.6 S=1.49	11.8 S=10.47	11.1	10.0 5=4.5
Buituri WIDTII (FT)	3'	÷.	×.,	4	ę.	æ		
SHAPE	ic di	7	a	а.	2	4		
· 5	sho.	40.	,045	.ot	o45	40.	to.	76. 240.
LIVING	cerero	entra	drave	entre riprag	and	darda	riprag	gran
resura Q Gers)	14	42	62	,	22	110	130	207
siTcH	E01S	520 1T	77 075 Pag	ge 12 of 144	SED 1R	tellow	SEDIP Nal 235055	strange

SUBJECT	Mt. Storm Hydrolo	zy Stage CONSULTANTS INC.
BY N CHKD. BY	DATE	PROJ. NO OF Engineers • Geologists • Planners SHEET NO OF Engineers • Geologists • Planners
WAT	restads A-J an	a Q shown on slope drain worksheet # 325
110	TEACHER K-P-1	1+1 to de Que deshart=# 221
	11-0-54005 - 1 51	Nown on arren watershed with start 331
	WATERSHED	AREA (ACRES)
	A	0.3
	B	7.5
	C	12.2
	D	0.8
	E	0.5
	F	0.5
	G	1.8
	Ч	1.5
	T	0.4
	K	2.9
	= L	51
	- M	7.9
		4.7
1	- 0	Void 6/24/05
	_ P	16.6 are revised-see cales for
	Q	A 1 Page 13 of 144

diannel SED 2P
Reach: \$13492 to \$13350 Grange or worksheet
Longot Path:
Provises path 855 sec
Hiltional 1385 (
$$S = 7.72$$
 V: 10 fis ej:
490 ($S = 12$ V= Stys ej.
TC = 855 + 1385 + 490 = 1092 sie = 0.30 hr.
HOp = 658 cfs/in-mi²
RO = 2.89 in
DA = 32.8 + S-3 + S-4 + B
= 32.8 + 6.7 + 4.8 + 7.5
= 51.8 kc.
Qp = 658 x2.89 × 51.8/640
= 154 cfs.
ROMARIAN RECUENCE = 32.5 + S-3 + S-4 + 0.8 + D.7A +
ROMARIAN RECUENCE = 32.5 + S-3 + S-4 + 0.8 + D.7A +
ROMARIAN RECUENCE = 32.5 + S-3 + S-4 + 0.8 + D.7A +
ROMARIAN RECUENCE = 32.5 + S-3 + S-4 + 0.8 + D.7A +
ROMARIAN RECUENCE = 32.5 + S-3 + S-4 + 0.8 + D.7A +
ROMARIAN RECUENCE = 32.5 + S-3 + S-4 + 0.8 + D.7A +
ROMARIAN RECUENCE = 32.5 + S-3 + S-4 + 0.8 + D.7A +
ROMARIAN RECUENCE = 32.5 + S-3 + S-4 + 0.8 + D.7A +
ROMARIAN RECUENCE = 32.5 + S-3 + S-4 + 0.8 + D.7A +
ROMARIAN RECUENCE = 32.5 + S-3 + S-4 + 0.8 + D.7A +
ROMARIAN RECUENCE = 32.5 + S-3 + S-4 + 0.8 + D.7A +
ROMARIAN RECUENCE = 32.5 + S-3 + S-4 + 0.8 + D.7A +
ROMARIAN RECUENCE = 32.5 + S-3 + S-4 + 0.8 + D.7A +
ROMARIAN RECUENCE = 32.5 + S-3 + S-4 + 0.8 + D.7A +
ROMARIAN RECUENCE = 32.5 + S-3 + S-4 + 0.8 + D.7A +
ROMARIAN RECUENCE = 32.5 + S-3 + S-4 + 0.8 + D.7A +
ROMARIAN RECUENCE = 32.5 + S-4 + D.8 + D.7A +
ROMARIAN RECUENCE = 32.5 + S-4 + D.8 + D.7A +
ROMARIAN RECUENCE = 32.5 + S-3 + S-4 + D.8 + D.7A +
ROMARIAN RECUENCE = 32.5 + S-4 + D.8 + D.7A +
ROMARIAN RECUENCE = 32.5 + S-4 + D.8 + D.7A + D.8 + D.7A +
ROMARIAN RECUENCE = 32.5 + S-4 + D.8 + D.7A + D.8 + D.8 + D.7A + D.8 +

-

- Children of MARS - State Str. -

С-WO	DATE DATE	<u>e tor cl</u> 4/1/80	<u>iannels S</u> PI	2019,520 ROJ NO <u>84</u> HEET NO <u></u>	-215 ··	<u>+</u>	Engineers Environme	Geologists Plan ntal Specialists
pertor Derto	<u>с</u>	-					x	
MAL DEPIH (ET)	Γ,			2,3	7. K	1.5	51	Ч.Ч
11.11 YELOGITY (FP3)	3.3 S=2.5			11. 0 S=le. 0	7.7	8.7	7.8 5=3.4	7.3 5=3.4
М 110 DEPTH (FT)	.65	1.7	(, L	2.0	5, C	1.3	1,6	
MAN. YELOCHY (197)	3.8 S=3.5	11.4 S=9.0	11.4 S=9)5.0 S=13.2	10.6 S=4.3	11.5 S=12.2	13 × S=13.4	
שטודנטא איטרוו (דז)	3	a.	4	ñ	4	s 	*	\$
SHAPE	1 Tr	Þ		-	4	2.	ł	*
5	Sto.	- 0 1		, oy		, 045 , 04	.045 ,04	.045
و. 2 7 2	cemb	Sergin		derdy	a	hand is	Indesi	cert
Pr www Q Gefs)	prev-	120		193.	259 yellow.	73 yellow	0 1.22	
DITCH	SEDIP	u .	-	Page 22 of 144		SE010		

(ET) (FTV3) (ET) (FTV)	DATE	7.7 2.2 7.4.6	>6.8 2.35	SHEET NO	3.4	- OF			Engineers Geologists Planters Environmental Specialists
$\frac{1}{(rr)} \frac{(rr)}{(rr)} \frac{(rr)}{(rr)}$	1,0 4.0 1.4 S=1.7	7.4 2.2	>6.7 2.3						
(ET) (FUS) (ET)	1,0 4.0 1.4 S=1.7	7.4 2.2	>6.7 2.3				-		
(ET) (FUS)	1,0 4.0 5=1.7	7.4	2.9						
(FT)	Č 	•	5			-			
-		1	5.1	6.	62.	v	1.05	0,85	
(LA)	6.4 5=6-3	4.01	19.5	18.3	11.2	14.2	22-3	21.2	
(FT)	М	٣	ч	Ś	10	15	М	12	
ЭНАРЕ	1 put	in di	(S				÷.		
5	, 045	40.	540.				500.		
5277	grano	hadu	grass						
Q (cers)	32	511			a	sh			
NUM SHURE OF TRIPIC	(et)	\$E02Q 32 gave , 045 12 12 3	X (67) 5E02Q 32 32 grave .045 12 115	X Corr Corr 5E03Q 32 grave .045 12.4/ 3 115 ripray .04 '2.4' 3 115 ripray .04 '2.4' 3 11 "fubrition .03 3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$\begin{array}{c} \begin{array}{c} & \\ & \\ & \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $

SUBJECT Mt Storm Stagel Riprop desig DATE 4/3/86 215-84-CONSULTANTS, INC. NOB PROJ. NO. _ BY 17 Engineers · Geologists · Planners CHKD. BY DATE SHEET NO. OF SED J. R. Huero Environmental Specialists DESIGN RIPRAP DETERMINE STONE SIZE FROM FIG 2, p. 11-16 USE DMAX = 1.5 Y DSO USE DEPTH = 1.5 × DMAX

CHANNEL	Q cfs	SLOPE 90	V Fps	D20	Dsz. in	DMAX	DEPTH	RIPRAP
SE01P	120	9.0	1)-4	1.15	13.8	:21	2'7"	R-7
T_{L}	193	13.2	15.0	2.0	24.0	36	4'6"	R-8
v	al.	6.0	11.0	1.05	12.6	19	2' 4"	R-L
	259	4.3	10.6	1.0	12.0	18	2' 3"	R-L
SED1Q	73	12.2	11.5	1.15	13.8	21	Z'7"	R-7
''	<i>i</i> l	6.0	.8.7	0.65	7.8	12	1'6"	R-5
U S	lzz	13.4	13.4	1-6	19.2	29	3'7"	R-8
SEDZQ	115	7.6	10.4	.95	11-4	17	2'2"	R-6
	11	2-9	7.4	0.5	6.0	9	1'2"	R-4
5 ne	grote	l ripr	op 6/8	Ъ				
					-1			

SUBJECT Mt Storm Stage 1 Riprap desi PROJ. NO. 94-215-4 CONSULTANTS, INC. DATE 4/3/80 NOS BY . 18 Engineers · Geologists · Planners SHEET NO ... OF DATE CHKD, BY Environmental Specialists

DISIGN RIPRAP :

CNECK TO SEE THAT IL VALUE IN CHANNEL CALLS IS OK. CNECK Inc-ndl S. OOS where Nc=.0395 050 Ref: p57 Design of Stable Channels with Flexible Linings

CHANNEL	Dso	Ne	nd	Inc-nd
SEO1P	1-15	.040	.04	0
17	2.0	.044	.04	.004 <.005 ~
. <u>)</u> Y	1.05	,040	.04	0
0	1.0	. 040	.04	O
SEOLQ	1.15	.040	.04	6
D.	0.65	.037	.04	.003 <.005 ~
h.	1-6	.043	.04	.003 4.005~
SE029	.15	.039	.04	.001 4.005
n.	0.5	.0352	. 04	.0048 4.005

PA DER STANDARDS

and the state of t

850.2(1)

NG

f rock lining of the class

m structural defects and materials; from an ap-

graphic examination for nents:

width nor thickness less

nined in accordance with -- dry basis.

= smallest to the largest

λ.

		TC	LCIN A GOOM N	Daniel o mah		
ss, Size No.	R-8	R-7	R-6	R-5.	R-4	R-3
(NC3A)						
Rock Size / D						
(Inches) (450 /					-	
48	+001					
01		*001				
NC NC	15-50		. 100*			
10	00.00	(15-50)		+001		
10	0-15					
CI EV	ALL A		15-50		· 100+	
PA-		21.0		(15-50)		
6)			0-15		15-50	100*
0				0-15		
4					0-15	15-50
3		-				0-15
2						
inal Placement kness (inches)	48	36	30)	24	18	12

347

850.2(a)

Page 27 of 144
DITCHES B & C REVISED - CALCULATIONS (DITCH D DELETED BY MINE PIT CONFIGURATION CHANGE)

	10 M	T STO	RM			
SUBJECT YEP (CHANNEL D	DESIGN -	REVISION (OF DITCH	ES B,	C, AND D	
BY_MTP	DATE	15/90	PROJ. NO	88-1	08-30	CONSULTANTS, INC.
CHKD. BY 215	DATE	9/12/40	SHEET NO	1	OF / 9	Engineers • Geologists • Planners Environmental Specialists

TASK

THE AREA BETWEEN DITCHES B AND C WILL NOT. BE. DEVELOPED AS ORIGINALLY PLANNED. THE AREA IS STOWN ON THE ATTACHED DRAWING 84-215-E137 (CROSS-HATCHED AREA). INSTEAD DITCH & WILL BE EXTENDED AS SHOWN ON DRAWING 84-215-E137. THEREFORE, A PORTION OF DITCH & WILL BE RE-DESIGNED.

USE THE SCS - TR 55 GRAPHILAL METHOD TO DETERMINE PEAK DISCHARGE.

SUBJERT VEPC	20 - MT 5TO	RN	
CHANNEL MTP	DESIGN - RO DATE 9/9/90	PROLING 88-108-30	CONSULTANTS, INC.
CHKD. BY JUS	DATE 9/12/90	SHEET NO/AOF/9	Engineers • Geologists • Planners Environmental Specialists

1

SUMMARY (TRAPEZOIDAL CHANNELS)

CHANNEL	DESIGN Q (CFS)	BOTTOM WITTH	DEPTH (W/F.B)	Velocity	DUNDO
2	153	6	3	.9.7	RIP. RAP (R-5)
3	33	3	3	3.3	GRASS
4	7	3	1.5	3.7	GRASS
5	<i>48</i> 6	Le	3	9,3	Rip-Rap (R-5)

.

SUBJECT VEPCO - MT. STORM	
CHANNEL DESIGN - REVISION	OF DITCHES B,C, ANDD
BY MTP DATE 9/6/90	PROJ. NO. 88 - 108-30
CHKD. BY DATE DATE 12/90	SHEET NO OF OF

Engineers • Geologists • Planners Environmental Specialists

DESIGN CRITERIA

1) DESIGN STORM 25 YEAR/24 HOUR STORM - 5 IN. (FROM 84-215-4, MT. STORM LIFE-OF - STATION ASH DISPOSAL FACILITY - PHASE B, 30% SUBNITTAL) * INCREASE THIS FLOW BY 25% PER JLS 2) CHANNEL FREEBOARD - 0.5 Ft. (MIN.) (FROM REFERENCE LITED ABOVE) "USE IFT PER JLS 3) RUNOFF CURIVE NUMBERS ACTIVE AREA - 80 AREA BEING RECLAIMED - 75 RECLAIMED AREA - 70 OFF-SITE AREAS - 65 (HYDROLOGIL SOIL GROUP E) (FROM REFERENCE CITED ABOVE)

- 4) TRAPEZOIDAL CHANNEL W/ WIDE BASE IS PREFERABLE (PER JLS)
- 5) THE ASH PILE WILL HAVE 3H : IV SIDE SLOPES BETWEEN BENCHES, (FROM REFERENCE CITED ABOVE)

THE SLOPE IN AREA 24 IS 1 OR 2% PER JLS

(HANANEL SLOPES RASED ORAGE 31 OF FXISTING RUFFALD COAL NO.

SUBJECT VEPCC	D MTT. STERM	n	
CHANNEL DE	ESIGN - REVISION OF	= DITCHES B, C, AND D	CONSULTANTS, INC
CHKD. BY 45	DATE 9/12/90		Engineers • Geologists • Planners

1992

CHANNEL 1 PREVIOUSLY I WAS UNABLE LOCATE CALCS. TO WAS DESIGNED & BUT GET FLOW. PER JLS, TAKE SECTION AND PROFILE FROM DRAWINGS 84-215-E148 AND 84-215-E141, RESPECTIVELY. USE THIS INFORMATION TO CALCULATE Q. CHANNEL 1 15 TYPE 2 ? TRAPEZOID, 3' BOTTOM WIDTH, 1'-6 DEEP, GRASS LINED, MIN, SLOPE = 3593.5-3588 = 2,6% 210 USE MANININGS EQUATION $Q = \frac{1.49}{n} A R^{2/3} 5^{1/2}$ WHERE: Q = FLOW A = CROSS-SECTIONAL AREA P = WETTED PERIMETER R = A/P (HYDRAULIC RADIUS) 5 SLOPE OF CHANNEL $A = 3 \times 1 + 2(1)^2 = 5 \text{ ft}^2$ $R = \frac{3 \times 1... + 2(1...)^2}{3 + 2(1...)\sqrt{2^2 + 1}} = 0.67 \text{ ft}$ $Q = 149 (5)(0.67)^{2/3} (0.026)^{1/2}$ 7 0,045 (FROM PREVIOUS CALLS.) = 165.56 (0.76) (0.16) = 70 cfs INCREASE THIS BY 25% PER JLS 29 cfs × 1.25 = 25 cfs

SUBJECT VEPCO	- MT. STORM	
C LENNALD	ESIGN - REVISION	OF DITULES B, C, AND D
BY MTP	DATE 9/7/90	PROJ. NO. 98-108-30
CHKD. BY JLS	DATE 9/12/90	

ngineers • Geologists • Planners Invironmental Specialists

RUN-OFF CURVE NUMBERS (AREAS SHOWN ON DRAWING 84-215-E137)

CHANNEL 2

AND HALF RECLAIMED

ASSUME { ZA

2B

AREA (mi2)	CN	AREA × CN
0.028	80	2.24
0.028	70	1.96
0.008	65	0.52
0.064		4.72

CN WEIGHTED = 4,72/0,064 = 74

CHANNEL 3 AREA (mi=) AREA X CN CN 0,007 3A 80 0.54 257 0030 0.005: 3B 0.325 65 0.012 0.885

CNWEIGHTED = 0.885/0.012 = 74

CHANNEL 4 CN (5) 80 AREA X CN 0.13 AREA (mi) 4A 4B 0,00 0.08 0.001

CNWEIGHTED = 0,21/0,003 = 70

Worksheet 2: Runoff curve number and runoff

88-108-30

5/19

Project VEPCO - MT. STORM	By MTP	Date 9/7/90
Location AREA 2	Checked 119	Date 9/12/90
Circle one: Present (Developed)	A 1997	Contraction of

1. Runoff curve number (CN)

D-2

Soil name and	Cover description		CN 1	/	Area	a Product
hydrologic group (appendix A)	(cover type, treatment, and hydrologic condition; percent impervious; unconnected/connected impervio area ratio)	ous tr	Fig. 2-3	Fig. 2-4	□acres ⊡mi ² □%	CN x area
	· · · · · · · · · · · · · · · · · · ·		,			
	,					
/ Use only on	e CN source per line.	Tota	ls =			
N (weighted) =	total product = =	—; ^{Use}	CN =	[74	See shee
. Runoff		Storm	#1	St	orm #2	Storm #3
requency	yr	24	5			
ainfall, P (24	-hour) in	5				
unoff, Q (Use P and CN or eqs. 2-3 a	with table 2-1, fig. 2-1	2.2	2			1

(210-VI-TR-55, Second Ed., June 1986)

Worksheet	2:	Runoff	curve	number	and	runoff
						and the second sec

Project VEPCO - MT. STORM	By MTP	Date 9/7/90
Location AREA 3	Checked 15	Date 9/12/90
Circle one: Present (Developed)		

1. Runoff curve number (CN)

Soil name and	Cover description		CN 1	(Area Product of	
hydrologic group (appendix A)	(cover type, treatment, and hydrologic condition; percent impervious; unconnected/connected impervious area ratio)	Table 2-2	Fig. 2-3	Fig. 2-4	□acres □mi ² □%	CN x area
					7	
/ Use only o	ene CN source per line. = total product = =	Tota Use	ls = CN =	Ē	74	See shee
. Runoff		Storm	1 ∉1	S	torm #2	Storm #3
requency	уг	25	5			
ainfall, P (2	4-hour) in	5	-			
Unoff, Q (Use P and C or eqs. 2-3	N with table 2-1, $(fig. 2-1)$ in and 2-4.)	[<u></u> 2,	2			
	SEE SHEET	74				

(210-VI-TR-55, Second Ed., June 1986)

88-108-30

6/19

Worksheet 2: Runoff cur	ve number and runoff
-------------------------	----------------------

88-108-30

7/19

Project VEPCO - MTT STOP	2M By MTP	Date 9/7/90
Location AREA 4	Checked +LS	Date 9/12/90
Circle one: Present Developed)	

1. Runoff curve number (CN)

Soil name and	Cover description		CN 1	1	Area	Product
hydrologic group (appendix A)	(cover type, treatment, and hydrologic condition; percent impervious; unconnected/connected imperviou area ratio)	ñ Table 2-2	Fig. 2-3	F1g. 2-4	□acres □mi ² □%	CN x area
		-				
⁴ Use only or V (weighted) =	total product = =	Tota -; ^{Use}	ls = CN =	E	70	See Shee
Runoff		Storm	#1	St	orm #2	Storm #3
requency	yr	25				
ainfall, P (24	-hour) in	5				
unoff, Q (Use P and CN	with table 2-1, $fig. 2-1$, in	2	1			

(210-VI-TR-55, Second Ed., June 1986)

D-2

VEPCO - MT. STORM CHANNE DESIGN - REVISION OF DROLES B, C, D 88-108-30 MTP thes 9/12/90 9/12/90

. .

Interpolat

2.2

Worksheet 3: Time of concentration (T_c) or travel time (T_t) $_{\partial 8^{-}/\partial 8^{-}3^{o}}$

		· · · ·	1 12 5	Dara 9/12	190
	Location AREA ZA	Checke	a Jis	Date /114	10
	Circle one: Present (eveloped)	1			-
	Circle one: · T _c (T _t through subarea)			5 5 7 F	
	NOTES: Space for as many as two segments per worksheet.	flow type c	an be us	ed for each	01-74
	Include a map, schematic, or descript	ion of flow	segments	. SEE LARA	WING 87-25
		TD	a-b		1
	Sheet flow (Applicable to 1 conly) Se	gment 1D	BARE		-
	1. Surface description (table 3-1) SHEET 104	¢ · · ·	SOILS		-
	2. Manning's roughness coeff., n (table 3-1)	0.011		- 2
	3. Flow length, L (total L \leq 300 ft)	ft	300	1	
	4. Two-yr 24-hr rainfall, P	in	.5		
		frlfr	~ 0.01	1	
	0.007 (nl.) ^{0.8}		0.05	+	= 0.05
	6. $T_{t} = 0.500000000000000000000000000000000000$	hr	0, 9,9		
÷.	Shallow concentrated flow Se	gment ID	b-c]
	7. Surface description (paved or unpaved) .	in.	UNPANET	>	
	8. Flow length, L	ft	900	1	
		fr/fr	~0.01		
	. watercourse stope, s		- 1.0		1
	10. Average velocity, V (figure 3-1) See stleet 10B	IC/S	0.110		= 010
	11. $T_c = \frac{2}{3600 V}$ Compute T_c .	hr	0.10]	
	Channel flour	ement ID	C-d		7
		. 2	20		1
1	12. Cross sectional flow area, a		111 2		
	13. Wetted perimeter, pw	ft	17,4		-
	14. Hydraulic radius, $r = \frac{a}{P_{tr}}$ Compute r	ft	1.4	-	
	15. Channel slope, s	ft/ft	0.07	-	
	>16. Manning's roughness coeff., n .R.P. R.AP		0.04		
-5.	17. $V = \frac{1.49 r^{2/3} s^{1/2}}{r^{1.25} s^{1.26}}$ Compute V	ft/s	12.1		
	n 18. Flow length L	ft	1400		
			0 03	+	- 0,03.

(210-VI-TR-55, Second Ed., June 1986)

D

Page 38 of 144

PREVI CTre Worksheet 3: Time of concentration (T_c) or travel time (T_t) 88-108-30

roject VEPCO - MT. STORM	By <u>M7</u>	P	Date _	1/7/90
ocation AREA 3A.	Checked	JLS.	Date _	1/12/90
trcle one: Present (Developed)	-	_		
ircle one: · Tc Tr through subarea				
OTES: Space for as many as two segments per fl worksheet.	оч суре са	an be us	ed for	èach
Include a map, schematic, or description	of flow :	segments	.SEE]	RAWING 84-215-E
		a-h	1	
heet flow (Applicable to T _c only) Segme	int in	SHORT		
1. Surface description (table 3-1) SHEET 10A	•	GRASS	-	
2. Manning's roughness coeff., n (table 3-1), See Just 104	· · ·	0.15		<i>e</i>
 Flow length, L (total L ≤ 300 ft) 	. ft	250	1	
4. Two-yr 24-hr rainfall, P	. in	5		111
5. Land slope, s 31 1/3 = 0.33 & Desker	UA ft/ft	0.33		
6. $T_{t} = \frac{0.007 (nL)^{0.8}}{p^{0.5} 0.4}$ Compute T_{t}	hr	01,09	+	= 0,09
2,24,64 Shallow concentrated flow Segm	ent ID			
7. Surface description (paved or unpaved)			1.1	
8. Flow length, L	ft	1 2	4	
9. Watercourse slope, s	ft/ft		-	
10. Average velocity, V (figure 3-1)	ft/s	ż	1	
11. $T_{t} = \frac{L}{3600 \text{ V}}$ Compute T_{t}	hr		*	
Channel flow Z' Segn	ent ID	b-d		
12. Cross sectional flow area, a	fr ²	13	11/1	
13. Verted perimeter, p. $3 + 2(2)\sqrt{2^2 + 1}$	fr	11.9		
		1.1		
14. nyorautic radius, $r = \frac{p_{u}}{p_{u}}$ compute r		0.0.01		1
15. Channel slope, s	IC/IC	10 ALE	-	
 Hanning's roughness coeff., n		10.070		
17. $V = \frac{1.49 r_{5.6} s^{1}}{n}$ Compute V	ft/s	10,5		
18. Flow length, L	fr	750	1-	
19. T - L Compute T	hr.	0.01	+	- 0.07

Ż

12.

(210-VI-TR-55, Second Ed., June 1986)

÷

Worksheet 3: Time of concentration (T_c) or travel time (T_t) $_{88}$ -/08-30

۰.

1

Project VEPCO - MT. STORM	By M	TP	Date 9/7	190
Location AREA 4A	Check	ed Hs	Date 9/12	190
Circle one: Present Developed	14			
Circle one: · T _c (t _t through subarea)				
NOTES: Space for as many as two segme worksheet.	nts per flow type	can be us	ed for each	1 841-715-
Include a map, schematic, or d	escription of flow	a segments	.SEE LRA	WING OT CIS
Sheet flow (Applicable to T _c only)	Segment ID	a-b		
1. Surface description (table 3-1) 5	SHEGT IGA	GRASS		
2. Manning's roughness coeff., n (ta	$ble_3-1)_A$.	0,15		
3. Flow length, L (total L < 300 ft)) ft	150		
4. Two-yr 24-hr rainfall, P2	in	.5		
5. Land slope, s	ft/ft	0.01	1	
6. $T_{t} = \frac{0.007 (nL)^{0.8}}{P_{2.2.24}^{0.5} \circ 0.4}$ Comput	re T _t hr	0.03	+	= 0.03
Shallow concentrated flow	Segment ID			
7. Surface description (paved or ung	paved)	A		_
8. Flow length, L	ft			_
9. Watercourse slope, s	ft/ft	-		_
10. Average velocity, V (figure 3-1)	10B ft/s	-	1	
11. $T_{\rm E} = \frac{{\rm L}}{3600 \ {\rm V}}$ Compu	te T _c hr		++	
Channel flow	Segment ID	b-c		
12. Cross sectional flow area, a SAN	ne As 3A ft ²	13		
13. Wetted perimeter, p.,	ft	11.9		
14. Hydraulic radius, r = a Compu	te r fr	- 1.1		
Pw 15. Channel slope, s .3441 - 3422.9/	350 ft/fr	0.05	5	1 .
16. Manning's roughness coeff., n .	RASS UNED	0.045		
17. $V = \frac{1.49 r^{2/3} r^{1/2}}{r^{1/3} r^{1/2}}$ Compu	ste V ft/:	8.01	/	
n 18. Flow length, L	f	450		1
	ite T	0,02	+	- 0.02

(210-VI-TR-55, Second Ed., June 1986)

÷

```
VEPCO - MT. STORM
CHANNEL DESIGN - REVISION OF DITCHES
                                   BIGD
88-108-30
 MTP
9/12/90
```

Sheet flow

Sheet flow is flow over plane surfaces. It usually occurs in the headwater of streams. With sheet flow, the friction value (Manning's n) is an effective roughness coefficient that includes the effect of raindrop impact; drag over the plane surface; obstacles such as litter, crop ridges, and rocks; and erosion and transportation of sediment. These n values are for very shallow flow depths of about 0.1 foot or so. Table 3-1 gives Manning's n values for sheet flow for various surface conditions.

For sheet flow of less than 300 feet, use Manning's kinematic solution (Overton and Meadows 1976) to compute Tt:

$$T_t = \frac{0.007 \text{ (nL)}^{0.8}}{(P_2)^{0.5} \text{ s}^{0.4}}$$
 [Eq. 3-3]

Table 3-1 .- Roughness coefficients (Manning's n) for sheet flow

Surface description	nî
Smooth surfaces (concrete, asphalt, gravel, or	
bare soil)	0.011
Fallow (no residue)	0.05
Cultivated soils;	
Residue cover ≤20%	0.06
Residue cover >20%	0.17
Grass:	
Short grass prairie	0.15
Dense grasses ²	0.24
Bermudagrass	0.41
Range (natural)	0.13
Woods:3	
Light underbrush	0.40
Dense underbrush	0.40
	0.00

The n values are a composite of information compiled by Engman (1986).

²Includes species such as weeping lovegrass, bluegrass, buffalo grass, blue grama grass, and native grass mixtures. When selecting n. consider cover to a height of about 0.1 ft. This

is the only part of the plant over that will obstruct sheet flow.

where

- $T_t = travel time (hr),$
- n = Manning's roughness coefficient (table 3-1).
- L = flow length (ft),
- $P_2 = 2$ -year, 24-hour rainfall (in), and
- s = slope of hydraulic grade line (land slope, ft/ft).

This simplified form of the Manning's kinematic solution is based on the following: (1) shallow steady uniform flow, (2) constant intensity of rainfall excess (that part of a rain available for runoff), (3) rainfall duration of 24 hours, and (4) minor effect of infiltration on travel time. Rainfall depth can be obtained from appendix B.

Shallow concentrated flow

After a maximum of 300 feet, sheet flow usually becomes shallow concentrated flow. The average velocity for this flow can be determined from figure 3-1, in which average velocity is a function of watercourse slope and type of channel. For slopes less than 0.005 ft/ft, use equations given in appendix F for figure 3-1. Tillage can affect the direction of shallow concentrated flow. Flow may not always be directly down the watershed slope if tillage runs across the slope.

After determining average velocity in figure 3-1, use equation 3-1 to estimate travel time for the shallow concentrated flow segment.

Open channels

Open channels are assumed to begin where surveyed cross section information has been obtained, where channels are visible on aerial photographs, or where blue lines (indicating streams) appear on United States Geological Survey (USGS) quadrangle sheets. Manning's equation or water surface profile information can be used to estimate average flow velocity. Average flow velocity is usually determined for bank-full elevation.

VEDCO - MT STORM CHANNIEL DESIGN - REVISION OF DITCHES B, GD 88-162-30 MTP 9/12/90

Figure 3-1 .- Average velocities for estimating travel time for shallow concentrated flow.

(210-VI-TR-55, Second Ed., June 1986)

¹The n values a (1986). ²Includes specie grass, blue gran ³When selecting is the only part

103/19

88-/08-30

11/19

Worksheet 4: Graphical Peak Discharge method

÷

Lo	cation AREA 2		in he		10
	ATTOR E	- Che	ecked AD	Date 9/12	190
Ci	rcle one: Present Developed		_		
1.	Data:				- C
	Drainage area $A_m = 0.064 mi^2$	(acre	s/640)		
	Runoff curve number CN = 74 (Fro	m wor	ksheet 2)	SHEET 5	
	Time of concentration $T_{a} = 0.24$ hr (From	worksheet 3) SIJEET 8	
	Rainfall distribution type = II (I.	IA. I	I. III)		
	Pond and swamp areas spread		-,,		
	throughout watershed = _ O perc	ent o	f A (acres or mi	² covered
			1.0		
			Storm #1	Storm #2	Storm #
2.	Frequency	yr	25		
3.	Rainfall, P (24-hour)	in	5	11.7	
	a				
4.	Initial abstraction, I	in	0,703		
5.	Compute I /P	4	0.141	1 1	-
	a				
5.	Unit peak discharge, g	11-	725		
	(Use T_c and I_a/P with exhibit $4-\overline{IL}$)	7 111	1201		
	Runoff, Q	1.	2.2		
	(From worksheer 2). SHEET 5	In			
				1	
	Pond and swamp adjustment factor. F		1.0		
	Pond and swamp adjustment factor, F (Use percent pond and swamp area with table 4-2. Factor is 1.0 for		1.0		-
	Pond and swamp adjustment factor, F _p (Use percent pond and swamp area with table 4-2. Factor is 1.0 for zero percent pond and swamp area.)		1.0		
	Pond and swamp adjustment factor, F _p (Use percent pond and swamp area with table 4-2. Factor is 1.0 for zero percent pond and swamp area.) Peak discharge, q _p	cfs	1.0		

(210-VI-TR-55, Second Ed., June 1986)

.

88-/08-30

12/1.

Worksheet 4:	Graphical	Peak	Discharge	method
--------------	-----------	------	-----------	--------

AD-1 2	ву	MIP	Date 9/1	190
ocation AREA 3	Ch	ecked LLS	Date 9/12	190
rcle one: Present Developed				
Data:				
2.012	2		19 E	
Drainage area $A_{m} = \frac{0.012}{-11/2}$	_ mi* (acro	es/640)	Service .	
Kunoft curve number $CN = -\frac{14}{2}$	- (From wo:	rksheet 2)	SHEET 6	
lime of concentration $T_c = 0.70$	hr (From	worksheet 3	3) SHEET P	
Rainfall distribution type =	_ (I, IA, I	II, III)		
Fond and swamp areas spread throughout watershed = O	percent (of A (acres or mi	2 covered)
· · · · · · · · · · · · · · · · · · ·		· · · ·	deres of mi	covered)
		Storm #1	Storm #2	Storm #3
P		25		
requency	·· yr	65		
Rainfall, P (24-hour)	in	5	11 m	
				·
Initial abstraction, I	. in	0.703	TA	
(Use CN with table 4-1.) See Sheet 137	4			
Compute I /P		Q 141	1.	
a	·•	0.111		
Mark and area	-	[1000		5
(Use T_ and I /P with exhibit $4-\tau\tau$)	• csm/in	1000		10. 10 million
c a See SHEET 13	в			
Runoff, Q	. in	2.2		
(riom worksheet 2). Sheet		_		
		1.0		
Pond and swamp adjustment factor, F	•	and the second se		
Pond and swamp adjustment factor, F (Use percent pond and swamp area	•			
Pond and swamp adjustment factor, F (Use percent pond and swamp area with table 4-2. Factor is 1.0 for zero percent pond and swamp area.)				
Pond and swamp adjustment factor, F _p (Use percent pond and swamp area with table 4-2. Factor is 1.0 for zero percent pond and swamp area.)				

(210-VI-TR-55, Second Ed., June 1986)

88-/08-30

13/1

Worksheet 4	: Graj	phical P	eak	Discharge	method
-------------	--------	----------	-----	-----------	--------

Local	tion AREA 4	Cha	akad 115	Para glia	100
	<u>Arton</u>	- Che	cked 215	Date	140
irc.	le one: Present Developed	_			
. 1	Data:				
г	Drainage area $\beta = \beta 003 = 12$	1	- 16100		
F	Runoff curve number $\dots CN = 70$ (Fer	(acre	s/040)	SUITET 7	
Т	Sime of concentration $T = 0.05$ hr	From	worksheet 2)	SUGET 10	
F	Rainfall distribution type = TL (T.	TA T	T. III)	124-	
P	cond and swamp areas spread		-,/		
c	chroughout watershed = perc	ent o	f A _m (acres or mi	² covered)
			<u> </u>		
			Storm #1	Storm #2	Storm #3
F	requency	yr	25		
R	ainfall, P (24-hour)	in	5		
· I	nitial abstraction. I	15	0.857		
(Use CN with table 4-1.) See Sheet 13.4	111			
Ċ	ompute I /P	1	0.171		
	a.				-
U	nit peak discharge a		975	N 8 1 2	
()	Use T_c and I_a/P with exhibit $4-T_c$) 5ee Sheer 13B	m/in			
R1 (1	unoff, Q From worksheet 2). Suber 7	in	2		
	ond and swamp adjustment factor, F		1.0	1231	
Po	Jse percent pond and swamp area " Ith table 4-2. Factor is 1.0 for				10.4
Pc (L wi ze	ero percent pond and swamp area.)				
Po (L wi ze Pe	ero percent pond and swamp area.) ak discharge, q _p	cfs (5.9		

Chapter 4: Graphical Peak Discharge method

tapter presents the Graphical Peak Discharge relad for computing peak discharge from rural and areas. The Graphical method was developed hydrograph analyses using TR-20, "Computer for Project Formulation—Hydrology" (SCS The peak discharge equation used is

$$q_u = q_u A_m Q F_p$$
 [Eq. 4-1]

peak discharge (cfs);
unit peak discharge (csm/in);

q,

• drainage area (mi²);

. runoff (in); and

and the second state of the second state of the second state of the second states in the second states in the s

在这些时间的时候,在19

an state of the second state of the second se

pond and swamp adjustment factor.

The input requirements for the Graphical method are **biown:** (1) T_c (hr), (2) drainage area (mi²), (3) **biowr** rainfall distribution (I, IA, II, or III), (4) **biowr** rainfall (in), and (5) CN. If pond and swamp **biowr** are spread throughout the watershed and are **biomred** in the T_c computation, an adjustment **biomred** and swamp areas is also needed.

Net discharge computation

Received rainfall frequency, the 24-hour rainfall Recipitation maps. CN and total runoff (Q) for run

Constitution Ia P ratio is outside the range shown **Constitution** of interest, then the limiting value **Constitution** of interest, then the limiting **Constitution** of Ia P to CN and P.

We decharge per square mile per inch of runoff **Solution** consistent of the second second

Figure 4-1,-Variation of Ia/P for P and CN.

Table 4-1.-Ia values for runoff curve numbers

Curve number	I _a (in)	Curve number	I _a (in)
40	3.000	70	0.857
41	2.878	71	0.817
42	2.762	72	0.778
43	2.651	73	0.740
44	2.545	74	0.703
45	2.444	75	0.667
46	2.348	76	0.632
47	2.255	77	0.597
48	2.167	78	0.564
49	2.082	79	0.532
50	2.000	80	0.500
51	1.922	81	0.469
52	1.846	82	0.439
53	1.774	83	0.410
54	1.704	84	0.381
55	1.636	85	0.353
56	1.571	86	0.326
57	1.509	87	0.299
58	1.448	88	0.273
59	1.390	89	0.247
60	1.333	90	0.222
61	1.279	91.	0.198
62	1.226	92	0.174
63	1.175	93	0.151
64.	1.125	94	0.128
65	1.077	95	0.105
66	1.030	96	0.083
67	0.985	97	0.062
68	0.941	98	0.041
69	0.599		

Exhibit 4-II: Unit peak discharge (qu) for SCS type II rainfall distribution

Exhibit 4-III: Unit peak discharge (qu) for SCS type III rainfall distribution

No.

138/19

SUBJECT VERC	0 - MT. STORM	
CHANNEL T	DESIGN - REVISION	OF DITCHES B, C, AND D
BY_MTP	DATE 9/6/90	PROJ. NO. 88-108 -30
CHKD. BY JLS	_ DATE 91290	SHEET NO. 14 OF 19

THE SHAPE, DIMENSIONS, AND REQUIRED LINING FOR EACH CHANNEL WILL BE OBTAINED BY APPLYING MANNINGS EQUATION FOR OPEN CHANNEL FLOW.

 $K' = \frac{Gn}{b^{3/3} s^{1/2}}$

GIVEN Q, M, and b THE DEPTH OF FLOW AND VELOCITY CAN BE DETERMINED.

CHANNEL FREEBOARD = 1 Ft - SEE SHEET. 21

DESIGN OF CHANNEL LINING WILL BE BASED ON THE MAXIMUM VELOCITY OF FLOW THROUGH THE CHANNEL SECTION.

CHANNEL	FLOW (cfs)	Cum. FLOW (cfs)
1	25	25
2	102 × 1.25 = 128	153
3	26,4+1,25 = 33	33
4	5.9 + 1.25 = 7	7
5	NEGLIGIBLE	786

SUBJECT VEP	CO-MT STORI	m
CHANNEL	DESILN - REVI	SION OF DITCHES B, C, AND D
BY MTP	DATE 9/10/90	PROJ. NO. 88-108-30
СНКО. ВУ	DATE	SHEET NOOF

Engineers • Geologists • Planners Environmental Specialists

$$\begin{array}{l} (HANNEL 2 \\ Q = 1/53 \text{ cfs} \\ H = 0.04 \\ S = 6.74 \\ S = 2:1 \\ S_{AVE} = 3557 - 34(68/1000 = 0.00) \\ K' = (153)(0.04) \\ (69/3)(0.00^{-2}) = (0.12) \\ (69/3)(0.00^{-2}) = (0.12) \\ (120)(1.2) \\ \end{array}$$

$$\begin{array}{l} TO/b = 0.28 \implies D = 1.68 \text{ ff} \\ V = 0/4 = \frac{153}{60.00} + 20.00^{-2} = 9.7 \\ W = 0.28 \\ W = 0.28 \implies D = 1.68 \text{ ff} \\ V = 0/4 = \frac{153}{60.00} + 20.00^{-2} = 9.7 \\ W = 0.045 \\ W = 0.045 \\ D = 3.57 \\ S = 2:1 \\ S_{AVE} = -0.01 \\ K' = (33)(0.045) \\ S = 2.11 \\ S_{AVE} = -0.01 \\ K' = (33)(0.045) \\ D = 0.54 \implies D = 1.62 \text{ ff} \\ V = 0/4 = \frac{33}{60.00} + 20.00^{-2} = 3.3 \text{ Ff/scc} \\ W = 0.045 \\ W = 0.54 \implies D = 1.62 \text{ ff} \\ V = 9/4 = \frac{33}{20.00} + 20.00^{-2} = 3.3 \text{ Ff/scc} \\ \end{array}$$

-Tari. N=0711 = 1 Rage 49 521144# 1.0 Ft = 2.62 Ft

SUBJECT VEPCO	- MT, STOR	LM	
CHANNEL DES	IGN - REVISION	OF DITCHES	B, C, AND D
ev mtP	DATE 9/10/90	PBOJ. NO.	88-108-30
CHKD. BY 115	DATE 9/12/90	SHEET NO.	16 OF 19

Engineers • Geologists • Planners Environmental Specialists

CHANNEL 4

$$Q = 7 cFs$$

 $h = 0.045$
 $b = 3 Ft$
 $5s = 2:1$
 $5ave + 0.05$
 $K' = \frac{(7)(0.045)}{(3^{5/3})(0.05^{1/2})} = \frac{0.3/5}{4.2} = 0.075$
 $P_{b}' = 0.16 \Rightarrow D = 0.48 \text{ ft}$
 $V = 9/A = \frac{7}{3}(0.46)t^{2}(0.46)t^{2} = 3.7 \text{ ft/sec}$ * GRASS -LINED
FREESENES = 1.0 ft
TOTAL DEPTH = 0.48 ft + 1.0 ft = 1.48 ft
CHANNEL 5
 $Q = 186 cFs$

$$M = 0.04$$

$$b = 6 ft$$

$$ss = 2:1$$

$$S_{AVE} = \frac{3468 - 3445.5}{420} = 0.05$$

$$K' = \frac{(186)(0.046)}{(.6^{6}/3)(0.05^{16})} = \frac{8.37}{126,58} = 0.315$$

$$Db = 0.34 \implies D = 2.0 \text{ Ft}$$

$$V = \frac{9}{A} = \frac{186}{6}(2) + 2(2)^{2} = 9.3 \text{ Ft/sec} \qquad \text{* RIP-RAP LINED}$$

$$(NSA No. R - 5)$$

FREEBOARD = 1 ft
TOTAL DEPTH = 2 ft + 1 ft = 3 ft

	NTTP DATE 9/	STORM REVISION OF D 10/90 PF)ITCHES B.C.,	AND, D (1)	CONSULTANTS, IN
CHKD. I	BY DATE	SH	IEET NO (DFE	ngineers • Geologists • Planners nvironmental Specialists
	REFERENCE : B	RATER AND K	ING , HANDB	ook of Hyd	RAULICS , TABLE 7-1
	To END	D- DEPTU	OF WATER	IN TRACES	
	IS FIRD	D(- DLAN	OF WATER	IN TRAPECO	IDAL CHANNEL
	WHERE	K' = - 62.67	50.50	, b = Botton	HTOIW X
			TV	L'K'	
		$\frac{D}{b}$ $\frac{N}{2-1}$		$\frac{D}{b}$ $\frac{1}{2-1}$	$\frac{D}{b}$ $\frac{1}{2-1}$
	.01 .00000 .02 .00221 .03 .00436	.40 .574 .47 .599 .48 .625	.01 2.42 .02 2.48 .03 2.54	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.81 11.7 1.82 11.9 1.83 12.1
	.04 .00708- .05 .01033	.49 .052 .50 .079 .51 .707	.94 2.00 .95 2.66 .96 2.73	1.39 6.32 1.40 6.42 1.41 6.53	1.84 1.85 12:4 1.86 12.5
an a	.07 .0183 .08 .0231 .09 .0282 .10 .0339	.52 .730 .53 .765 .54 .795 .55 .826	.07 2.70 .08 2.85 .09 2.92 1.00 2.99	1.42 6.64 1.43 6.75 1.44 6.80 1.45 6.97	1.87 12.7 1.88 12.9 1.89 13.0 1.90 13.2
	.11 .0400 .12 .0406 .13 .0537	.56 .857 .57 .889 .58 .922 .59 .956	1.01 3,05 1.02 3.12 1.03 3.19 1.04 3.26	1.46 7.08 1.47 7.20 1.48 7.31 1.49 7.43	1.91 13.4 1.92 13.5 1.93 13.7 1.94 13.9
	.15 .0092 .16 .0777 .17 .0866	.60 .990 .61 1.02 .62 1.06	1.05 3.33 1.06 3.40 1.07 3.48	1.50 7.54 1.51 7.66 1.52 7.78	1.95 14.0 1.90 14.2 1.97 14.4
	.18 .0960 .19 .1059 .20 .1163	.63 1.10 .64 1.13 .65 1.17	1.08 3.55 1.09 3.62 1.10 3.70	1,53 7,90 1,54, 8,02 1,55 8,15	1.98 14.0 1.99 14.7 2.00 14.9
	$\begin{array}{c} .21 \\ .22 \\ .139 \\ .23 \\ .150 \\ .24 \\ .163 \\ .24$	$\begin{array}{c} .66 \\ .67 \\ .67 \\ .25 \\ .68 \\ .29 \\ .69 \\ .33 \\ .70 \\ .137 \\ .37 $	$\begin{array}{c} 1.11 & 3.78 \\ 1.12 & 3.85 \\ 1.13 & 3.93 \\ 1.14 & 4.01 \\ 1.14 & 4.00 \\ \end{array}$	1.50 8.27 1.57 8.40 1.58 8.52 1.59 8.65 1.60 8.78	2.01 15.1 2.02 15.3 2.03 15.5 2.04 15.6 2.04 15.6
	.26 .189 .27 .203 .28 .217	.71 1.41 .72 1.40 .73 1.50	$\begin{array}{c} 1.13 \\ 1.10 \\ 4.17 \\ 1.17 \\ 4.25 \\ 1.18 \\ 4.34 \end{array}$	1.61 8.91 1.62 9.04 1.63 9.17	2.00 10.0 2.07 10.2 2.08 16.4
	.29 .232 .30 .248	.74 . 1.54 .75 1.59 .76 1.63	1.19 4.42 1.20 4.51 1.21 4.59	1.64 9.30 1.65 9.44 1.66 9.57	2.09 16.0 2.10 16.8 2.11 17.0
	.32 .281 .33 .298 .34 .316 .35 .334	.77 1.68 .78 1.73 .79 1.78 .80 1.83	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.67 9.71 1.08 9.85 1.69 9.99 1.70 10.13	2.12 17.2 2.13 17.4 2.14 17.0 2.15 17.8
	.36 .353 .37 .372 .38 .392 .39 .413	.81 1.88 .82 1.93 .83 1.98 .84 2.03	1.20 - 5.04 1.27 - 5.13 1.28 - 5.22 1.29 - 5.32	$\begin{array}{c} 1.71 & 10.3 \\ 1.72 & 10.4 \\ 1.73 & 10.6 \\ 1.74 & 10.7 \end{array}$	2.16) 18.0 2.17 18.2 2.18 18.4 2.19 18.6
	.40 .434 .41 .456	.85 2.08 .86 2.14	1.30 5.41 1.31 5.51	1.75 10.8	2.20 18.8 2.21 19.0
	101	.01 =.17	11.320 5.61 1	1 1 1 1 1	2,22 40,2

Table A

P

	1.2		i A	GRADED RI	PRAP STONE	
(arac		Siz	e inches (sq. open	ings)	Wave Height (3)	Velocity (4) Fliter Stone (ft /sec.) NSA Size No.
ASA No.		Max.	Avg. (1)	min. (2)	(11.)	, (moonly .
R-1	1	11/2	¥4	(No. 8)		2.5 FS-1
3-2	÷.,	3	11/2	1	0.3	4.5 FS-1
2.3	1	6	3	2	. 0.5	6.5 FS-2
3-4		- 12	6	3	1.0	9.0 FS-2
3-5		18	9	5	1.5	11.5 FS-2
3-6		24	12	7	2.0	13.0 FS-3
2.7	11	30	15	12	2.5	14.5 FS-3
2-8		48	24	15	. 4.0	— FS-3

NSA No.	Max.	FILTER STONE Size inches (sq. openings) Avg. Min. (2)	
FS-1 FS-2 FS-3 Figure A*	¥4 2 61⁄2	No. 30 No. 4 2.5 No. 16	

- Notes: (1) "Average size" is that size exceeded by at least 50 percent of the total weight of the tonnage shipped; i.e., 50 percent of the tonnage shall consist of pieces larger than the "average" size (normally half the specified nominal top size).
 - (2) Pieces smaller than the minimum size shown shall not exceed 15 percent of the tonnage shipped.
 - (3) Wave height is the vertical distance from wave crest to wave trough. The wave height given in the table is the average height of the one-third highest waves in the incident wave train.
 - (4) The stream velocity is the velocity at mid-stream or at a point 10 feet from the bank, whichever is closest to the bank.
 - (5) The table assumes a stone dry density of 165 pounds per cu. ft.
 - (6) The stone industry generally is unable to economically produce armor stone in sizes to fit the 6-ft. wave height category. Therefore, the reader should use NSA No. A-1.

27

			€ , 14,1 HAVE TH Sur€.	 Scrubble veams. Hard and angular shaped rock with neither width nor thickness 1 Hard and angular shaped rock with neither width nor thickness 1 Hard and angular shaped rock with neither width nor thickness 1 Anomann specific gravity of 2.5, as determined in accordance with 15X1 NS, 506, balk-saturated, but surface-dry basis. First NS, 506, balk-saturated, but surface-dry basis. 	substations, such as sure the PD for petrographic examination from and sumples to the KFPD for petrographic examination from and sumples to the following requirements:	NET EXITAL	SECTION 050-ROCK LINING
				yith .		2.2 	
	2. Size and Gradation.				e re ()penings)	7 &	
 с	2. Size and Gradation.	11. D		reent Passing (Square	re Openings) R-5	우 조 	
	2. Size and Gradation. Class, Size No. (NCSA)	R-S		rcent Passing (Supra	re Openings) R-5	Ρ.Δ. R-4	R·3
	2. Size and Gradation. Class, Size No. (NCSA) Rock Size	R-S		rcent Passing (Squat	re Openings) R-5	Р.£ R-4	R-3
	2. Size and Gradation. Class, Size No. (NCSA) Rock Size (Inches)	R-S		rcent Passing (Squat	e re ()penings) R-5	Υ & R-4	×
-	2. Size and Gradation. Class, Size No. (NCSA) Rock Size (Inches) 43	R-S		rcent Passing (Square	e re Openings) R-5	₽ ₫ R-4	R·3
	2. Size and Gradation. Class, Size No. (NCSA) Rock Size (Inches) 43 30	R-S		recent Passing (Square	e re ()penings) R+5	₽ ≤ R-4	R·3
	2. Size and Gradation. Class, Size No. (NCSA) Rock Size (Inches) 43 30 34	R-S 100* 15-50		Sing Sing recent Passing (Squat R-5 1 1 1 1 1 1 1 1 1	2 re ()penings) R-5	₽ ≤ R-4	R·3
	2. Size and Gradation. Class, Size No. (NCSA) Rock Size (Inclus) 43 30 34 18	R-S 100* 15-50 		Similar Similar recent Passing (Squat R-6 1 1 100	2 re ()penings) R+5	R-4	R·3
	2. Size and Gradation. Class, Size No. (NCSA) Rock Size (Inclus) 43 30 34 18 15	R-S 1 100* 1 15-50 1 0-15		Similar Similar recent Passing (Squat R-4 1 1 100 1 1 1 1 1 1	2 re ()penings) R+5	R-4	×
	2. Size and Gradation. Class, Size No. (NCSA) Rock Size (Inches) 43 30 24 18 15 12	R-S 100* 100* 100* 100* 100*	Pe R.7 100,	Single Single Single rcent Passing (Supather Stress) 1 1 R-6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 15.50 1	2 re ()penings) R-5	R-4	R·3
	2. Size and Gradation. Class, Size No. (NCSA) Rock Size (Inclies) 43 30 24 18 15 12 0	R-S 100* 15-50 0-15	Pe R.7	Similar Similar rcent Passing (Sipual R-6 1 100% 1 100% 1	2 re Openings) R-5	R-4	R·3
-	2. Size and Gradation. Class, Size No. (NCSA) Rock Size (Inches) 43 30 34 15 15 12 9	R-S 100* 15-50 0-15	I I 1 10k) 1 10k) 1 15.50 1 0.15 1 0.15	Similar Similar rcent Passing (Signal R-6 1 100° 1 100° 1 100° 1 100° 1 1 1 1 1 1 1 1 1 1 1 1 1	Pre Openings) R-5	R-4	R·3
-	2. Size and Gradation. Class, Size No. (NCSA) Rock Size (Inches) 43 30 34 15 15 12 9 6	R-S 1 100* 1 15-50 1 0-15 1	Pe R-7 R-7 1 1 1 1 1 1 1 1 1 1 1 1 1	Similar Similar recent Passing (Square R-6 I <	2 re ()penings) R-5 100)* 15-50 0-15:	R-4 I I I I I I I I I I I I I	R·3
	2. Size and Gradation. Class, Size No. (NCSA) Rock Size (Inches) 43 30 24 18 15 12 9 6 4 4 2	R-S 100° 100° 100° 100° 100° 100° 100° 100°		Similar Similar recent Passing (Square R-6 I	2 re ()penings) R-5	R-4 R-4 1 1 1 1 1 1 1 1 1 1 1 1 1	R·3
	2. Size and Gradation. Class, Size No. (NCSA) Rock Size (Inches) 43 30 24 18 15 12 9 6 4 4 3 0 24 15 12 9 6 4 3 0 24 15 12 9 6 4 3 0 24 3 0 24 3 0 24 3 0 24 3 0 24 3 0 24 3 0 24 3 0 24 3 0 24 3 0 24 3 0 24 3 0 24 3 0 24 3 0 24 3 0 24 3 0 24 3 0 3 0 3 0 3 0 3 3 3 3 3 3 3 3 3 3 3 3 3	R-S 1 100* 1 15-50 1 0-15 1 1	Pe Pe R-7 1 10k0	Similar Similar recent Passing (Super- R-\$ R-\$ 1	2 re ()penings) R-5 100 ⁴ 15-50 0-15	R-4 R-4 1 1 1 1 1 1 1 1 1 1 1 1 1	R·3
	2. Size and Gradation. Class, Size No. (NCSA) Rock Size (Inches) 43 30 24 15 12 9 6 4 3 2 2 4 3 2 4 3 2 4 3 2 4 3 3 2 4 3 3 3 3 3 3 3 3 3 3 3 3 3	R-S 1 100* 1 15-50 1 0-15 1 15-10 1 100*	I I	Similar Similar recent Passing (Square R-\$ R-\$ 1	2 re ()penings) R-5 160)* 15:50 0:15:	R-4 R-4 1 1 1 1 1 1 1 1 1 1 1 1 1	x R·3 1 1 1 1 1 1 1 1 1 1 1 1 1

* Maximum Allowable Rock Size.

1

21.90

Is a subscription of a state
 Is a subscription of a state

PADOT RUB.408

1.4

DITCH 3B CALCULATIONS

SUBJECT DITCH 3B CAPACITY 254K lom AND Storm REQ. 88-108-40 10 LIS DATE PROJ. NO. BY_ OF 3 SHEET NO. CHKD. BY DATE

Engineers • Geologists • Planners Environmental Specialists

THE 254R 24 HE STORM REQUIREMENT FOR DIFF 3B FROM THE HYDROLOGY CALLS FOR PONDID 3 15 499 CFS. THE AS BUILT ANDACITY OF DITCH 3D 15 636 CFS BETWEEN STATION 15+19 AND 17+62. ". DITCH 3B WILL EASILY CONVEY THE 254R 24 HE STORM.

100 SUBJECT . DATE 9/6/91 988-168-40 CONSULTANTS, INC. LS PROJ. NO. BY _ SHEET NO. _____ 2 OF ____ Engineers · Geologists · Planners CHKD. BY _ DATE . Environmental Specialists

USE UPSTEERM SLOPE, STATION X-SECTION, N=0.04 TO EVALUATE Q AND V FOR DICH 3B.

CONTRACTOR

$$\frac{56677610}{(.5FT FREEZBOURD)} \frac{19+05+0}{(.5FT FREEZBOURD)} = 1.0^{9}/0$$

$$(.5FT FREEZBOURD) = (PLOW AT TOP OF ROCK)$$

$$Q = \frac{1.49}{0.04} (123.4) (\frac{123.4}{42})^{7/3} (.01)^{1/2} \qquad Q_{F}^{2} = \frac{1.49}{0.04} (145.6) (\frac{145.6}{44})^{2/3} (0.01)^{1/2}$$

$$= 943 \text{ CFS} \qquad = 1204 \text{ CFS}$$

$$V_{F}^{2} = \frac{943}{123.4} = 7.64 \text{ FPS} \qquad V_{F}^{-} = 1204/_{145.6} = 8.27 \text{ FPS}$$

SUBJECT . CONSULTANTS, INC. DATE _ 7/6/91 88-108-40 PROJ. NO. +LS BY Engineers · Geologists · Planners 3 OF 3 SHEET NO ... DATE CHKD. BY ____ Environmental Specialists

SECTION 12+63 TO 15+19 S= 2.2% $Q_{.5} = \frac{1.49}{.04} (108.7) (\frac{108.7}{41})^{2/3} (.022)^{\frac{1}{2}} \qquad Q_{F} = \frac{1.49}{.04} (133.4) (133.4)^{\frac{1}{2}} (.022)^{\frac{1}{2}}$ = IISOCFS.

Shanow 3700 TO 38+63 1.2% $Q_{.5} = \frac{1.49}{.04} (167.75) (167.75)^{2/5} (.012)^{\frac{1}{2}}$ = 1598.7 CFS

ASSANT-ASSANT

52.2

DITCH F CALCULATIONS

INVERT AS SHOWN ON THE CROFILE. DETAL AS SHOWN IS FOR CONSTRUCTION IN SOIL CUT OR SOIL FILL. IF ROCK EXCANATION IN SOIL CUT OR SOIL FILL. IF ROCK EXCANATION IN SOIL CUT OR SOIL FILL. IF ROCK EXCANATION IN SOIL CUT OR SOIL FILL. EXCANATION IN SOIL CUT OR SOIL FILL. EXCANATION AND CHATING CONFISSION SURL RE VIENTATION SURL RE VIENTATION IN ROCK SURFACES. ZO' N H' 12 Rip Pap Lining

> REPERLACE MADDING J EVENLY DE DESME GROUND, SEPTEMBER 1992, T. MARANEY

	VIRGINIA	POWER	:	MOUNT	STORM	
SUBJECT			_			

Engineers • Geologists • Planners Environmental Specialists

	MPI	2122	1/5/93	PROLINO	88-108-60
BY	MINL 110	DATE _	110/02		1 - 7
CHKD.	BY JLD	DATE	1/8/95	SHEET NO.	OF

CHANNEL CAPACITY

Due to revised topography, ditch "F" [GAI drawing Na B4-215-E137] needs to be modified to handle the peak discharges. Calculate the existing capacity of ditch "F".

Calculate slopes (reference: GAI drawing No. 84-215-E146) $\frac{3528.5 - 3498}{462 - 0} = \frac{30.5}{462} = 0.066 = 6.67.$ Type 5 : $\frac{3498-3431.5}{995-462} = \frac{61.5}{533} = 0.125 = 12.5 \%$ Type 8 : 3431.5 - 3414,5 1450 - 995 455 = 6.037 = 3.7 % Type 6 : Page 60 of 144

	VIR	GINIA	POWER: M	OUNT STORM	<u>. </u>	
BY CHKD. BY .	MRL	DATE .	1 /5 /93 1 /8/93	PROJ. NO SHEET NO	<u>88 - 108 - 60</u> <u>3</u> OF 7	Engineers • Geologists • Planners Environmental Specialists

1,000

Calculate available design channel capacity using the "SWALE DESIGN" subroutine of the "Penn state Urban Hydrology Model" (PSUHM) computer program.

Type	5	MAT	BW 3.0'	<u>s.s.</u> 2:1	Depth 2.0'	<u>n</u> 0.04	<u>slope</u> 0.066	Q 148.5 CFS
Type	в	RIP-RAP LINED	3.0'	ว :(2.5'	D.04	0.125	330.4 CF5
Type	6	IN AT LINED	3.0'	2:1	3.0'	0.04	0.037	268.8 CFS

The Mount storm hydrology and hydraulics calculations binder (project No. 84-215-4) shows the design peak discharge for ditch "F" (labeled as ditch SED1Q in the calculations binder) as being 122 CFS. However, this design peak discharge is only for runoff from the ask disposal pile and does not include runoff from the offsite areas east of the ditch.

1

Calculate slopes (reference: shut 4)
Type 6A :
$$\frac{3440 - 3424}{3307} = \frac{16}{330} = 0.048 = 4.8\%$$

Type 6B : $\frac{3424 - 3418}{4507} = \frac{6}{450} = 0.013 = 1.3\%$

The original type 6 channel was designed to handle a peak discharge of 270 CFS (see sheet 3). Design channel types 6A and 6B to handle 270 CFS.

										US	<u>E</u>	
	Q	n	s.s.	slope (Fr/Fr)	B.W. (在)	d (5)	Fronda No.	V (Felste)	B.W.	9.*	Lining	Detail No.
Type 6A	270	0,04	2:1	0.048	4.0	2.7	1.5	10.9	4'-0	3-0	Rip-rop Lined	11
Type 6B	270	0,04	2:1	0.013	4.0	3.6	0.8	6.7	4'-0	4'-0	Mat Lined	13

/ HKD. BY _	MRL DATE 1993 PROJ. NO. 98-108-60 Engineers Sector JLS DATE 1/11/93 SHEET NO. 7 OF 7 Engineers Geologists Planners
	CHANNEL TYPE 8
	Compare the proposed channel slope with the design slope.
	Design slope = 12.5 70 (see sheet 1)
	$Proposed slope = \frac{3470 - 3440}{230'} = \frac{30'}{230'} = 13.0\%$

	21								1	U	ISE	1000
	Q	n	5. F.	slope (ELA)	3.W.	d (1)	Frouse No.	V (Felser)	B.W.	4*	Lining	Detail No.
Type B	270	0.04	2:1	0_13	4.0	2.1	2.4	15.8	4'-0	2'-6	Rip-lap Lined	п

1

SEDIMENTATION PONDS

Calculation package includes: 1. Pond No. 3 (Pond 014) Modification Design Calculations

VERIO - MOUNT STORM SUBJECT 2/11/92 88-108-51 MRL CONSULTANTS, INC. DATE BY_ PROJ. NO. Engineers · Geologists · Planners CHKD. BY _ DATE SHEET NO ... OF **Environmental Specialists** MOUNT STORM POWER STATION PHASE B MINE / ASH DISPOSAL SITE

OND No. 3

MODIFICATION DESIGN

CALCULATIONS

88-108-51

SUBJECT	VERCO - MOUN Hydrology and Hyd	raulics Calculations	
BY MRL	_ DATE _ 2/11/92	PROJ. NO	CONSULTANTS, INC.
СНКД. ВҮ	DATE	SHEET NO OF43	Engineers Geologists Planners Environmental Specialists

OBJECTIVES

Design an addition to the existing pond # 3 (WVDOE permit # 5-2001-86) so that the pond meets all requirements of the West Virginia Froston and sediment Control Handbook for Developing Areas and the West Virginia Solid Waste Management Regulations. Locate the addition south of the existing pond #3. The existing pond #3 will be referred to as the primary redimentation pond and the new addition will be referred to as the secondary redimentation pond.

A sediment dewatering pond is also to be constructed west of the proposed secondary sedimentation pond. Sediments cleaned out of the primary and secondary redimentation ponds are to be placed in the sediment dewatering pond to dewater. Discharge from the sediment dewatering pond will outlet into the secondary redimentation pond.

SUBJECT	VEPCO - MOUNT	STORM	
BYMRL	DATE 1/15/92	PROJ. NO. 88-108- 51	CONSULTANTS, INC.
CHKD. BY	DATE	SHEET NO OF43	Engineers • Geologists • Planners

1000

REFERENCES

- Hydrology calculations by SER, 4/91, sheets 1 of 4 through 4 of 4.
 Hydraulic calculations by SER, 4/91, sheets 1 of 16 through 18 of 16.
- 3 Erosron and sediment Control Handbook For Developing Areas, West Virginia. USDA soil Conservation Service.
- Solid Waste Management Regulations, Title 47, Series 38, West Virginia Department of Natural Resources. Effective Date: May 1990.
- (USDA Soil conservation Service Technical Release 20 (TR-20), "Computer Program For Project Formulation Hydrology".
- (6) USDA Soil conservation service Technical Release No. 2, "Earth spillways".
- (1) USDA Soil Conservation Service Engineering Handbook, Section 5, "Hydraulics".
- (8) USDA Soil Conservation Service Technical Release No. 55, "Urban Hydrology For Small Watersheds", June 1986

SUBJECT My	STORM.		
BY 552R CHKD. BY MRL & 1942. LARL 6/7/91 REV. MRL 2/20/92	DATE 4/15/91 DATE 5/22/91	PROJ. NO	Engineers • Geologists • Planners Environmental Specialists

HYDROLOGY

CALCULATE THE 2, 10, 50-YEAR 24-HOUR AND THE 100-47EAR GHOUR HYDROGRAPHS, AND ROUTE THEM THROUGH POND #3, USING TR-55 AND TR-20 (REF 8 AND 5)

DRAINAGE AREA = 230 ACRES = 0.36 SQ MILES PLANIMETERED FROM ATTACHED WORKSHEET.

THE FOLLOWING LAND USES AND PERCENT OF DRAINAGE AREA ARE REFERENCED TO THE ATTACHED WORKSHEET. (See sheet 7)

FLY ASH	34.8%	80 AGRES
COAL REFUSE	43.5%	100 ACRES
STABALIZED (RECLAIMED AREA)	21.7%	50 ACRIES

THE FLY ASH AREA IS THE PROPOSED FLY ASH PILE. USE A CN VALUE OF BO FOR ACTIVE SURFACES AS PREVIOUSLY USED BY NJB IN "MT STORM SEDIMENTATION POND #1" DATED 6/23/86 PROSECT 64-215-4. USE A CN VALUE OF 76 FOR REVEGATATED PILE SURFACES." THE COAL REFUSE AREA IS THE EXISTING AND PROPOSED MINE SPOILS. ASSUME THIS AREA TO BE WELL VEGATATED. USE CN = 76 (REF B.)

A MAXIMUM OF 40 ACRES ASSUME V OF THE FLY ASH AREA WILL BE ACTIVE AND 40 AC. WILL BE REVEGETATED AND STABILIZED AT THIE TIME THE ENTIRE FLY ASH AREA DRAINS TO THIS POND Page 71 of 144
 SUBJECT MT STORM

 BY STORM

 BY STOR
 DATE 1/19/91

 PROJ. NO. 20-108-41
 CONSULTANTS, INC.

 CHKD. BY MRL
 DATE 5/22/91

 CHKD. BY MRL
 DATE 5/22/91

 SHEET NO.
 4 OF 43

 Engineers • Geologists • Planners

 Environmental Specialists

 GOOD COND

THE STABILIZED AREA CONSISTS OF 20% WOOD AND SO% DISTURBED AND STABILIZED (WITH GOOD GRASS COVER). ASSUMTE HSG D (MOST CONSERVATIVE) USE CN=77 FOR WOODS, GOOD COND. AND CN=80 GRASSLAND, GOOD COND.

ZN = 0.348(80.05+76.0.5)+ 0.435(76)+ 0.217(77.0.2+80.0.8) =.348.78+0.135.76 +.217(79.4) 22 = 77

12124 = 2.88" SEE EROSION AND SEDIMENT F5124 = 3.75" P10,24 = 4.60" LONTROL HANDBOOK FOR DEVELOPING AREAS, WEST = 4.98" PESZH Pso, 24 = 5.75" VIRGINIA", USSES NO DATE P100, 24 = 6.30" (ESCHDAW) PIEDIZH / PIEDIG = 1.36 FROM SHERT 6 P100,6 = 4,6311

TIME OF CONCENTRATION, th

A REPRESENTATIVE FLOW PATH IS SHOWN ON THE ATTACHED WORKSHEET. IT IS CONSIDERED AS REPRESENTATIVE OF THE WATERSHED. THE REPOSED FLYASH PILES BENCH'S ARE NOT INCLUDED ON THE PATH SINCE THEY WOULD ONER ESTIMATE THE ZE FOR THE AREA (THE BENCHES ADD FLOW TIME BUT DNLY A SMALL AREA WOULD BE REPRESENTED BY THIS LARGER Z). ZESTIMATE SHOWN ON SHEET 5.

sheet 5 of 43

roject IT STORT	by <u>S</u>	inter .	Date 7111		
ocation	Checke	d MRL	Date	91	
ircle one: Present Developed					
OTES: Space for as many as two segments per flow worksheet. Include a map, schematic, or description of	a type c of flow	segments	sed for each		
heet flow (Applicable to T _c only) Segment	t ID	a-b		1	
1. Surface description (table 3-1)		10000	5	-	
 Hanning's roughness coeff., n (table 3-1) 		0.4	0	+	
3. Flow length, L (total L \leq 300 ft)	ft	100	>	-	
4. Two-yr 24-hr rainfall, P2	in	2.9		-	
5. Land slope, #	ft/ft	0.09	5	-	
6. $T_{t} = \frac{0.007 (nL)^{0.8}}{P_{2}^{0.5} g^{0.4}}$ Compute T_{t}	hr	0,70	3+	= 0,20	
Shallow concentrated flow Segmen	nt ID	P-1	۷	_	
7. Surface description (paved or unpaved)		UNPAV	1ED	_	
8. Flow length, L	. ft	710	2	_	
9. Watercourse slope, s	, ft/ft	0.13	0	-	
10. Average velocity, V (figure 3-1)	. ft/s	5,8	3	-	
11. $T_t = \frac{L}{3600 \text{ V}}$ Compute $T_t \dots$. hr	0.0	3+	= 0.03	
Channel flow Segme	nt ID	4-0	<u>+</u>	_	
12. Cross sectional flow area, a	, fr ²	6.	15	-	
13. Wetted perimeter, p _W	. ft	9.4	()	-	
14. Eydraulic radius, T = 4 Compute r	ft.	0.7		-	
15. Channel slope, s	. ft/ft	0.03	33	_	
16 Manning's roughness coeff., n		0.04	5	-	
17. $\nabla = \frac{1.49 r^{2/3} a^{1/2}}{n}$ Compute ∇	. ft/s	4.9	3	_	
18. Flow length, L	ft	490			T.
19. $T_t = \frac{L}{3600 \text{ V}}$ Compute T_t	hr	0.2	2+	= 0.78	
20. Watershed or subarea T or T, (add T, in st	teps 6,	11, and	19)	hr 0.51	= 0

(210-VI-TR-55, Second Ed., June 1986)

D-3

Ľ,

BY	MRC	DATE	1/15/92	PROJ. NO.	88-10	8-51	
CHKD F	KAR	DATE	318019	2 SHEET NO	8	OF	43

Engineers • Geologists • Planners Environmental Specialists

HYDROLOGY

SUMMARY OF HYDROLOGIC CALCULATIONS

Drainage	Grea =	230	acres	2	0.36	mi.2	(See	sheet	3)
Runoff curve	number			5	77		(see	sheet	4)
Time of co	ncentratic	n		5	0.5	hours	(266	sheet	5)

11 11 1 (see sheet 4)

PRECIPITATION	A	NOUNTS
Pz, z4 hour	÷	2.88"
Ps. 24 hour		3.75"
Pip. 29 hour	52	4.60"
P25, 24 hour	н	4.98"
Pso, 24 hour	2	5.75 "
Pipe, 24 hour	-	6.30"
Pioo, 6 hour	2	4.63"

BYMRLDATE	1/13/92 PROJ. N	0. 88-108-51		CONSULTANTS, IN
CHKD. BY KINS DATE	3 31 92 SHEET N	NOOF43	Engineer Environn	s • Geologists • Planners nental Specialists
FRIMATE	THE BOTTOM (OF BND ELEV	ATION FO	R THE
11/30/91 1	PRECISION SURVE	EY COMPANY	TOPOGRAPH	Y MAP
THAT SH	OWS THE EXISTIN	16- PONO #3		
	Elevations from the	Elevations from the	Elevation	Estimated elevations
	Elevations from the "As Built Plan View"	Elevations From the 11/20/91 Topo. map	Elevation D: Ferential (FF.)	Estimated elevations for the 11/30/91 taxo mer
	Elevations from the "As Built Plan View" (see sheet 10)	Elevations From the 11/30/91 topo. map (See sheet 10A)	Elevation D: Arential (R.)	Estimated elevations for the 11/30/91 tapo. map
Top of embenkment	Elevations from the "As Built Plan View" (see sheet 10) 33566	Elevations From the 11/20/91 topo. map (see sheet 10A) ≈ 3353 1	Elevation D: Arential (A.)	Estimated elevations for the 11/30/91 tapo. map
Top of embenkment Normal Bool/E.s. Crest	Elevations from the "As Built Plan View" (see sheet 10) 3356' 3349'	Elevations From the 11/30/91 tops. map (see sheet IOA) $\approx 3353'$ $\approx 3345'$	Elevation Differential (A.) 3	Estimated elevations for the 11/30/91 topo. map
Top of embenkment Normal Bool/E.s. Crest Pond Bottom	Elevations from the "As Built Plan View" (see sheet 10) 3356' 3349' 3340'	Elevations From the 11/30/91 tops. map (see sheet IOA) $\approx 3353'$ $\approx 3345'$	Elevation Differential (A.) 3 4 Assume 3	Estimated elevations for the 11/30/91 topo. map ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

(Jsing 3 instead of 4 will yield more conservative storage calculations (i.e. less storage) For existing pond 3.

ASSUME POND BOTTOM ELEVATION = 3337

42

- AS BUILT STAGE STORAGE CURVE

Page 78 of 144

VEPCO - Mount storm SUBJECT 3/30/92 KMB DATE __ 88-108-51 CONSULTANTS, INC. BY _ PROJ. NO. CHKD. BY MRL 3/31/92 43 IDA DATE Engineers · Geologists · Planners SHEET NO _ OF. Environmental Specialists REDUCED PORTION OF 11/30/91 TOPOGRAPHIC MAP By PRECISION SURVEY COMPANY N 248500 ٨ 3340 3330 3340 3350 3353. 3340 ×3354.01 3353.98 3353.56 × 3353.08 3352 3350 X33:4.9 3344.49 3345.06 183 339.9.66 3350 3350 3350 3360

POINT ELEVATIONS TAKEN FROM FILE USED TO CREATE TOPOGRAPHY MAP.

SUBJECT VEPCO- MOUNT STORM

PROJ. NO.	88 -	108-51
	11	1.
SHEET NO.	11	OF 1:

Engineers · Geologists · Planners Environmental Specialists

STORAGE REQUIREMENTS

SEDIMENT STORAGE (VS)

The West Virginia solid Waste Management Regulations require 0.125 Ac. Ft. of sediment storage per acre of disturbed drainage area.

Disturbed drainage area = 40 aires (see sheet 3)

 $V_s = 0.125 \frac{A_c.E}{A_c.} \times 40 A_c. = 5 A_{c.} - E.$

RUNOFF STORAGE (VR)

The West Virginia Erosion and Sediment Control Handbook requires that the 2-year 24-hour storm runoff, in addition to the sediment storage, be stored.

P2, 24 hour = 2.88" (see sheet 8) Runoff (@CN=77) = 0.99" (from USDA SCS TR 16) VR = .99 in the x 230 Ac. = 19.0 Ac. - FE.

TOTAL STORAGE (VT) VT= Vs+ Ve= 5 Ac-E + 19 Ac-E = 24 Ac-E

The crest of the principal spillway shall be set at an elevation at or above 24 Ac. -Fe storage.

SUBJECT .	V	EPro -	- Ma	UNT	storm	_	
вү	MRL	DATE	3/27/	92	PROJ. NO.	86 -	108-51
CHKD, BY	KMB	DATE _	33	192	SHEET NO.	12	OF 43

Engineers · Geologists · Planners Environmental Specialists

HYDRAULICS

A riser as shown below will be built in the pond #3 addition. Analyze the hydraulics of the riser and conduit to determine it all applicable hydraulic and storage requirements are satisfied.

BY KMB	DATE 3992	PROJ. NO. 88-108-51
CHKD. BY MRL	DATE 3 31 92	SHEET NO. 3 OF 43

Engineers • Geologists • Planners Environmental Specialists

CONGLETE PLISER

THE CONCRETE RISER CONSISTS OF TWO SEPARATE INLET SECTIONS, THERE ARE 5 SQUARE ORIFICES LOCATED ON THE SIDE OF THE RISER AND AN OPENING IN THE TOP OF THE RISER.

FOR EACH OF THESE INLET SECTIONS.

THE FIRST INLET ENCOUNTERED CONSISTS OF 5. 12" X 12" SQUARE ORIFICES. THE INVERT OF THESE ORIFICES IS AT ELEVATION 3346,5.

FOR THESE OMFILES, CONSIDER WEIT AND ONIFICE FLOW

WEIR FLOW: Q = CLH³In L=length of crest = 12" = 1' H= head above weir crest. C = weir coefficient, usually 3.1 HOWEVER, FOR A WEIR WITH SUCH A SMALL CREST, C VANIES WITH HEAD AS SHOWN BELOW (TAKE) FROM TABLE 5-3 OF BRATEL 9 KINGS 'HANDBOOK OF HYOLDMUK

	VALLes	07 90	FOR 1	WEIR BASE	HTO
HEQD (CE)	C	HEAD (PE)	C	HEAD (FE)	C
0.2	2.69	1.6	3.28	4.5	3,32
0.4	2.72	1.8	3.31	5.0	3,32
0.6	2,75	2.0	3,30	5,5	3.32
0.8	2.85	2.5	3.31		
1.0	2.98	3.0	3.32		
1,2	3,08	3.5	3,32		
1.4	3,20	4.0	3,32		

Engineers · Geologists · Planners **Environmental Specialists**

CONCRETE RISER 12" DRIFICES

> WE'R FLOW WILL EXIST ON THESE OPIFICES UNTIL THE TOP OF THE ORIFICE IS REACHED,

WATER ELEVATION (FT)	HERO ABONE CREST (FT)	" C "	E Contraction	FOR 5 ORLFICES (CPS)
3346.5	0	-	0	0
3346.75	0.25	2.70	0.34	1.7
3347.0	0.5	2.74	0.97	4.9
3347.25	0.75	2.83	1,8	9.0
3347.5	1.0	2.98	3.0	15.0
		31-		

Q= C(1 ft)(1+)

0,602

ORLIFICE FLOW: Q = CAVZGH A = area of orifice, ft2 = 1 ft2 He head above centerline of orifice VALLES OF C ARE TAKEN FROM TABLE 4-3 OF BRATER & KING'S "HANDBOOK OF HYDRAULLCS" FOR A 1.0' SQUARE ONIFICE: HEAD LETT 0.597 0.8 USE A VALUE OF 1.5 0.601 0,602 2 34 0,603

Engineers • Geologists • Planners Environmental Specialists

CONCRETE RISER 12" ORIFICES

ORLFICE FLOW IS CAPABLE OF BEGINNING ODGE WATER LEVEL PASSES THE TOP OF THE ORLFICE.

WATER	HEAD ABOVE		TOTAL OUFICE FLOW
ELEVATION	ORIFICE &	FLOW ORIFICE	FOR 5 OMFICES
(PT)	(F_{T})	(CES)	(CES)
3348	(. D	4.81	24.0
3349	2.0	6.81	34.0
3350	3.0	8.34	41.7
3351	4,0	9.63	48.2
3352	5.0	10,8	54.0
3353	6.0	11.8	59.0

THE GENTERLINE OF THE MULFICE IS AT 3347.0

Q= 4.81 TH

BY KARD	DATE 319/92	BROLNO 88 - 108-51
CHER BY MRL	DATE 3/31/92	SHEET NO 16 OF 43

Engineers • Geologists • Planners Environmental Specialists

CONCRETE RISER

THE CONCLETE RISER TOP WILL PASS FLOW, THE GEOMETRY OF THIS IS:

Q = C(5 FE)(H)

THEREFORE, THE WEIR CONSISTS OF TWO 5' LENGTHS AND THE DINFICE AREA IS 15 SQUARE FEET.

FOR WEIR FLOW Q = CLH^{3/2}. THIS WILL ONCE AGAIN BE A BROAD - CRESTED WEIR. USE THE SAME VALUES OF C AS IN THE CASE WITH THE ORIFICES - BOTH WEIRS [HAVE A BREADTH OF 12"

WATER ELEVATION (FT)	HEAD ABOVE CREST (FF)	" с"	FLOW / SIDE OF WEIR (CFS)	TOTAL FLOW (CFS)
3350.5 3350.5 3350.5	1.2 0.5 0	2.78 2.98 3.24	6 4.91 14.9 29.8	0 9.82 29.8 59.6
3322 33252.2 23253	3 5.2 2	3,31 3,32	46.1 65.4 86.3	93.4 131 173

Page 85 of 144

Engineers • Geologists • Planners Environmental Specialists

TOP OF RISER

WILL ALSO BE ANALYZED.

Q = CATZGE ONCE AGAIN, USE C = 0.6 A = 5×3 = 15 Sg. feet

> Q: 72.2 Th

WATER	HEAD ABOUE	
ELEVATION	ORIFICE	FLOW
CFT)	(FT)	(CFS)
3350	0	0
3350.5	0.5	51.1
3351	1	72.2
3351.5	1.5	88.4
3352	2	102
3352.5	2.5	114
3353	3	125

BY KMB	DATE 319192	PROJ. NO. 89-108-51
CHKD. BY MRL	DATE	SHEET NO. 18 OF 43

Engineers • Geologists • Planners Environmental Specialists

OUTLES PIPE CAPACITY

THE SPINOLITE BIPE USED IN THE CARACITY DE THE SPINOLITE BIPE USED IN THE CONCRETE MISER

THIS PIPE IS 24" IN DIAMEER - SPIROLITE -USE A MANNING'S "IN" OF 0.012.

THE PIPE IS ON A SLOPE OF 1970 OVER A LENGTH OF APPROXIMATELY 100 FEET. THE PIPE INNET INNET IS AT ELEVATION 3336.

USE THE METHODS PRESENTED IN THE "EROSION AND SEDIMENT POLLUTION CONTROL PROGRAM MANUAL" FOR THE COMMONWEALTH OF PENNSYLVANIA TO DETERMINE PIPE CAPACITY. THIS FORMULA IS (FROM PG. 4.53 OF THE MANUAL)

$$Q = \alpha \left[(2gh) / (1 + K_m + K_p L) \right]^{1/2}$$

$$a = (2rec) of pipe (2g) ft) = \frac{1}{4} (\frac{24}{12})^2 = 3.14$$

$$g = 32.2 \text{ ft} | s^2$$

$$h = head above 0.6 \text{ diam above outlet invert}$$

$$K_m - assume 1.0$$

$$K_p = (5087 \times 0.012^2) / 24^{4/3} = 0.0106$$

$$L = 10Q \text{ ft}$$

$$Q = 3.14 \left[(2\times32.2)h / (1+1+(0.0106)(100)) \right]^{1/2}$$

$$= 3.14 \left[\frac{64.4h}{3.06} \right]^{1/2} = 14.4 \text{ Jh}^{1}$$

The invert of the outlet pipe is 3336 - (100) (0.01) = 3335. therefore, 0.6 diam = 3335 + 0.6×24 : 3336.2

SUBJEC	Thin	al line	Substitution			
BY	MRL	DATE	9/8/92	PBOJ. NO.	88-108-51	CONSULTANTS, IN
CHKD.	BY	DATE		SHEET NO	OF	Engineers • Geologists • Planners
			RISER	OUTLE	T PIPE	
	Deciso	colled	for · "c	lass ling Solo	Life HORE as	menufactured by saisal
	Design	Engineere	d sustems.	Gulf Plastic	Fabricated Pro	ducts Company Norrow
		Georgia	or approve	d equel."	The drawings	indicate 24"B.
		5,	- 11		5	
	specific	site co	inditions Ind	iccle that :		
						I FICCE
		-The	pipe will b	trad the	o an overburden	Her arechuide
		- The	aisa will be	halled with	ADSHTO # 57 5	this overbuilden.
		- The	24" & Dipe	is to fit ,	inside a 30" &	& RCP.
		- A	mannings n	of 0.012	was used.	
			2			
	-	T T				
	Engineerin	p deta	of spirolit	e		
		- gask	et joint t	net mets,	ASTM F-471	Et Oli 2400)
		diam	eter = 27	p ~ (1.1) -	21.T [Will	TIT WITHIN 30 RCP1
						C OF
	Engineerin	g data	of Titelin	e		Part
						ALG 1, 64 15
	Leaki	age rate	= 50 gellon:	s / inch of Ø	Imile / day	E M DES JON
	14.0	in the th		1		4 UNAT
	MAI	intra "n	- 0,010	to F Arti	.K.)	L CALCO
	" wit	standr	dees huris	is in excess	of 20 Feet"	L
		. 1	and and	in chics		
	60.	le Fill re	iquired is	Tree - draining	p sands and gr	erels_
-			soil fill o	.k. ?		
_	0,	tile die	ameter 7			

0

	SUBJECT VERCO - MOUNT	STORM	
	BY KOAB DATE 3/9/92 CHKD. BY MRL DATE 3/31/92	PROJ. NO. <u>88 - 108 - 5</u> SHEET NO. <u>19</u> OF <u>43</u>	CONSULTANTS, INC. Engineers • Geologists • Planners Environmental Specialists
	PIPE CAPACITY		
	WATER SURFACE ELEVATION	1-KERD ON OUTLET	CAPALITY
	3341 3342	4.8 5.B	31.5
	3343 3344 3345	6.8 7.8 8.8	37.6 40.2 42.7
Ø	3346.5 3347	9.8 10.3 10.8	451 46,2 47.3
	334-8 3349 3350	11.8 12.8 13.8	49.5 51.5 53.5
	3352 3353	14.8 15.8 16.8	55.4 57.2 59.0
	3346.75	10.55	46.7
	3347.5	11.3	48.4

BY	KN	IB	DATE	3	91	92	PROJ. NO.	88 -	108	-51
CHKD	. BY_	MRL	DATE	3	31	192	SHEET NO.	20	OF_	43

Engineers • Geologists • Planners Environmental Specialists

CONCRETE RISER

THERE ARE, THEREFORE, TWO SCPARATE CASES TO ANALYZE FOR WHICH TYPE OF FLOW IS LIMITING:

- OMIFICES

WATER ELEVATION	FLOW	ORIFICE FLOW	PIPE FLOW	LIMITING
(FT) 3346.5 3346.75 3347.0 3347.25 3347.5 3348 3348 3348 3350 3350 3351 3352 3352 3353	((FS) ((FS) 1.7 4.9 9.0 15.0	24.0 34.0 41.7 48.2 54.0 59.0	(CFS) 46,2 46,7 47,9 47,9 47,9 47,9 47,9 47,9 49,5 51,5 53,5 55,4 57,2 59,0	(CFS) 0 1.7 4.9 9.5 0 1.7 4.9 9.5 0 1.7 4.9 9.5 0 1.7 4.9 9.5 0 1.7 4.9 9.5 0 1.7 4.9 9.5 0 1.7 4.9 9.5 0 1.7 4.9 9.5 0 1.7 4.9 9.5 0 1.7 4.9 9.5 0 1.7 4.9 9.5 0 1.7 4.9 9.5 0 1.7 4.9 9.5 0 1.7 4.9 1.7 1.7 4.9 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7

- RISER BOX

3350	6	0	53.5	0
3351	29.8	72.2	55,4	29.8
335Z	93.4	102	57.2	51.2
3353	173	125	59.0	59,0

BY KM	В	DATE	3	9	192	PROJ. NO.	88	-108	- 51
CHKD. BY	MRL	DATE _	3	31	92	SHEET NO.	21	OF _	43

Engineers • Geologists • Planners Environmental Specialists

CONCRETE RISER

TOTAL STAGE - DISCHARGE FOR THE RISER. THIS TAKES INTO ACCOUNT ADDING BOX & ONIFICE FLOWS & THE PIPE LIMITATION.

WATER	
ELEVATION	FLOW
CETJ	(CFS)
3346.5	0
3346.75	1.7
3347.0	4.9
3347.25	9,0
3347,5	15.0
3348	24.0
3349	34.0
3350	41,7
3351	55.4
3352	57.2
3353	59.0

NOTE: AT 3351, 48.2 + 29.8 = 78.0, WHICH IS GREATER THAN THE PIPE CAP. OF 55.4 THE SAME APPLIES TO 3352 93353

INTERPOLATING 3348,5 29,0

BY KMB	DATE 3/10/92	PROJ. NO.	88-108-51
CHKD. BY MRU	DATE 3/31/92	SHEET NO.	22 OF 43

Engineers • Geologists • Planners Environmental Specialists

THE EMERITERICH SPILLWAY ADALYSIS WILL BE PERFORMED USING METHODS PRESENTED IN THE U.S. DEPARTMENT OF REPLICIES SOIL CONSERVATION SERVICE RECHAICAL RELEASE Z. EXAMPLE IA FROM SUPPLEMENT A WILL BE FOLLOWED.

THE NEXT PAGE SHOWS A PLAN AND PROFILE SKETCH OF THE EMERGENCY SPILLWAY AND THE TWO PAGES FOLLOWING THE SKETCH ARE CHARTS FROM TR-2 THAT WILL BE USED IN THE ANALYSIS.

THE METHODOLOGY TO BE USED IS AS FOLLOWS:

1) FIND THE EQUIVALENT WIDTH W OF THE TRAPEZOIDAL SECTION THIS USES CHART ES-98 2) DEFERMINE He FROM CHART ES-124.

A FLOWLATE WILL INITIALLY BE ASSUMED AND WATER SWREACE ELEVATIONS WILL BE DETERMINED FROM THIS. THE ELEVATION OF THE FLAT PART OF THE SPILLWAY IS 3348.5. HP IS REFERENCED TO THIS ELEVATION.

SIDE SLOPES ON THE SPILLWARD PARE 3:1 USE "N" = 0.04 b = base width = 35'USE L= 80' (L = 75'] 80' IS CONSERVATIVE)

EMERGENCY SPILLWAY

VERCO - MOUNT STORM

SUBJECT

BY	MRL	DATE	3/27	192	PBOJ. NO.	88-10	08-5	1
CHKD. BY	KINB	DATE	3/3	192	SHEET NO	22 A	OF	43

Engineers • Geologists • Planners Environmental Specialists

EMERGENCY SPILLWAY OUTLET CHANNEL

To use chart ES-124, Flow in the outlet channel must be supercritical. Check the emergency spillway outlet channel For supercritical flow at maximum discharge. Also, calculate the maximum velocity in the outlet channel during maximum descharge.

Maximum discharge occurs at elevation 3349.4. (see sheet 39)

Emergency spillway discharge at devation 3349.4 = 100 cFs. (see sheet 29)

INPUT INFORMATION:

FLOW	MANNING'S	CHANNEL	SIDESLOPE	BOTTOM
RATE	'N'	GRADE		WIDTH
(cfs.)		(ft./ft.)	(H:1V)	(ft.)
\$100.00	0.040	0.0600	3.00	35.0

SOLUTION:

THE NORMAL DEPTH IN THE CHANNEL IS 0.50 ft. OR 5.9 in.

AREA	WETTED PREIMETER	HYDRAULIC RADIUS	FROUDE	VELOCITY	VELOCITY	TOTAL	RIP-RAP
ft ²) 18.08	(ft) 38,13	(ft) 0.47	2.00	(ft/sec) 5.53	(ft)	(ft)	(in)
					0.40	0.37	
RI	P-RAP IS NO	T REQUIRED .	IF THE SOI	L LINING OF	THE CHANN	EL IS CON	HESIVE

SUPERCRITICAL FLOW

RESULTS: AT Q = 100 CFS, Flow is supercritical and velocity = 5.5 Fps. The run-st-mine rock to be used in the outlet channel will be adequate channel protection.

NOTE: Supercritical Flow starts around 3 cFs of Flow.

INPUT INFORMATION:

FLOW	MANNING'S	CHANNEL	SIDESLOPE	BOTTOM
RATE	'N'	GRADE		WIDTH
(cfs.)		(ft./ft.)	(H:1V)	(ft.)
\$100.00	0.040	0.0800	3.00	35.0

SOLUTION:

THE NORMAL DEPTH IN THE CHANNEL IS 0.45 ft. OR 5.5 in.

AREA	WETTED PREIMETER	HYDRAULIC RADIUS	FROUDE NUMBER	VELOCITY	VELOCITY HEAD	TOTAL ENERGY	RIP-RAP SIZE (D50)
(ft^2)	(ft)	(ft)		(ft/sec)	(ft)	(ft)	(in)
16.54	37.88	0.44	2.59	6.05	0.57	1.02	9.6

"Cheel num made to see if it was D.K. to steepen the catest slipe. at 6 no, lecourse lecourse How remained suffermitical te 6.05 fps. 0.4- lecours

			L			
1		5	Water Surfa	ce		ection
	0					ol. S est
k k				+	30.0	on tr
11				5	Slope = 0.(DO T CO
	Slope	= -0.02	minere and an	n (cha side : channe	annel bott friction n el width =	om) = 0.04 eglected 1.00 ft
H _p g	iven in to	p figures;	$y = H_p + v$	² /2g given	in bottom	figures
in ft	q=5 cîs	q = 10 cfs	q = 15 cfs	q=20 cfs	q = 30 cîs	q = 40 cfs
20.0	1.58 1.37	2.40	3.09 2.55	3.68 2.98	4.75 3.76	5.72 4.47
30.0	1.63	2.47	3.15 2.66	3.75 3.11	4.82	5.79 4.63
40.0	1.68	2.52	3.20	3.81	4.88	5.85
60.0	1.72	2.56	3.27	5.89	1.26 1.26	5.93
80.0	1.73	2.60	3.30	3.93	5.01	5.99
100.0	1.00	2.62	3.33	3.96	5.05	5.03 6.03
120.0	1.75	2.52	3.35	3.98	5.08	5.05
	1.72 1.75	2.55	3.21 3.36	3.78	4.75	5.61
	1.73	2.57	3.24	3.83	4.81	5.69
140.0	1 72	2.59	3.27	3.86	4.86	5.75
140.0	֥1	A CONTRACT OF A	3.38	4.02	5.12	6.13 5.81
140.0 160.0 180.0	1.76 1.74	2.65 2.60	3.29	2.09	1	
140.0 160.0 180.0 200.0	1.76 1.74 1.76 1.75	2.65 2.60 2.65 2.61	3.29 3.39 3.31	4.04 3.92	5.14 4.94	6.14 5.85

75

Ð.

3/10/92

192

3/31

Engineers • Geologists • Planners Environmental Specialists

DATE _

DATE _

KMB

MRL

BY-

CHKD. BY

$$\frac{USE}{9} = \frac{100 \text{ cfs}}{9}$$

$$\frac{100}{35} = 2.86 \text{ cfs} \Rightarrow d_c = 0.62$$

$$(d_c \text{ From } ES - 98)$$

$$W = 35 + 3(0.62) = 36.9 \text{ ft} \Rightarrow g = 2.71 \text{ cfs}$$

$$g = 2.71 \text{ cfs} \Rightarrow f_c = 0.60$$

$$W = 35 + 3(0.60) = 36.8 \text{ ft} \Rightarrow g = 2.72 \text{ cfs}$$

$$g = 2.72 \text{ cfs} \Rightarrow d_c = 0.60$$

PROJ. NO. 88-108-51

26

SHEET NO.

43

OF_

W: 36.8 PE

8	He					
0	0					
2.72		\Rightarrow	40	3	094	ft
5	1.73		1.6		-111	

He = 0.94 Ft => ELEVISTION = 3349.4 Pt FLOW = 100 cfs

DATE 3/31/92

Engineers • Geologists • Planners Environmental Specialists

CHKD. BY MRL DATE _

BY KMB

USE W = 37.8 ft: $g = \frac{200}{37.8} = 5.29$ cfs $\Rightarrow d_c = 0.95$ ft $\Rightarrow W = 35 + 3(0.95) = 37.8$

PROJ. NO. 38 - 108 - 51

43

OF_

$$en \ L = 80^{-1}$$

 $g H_{\theta}$
 $5 \ 1.73$
 $5.29 \implies H_{\theta} = 1.78$
 $10 \ 2.60$

ELEVATION = 3350,3 FLOW = 200 cls

USE W= 38.7 FE: q = 30°/38.7 = 7.75 cfs > dc = 1.23 FE > W= 35+ 3(1.23) = 38.7 /

For L= 80':

M Co	14p 1,73	10.00	
7.75		> Llo = 2.21	
10	2,60		

ELEVATION = 3350,7 FLOW = 300 efs
DATE

DATE

Mel

BY _

CHKD, BY

3/10/92

33192

Engineers • Geologists • Planners Environmental Specialists

PROJ. NO. 88-108-51

28

SHEET NO.

__OF__43

FOR L= 80':

2	Hp					
18	2.60					
12.5		\Rightarrow	HP	3	2.95	
15	3.30					

ELEVATION : 3351.45 FLOW = 500 cf.

Q = 750 cls

USE W: 41.5': q: 750/41.5 = 18.1 cfs alc: 2.17' = w: 35+3(2.17): 41.5 ft,

FOR L: 80 ;

ELEVATION = 3352. Z FLOW= 750 cfs

SUBJECT VEPCO - MOUNT STORIM

CHKD. BY MRL DATE 3 31 92 SHEET NO. 29 OF

Engineers · Geologists · Planners **Environmental Specialists**

EMERGENCY SPILLWAY

BY KINB DATE 31092

Q = 1000 cfs

USE W= 42.8': g: 1000/42.8 = 23.4 chs > de= 2.6 FE > w: 35 + 3(2.6): 42.8'

PROJ. NO. 88 - 108 - 51

43

FOR L: 80 :

0020	Hp 3,93				
23 A		\Rightarrow	Hp	7	4.30
30	5.01				

ELEVATION = 3352.8 FLOW = 1000 cf.

SUMMARY OF RESULTS ELEVATION FLOW (\$2) (CES) 100 3349,4 3350.3 220 3350,7 300 2351 15 500

202	3-31.43
750	3352.2
000	3352.8

THIS YELDS (THROUGH INTERPOLATION) ELEVATION (FT) FLOW (QU) 3348,5 0 (GIVEN) 55 3349 167 3350 3351 380 3352 683 21100 3353

SHKD. BY MRL DATE 3	10192 PROJ. 1 31 92 SHEET	NO. <u>88-/08-51</u> NO. <u>30</u> OF <u>43</u>	Engineers • Geologists • Planners Environmental Specialists
STAGE - DIS	charge t	ion total	POND
WATER	RISER	E, SPILLWAM	TOTAL
ELEVATION (FT)	FLOW (CFS)	FLOW	FLOW (cfs)
3346.5	0	0	0
3346,75	1.7	0	1,7-
3347.0	4.9	0	4.9
3347.25	9.0	0	9.0
3347.5	15.0	0	15.0
334-8	24.0	0	24.0
3348.5	29.0	0	29.0
3349	34.0	55	89
3350	41.7	167	209
3351	55,4	380	435
3352	57.2	683	740
3353	59,0	1100	1160

SUBJECT VERG - MT. STORM

BY KOAB	DATE	3/11/	92	PROJ. NO.	88 -	108	-51	ĺ
CHKD. BY MEL	DATE	3/31	92	SHEET NO.	31	OF	43	

Engineers • Geologists • Planners Environmental Specialists

THE STAGE - STORAGE DATA FOR THE POND SYSTEM MUST BE DETERMINED. THERE ARE TWO PONDS CONNECTED BY AN OVERFLOW AT ELEVATION 3345. THE STAGE-DISCHARGE DOES NOT START UNTIL 3346.5, SO THE STORACES RELOW THIS WILL JUST BE ADDED THE STORACES RELOW THIS WILL JUST BE ADDED TOGETHER AS THE ELEVATIONS OF THE TWO PONDS WILL BE ABLE TO EQUALIZE.

TOTAL STORAGE OF THE TWO PORTIONS (see next 2 pages)

	51	ONLAGES	(ac. ft)	
ELEVATION	primery		SECONDARY	
(EE)	GOTATA 377/038	00,00	SEO. PONO	TOTAL
3337	0		0	0
3338	1,47		0.20	1,67
3340	4.71		1.66	6.37
3342	8,25		4.00	12.2
3344	12.3		6.72	19.0
334-6	16,8		9,88	26.7
3348	21.9		13,5	35.4
3350	27,4		17.5	44.9
3352	33,4		22.0	55.4
3363	36.6		24.4	61.0
INTERPOLATED	TOTAL 20 9	STOLAGE	s FOR ELEVA	TIONS :
334175 -	30.0		3341 -	9 28
3347.0 -	31.0		22.24	1.00
3347.25 -	32.1		- 2	
3347.5-	33.2			
22425-	37.8			
2249 -	40.2			
2251 -	50.2			

1.	STA	GE- STOR	AGE D	ATA	8.0				
E	ar KmB	DATE	3/11/92	PROJ.	NO. <u>88-7</u> 22	08-51			LIANIS, ING.
0	CHKD. BY	DATE	." 50	SHEET	NO	_OF	Env	vironmental Specia	lists
F	ТОРО МА	P SCALE	1 =		in.* = 4	<u>1300</u> te.2			
	ELEV.	DIFFERENCE IN	AREA		AVERAGE	STORAGE	TOTAL	STORAGE	
		ELEV.	IN ²	ACRES	ACRES	AC. FT.	AC. IN.	AC. FT.	221.00
T	3337		24,4	1,40				0	PILIMAION SECLING PATIO
					1.47	1,47			PONO
-	3338		26.8	1.54				1,47	1.0
	254	2	-		1.62	3.24		0.01	
	3340		129.4	1,69	1.07	2 20		411	
-	2212	2	022	1.00	1,11	3,54		1025	
	3342	2	32.2	11.92	201	4 07		8.03	
	2244		271	7 16	6.01	TIVE		17.3	
	3377	7	151.0	10,110	7 29	4.58		10.	
	3211		421	2.42	2.21	1100	1	16.8	
	2346	2	Fair		2.53	5.06			
	3348		46.0	2.64				21.9	
		2			2.75	5.50			
	3350		49.9	2.86				27.4	
		2			2.97	5,94			
	332 S		53,6	3,08		0.15		33.4	
		1			3,11	3,11		1 31 1	
	3323		56.6	3.25				36,6	
24				-					
							-		
				-	-	-			
					1		C. 2		
						-	1		
							1		
	2			1		1			
		1							
2								-	
									_
					1				-
									_
			1	-		1.	1	1	1

	STA	GE - STOR	AGE DA	TA					
в	Y KMB		3/11/92	PROJ	NO. 88-1	08-51	125		ULTANTS, INC.
C	снко. вуМа	DATE	3 31 92	SHEE	т NO33	OF43	Eng Env	ineers • Geolog vironmental Spec	gists e Planners Ialists
	торо ма	P SCALE	1" = 50	_ F T.) in. ² =	2500 FL.2			
	ELEV.	DIFFERENCE IN	AREA		AVERAGE	IN TERVAL STORAGE	TOTAL	STORAGE	
		ELEV.	IN ²	ACRES	ACRES	AC. FT.	AC. IN.	AC. FT.	SECONDAY SECURCE ITAT
-	3337		0	0				$ \bigcirc$	Ponte
-		1			0.20	0.20			
-	3338		6.94	0,40				0.20	
-		2			0.73	1.46			
	3340		18.4	1.06				1.66	ad amon
-		2			1.17	2,34			-
L	3342		22.1	1,27	1			4,00	the provide state
		2			1,36	2.72		1.70	the strength
	3344		25.3	1.45		1211		6.12	
1		2			1,58	5.16		0.00	
	3346		29.8	1.71				7.88	
		2	<u> </u>		1.81	3.62		10 -	
	3348		33.2	1.91				13.5	-
		2			2.01	4.02	1		_
	3320		36.6	2.10		10		17.5	
		2	1.1.1	1	2.24	1 4,44		100 10	_
	3352		90.6	2,33	A 1	A /		122.0	-
		1		0.10	2.41	2.41		011	
	335.3		43.2	2.48				24.7	-
					-			-	-
						+			_
					-	_			_
					-				-
			+						_
				1					
					-				-
		.1					1		_
1		1							
8							-		-
				_					-
	1	1		1	1.1				

SUBJECT VERCO - MOUNT Storm

DATE

DATE _

MRL

BY .

CHKD. BY_

3/11/92

3 31 92

Engineers · Geologists · Planners Environmental Specialists

STRGE - DISCHARGE THUS, ME STORAGE

-108

OF_

34

PROJ. NO. _88

SHEET NO.

15 ; DATA

STAGE	STORAGE	DISCHARLEE
CF+)	(ac. ft)	(cfs)
3337	0	Õ
3338	1.67	0
3340	6.37	0
3341	9.28	0
3342	12.2	0
3344	19.0	6
3346	26.7	0
3346.5	28.9	0
3346.75	30,0	1.7
3347	31.0	4.9
3347,25	32,1	9,0
3347.5	33.2	15.0
3348	25.4	240
3348.5	37,8	29.0
3349	40.2	89
3350	44.9	209
3351	50.2	435
3352	55.4	740
3323	61.0	1160

Ż

DE	3 TR-20				FUL	LPRINT	SUMMARY	NC	PL	ots		
	TLE 111 M	101	UNT STORM	61	POND #3	WITH MODIFI	CATIONS	KM	B :	3/30	/92	
5	STRUCT		10									
3					3337.0	0.0	0.0					
3					3338.0	0.001	1.67					
3					3340.0	0.002	6.37					
3					3341.0	0.003	9.28					
3					3342.0	0.004	12.2					
3					3344.0	0.005	19.0					
3					3346.0	0.006	26.7					
3					3346.5	0.007	28.9					
3					3346.75	1.7	30.0					
3					3347.0	4.9	31.0					
3					3347.25	9.0	32.1					
3					3347.5	15.0	33.2					
3					3348.0	24.0	35.4					
3					3348.5	29.0	37.8					
3					3349.0	89.0	40.2					
3					3350.0	209.0	44.9					
3					3351.0	435.0	50.2					
3					3352.0	740.0	55.4					
3					3353.0	1160.0	61.0					
7	ENDTBL											
5	RUNOFF	1	010	5	0,36	77.	0.5	1				
5	RESVOR 2	2	10 5	6	3341.0			1	1			
	E' TA											
7	1.00											
7	INCREM (5			0.10							
7	COMPUT	7	010	10	0.	2.88	1.	2	2	01	01	2-YR
	ENDCMP	1										
7	COMPUT	7	010	10	0.	4.60	1.	2	2	01	03	10-YR
	ENDCMP	1				1.00						55.07
7	COMPUT	7	010	10	0.	5.75	1.	2	2	02	05	50-YR
	ENDCMP	1										Service .
7	COMPUT	7	010	10	0.	4.63	6.	6	2	02	06	100-YR
	ENDCMP	1										
	ENDJOB 3	2										

Page 107 of 144

REV PC 09/83(.2)
REV PC 09/83(.2)

JOB 1 PASS 1 PAGE 1

KECUTIVE CONTROL OPERATION LIST

ISTING OF CURRENT DATA

	STRUCT NO.	ELEVATION	DISCHARGE	STORAGE
STRUCT	10			
		3337.00	.00	.00
		3338.00	.00	1.67
		3340.00	.00	6.37
		3341.00	.00	9.28
		3342.00	.00	12.20
		3344.00	.00	19.00
		3346.00	.01	26.70
		3346.50	.01	28.90
		3346.75	1.70	30.00
		3347.00	4.90	31.00
		3347.25	9.00	32.10
		3347.50	15.00	33.20
		3348.00	24.00	35.40
		3348.50	29.00	37.80
		3349.00	89.00	40.20
		3350.00	209.00	44.90
		3351.00	435.00	50.20
		3352.00	740.00	55.40
		3353.00	1160.00	61.00
ENDTEL				
	TI	ME INCREMENT		
DIMHYD		.0200		

DIMHYD		.0200				~
	.0000	.0300	.1000	.1900	,3100	
	.4700	.6600	.8200	.9300	.9900	1
	1.0000	.9900	.9300	.8600	.7800	262
	-6800	.5600	.4600	.3900	.3300	Dimensionles
	.2800	.2410	.2070	.1740	.1470	(n. t. and
	.1260	.1070	.0910	.0770	.0660	(Hydrograph
	.0550	.0470	.0400	.0340	.0290	
	.0250	.0210	.0180	.0150	.0130	1
	.0110	.0090	.0080	.0070	.0060	X
	.0050	.0040	.0030	,0020	.0010	
	.0000	.0000	.0000	.0000	.0000	
						1

~

Page 108 of 144

20. R	03-30-92 11:34 REV PC 09/83(.2)	MOUNT STORM	POND #3 WITH MODIFICATIONS	KMB 3/30/92	JOB 1	PASS PAGE	1 2

ENDTBL

COMPUTED PEAK RATE FACTOR = 484.00

TABLE NO.	TIME I	NCREMENT				
RAINFL T		.5000				
	.0000	.0080	.0170	,0260	,0350	
	.0450	.0550	.0650	.0760	.0870	
	.0990	.1120	.1260	.1400	.1560	
	.1740	.1940	.2190	.2540	.3030	
	.5150	.5830	.6240	.6550	.6820	
	.7060	.7280	.7480	.7660	.7830	
	.7990	.8150	.8300	.8440	.8570	
	.8700	.8820	.8930	.9050	.9160	
	.9260	.9360	.9460	.9560	.9650	
	.9740	.9830	.9920	1.0000	1.0000	
ENDTBL						
	-	USBEUGUE				

TABLE NO. RAINFL 2	TIME	INCREMENT				24-hour	Type IL	storm arstributton
	0000	0020	.0050	.0080	.0110		/1	
	0140	0170	0200	0230	0260			
	.0290	.0320	.0350	.0380	.0410			
	.0440	.0480	.0520	.0560	.0600		1	
	.0640	.0680	.0720	.0760	.0800			
	.0850	.0900	.0950	.1000	.1050			
	.1100	.1150	.1200	- 1260	.1330			
	.1400	.1470	.1550	1630	.1720			
	.1810	.1910	.2030	.2180	.2360			
	,2570	.2830	.3870	.6630	.7070			
	.7350	.7580	.7760	.7910	.8040			
	.8150	.8250	.8340	.8420	.8490			
	.8560	.8630	.8690	.8750	.8810			
	.8870	.8930	.8980	.9030	.9080			
	.9130	.9180	.9220	.9260	.9300			
	.9340	.9380	.9420	.9460	.9500			
	.9530	.9560	.9590	.9620	.9650			
	.9680	.9710	.9740	.9770	.9800			
	.9830	.9860	.9890	.9920	.9950			
	.9980	1.0000	1.0000	1.0000	1.0000			
ENDTEL								

sheet 38 of 43

20 J 03-30-9 REV PC 09/8	2 11:34 3(.2)	MOUNT S	TORM POND	#3 WITH MO	DIFICATIONS	KMB 3/30/92	JOB 1	PASS PAGE	1 4
	.0290	.0320	.0350	.0380	.0410				
	.0440	.0470	.0510	.0550	.0590				
	.0630	.0670	.0710	,0750	.0790				
	.0840	.0890	.0940	.0990	.1040				
	.1090	.1140	.1200	.1260	.1330				
	.1400	-1470	.1540	.1620	.1710				
	.1810	. 1920	.2040	.2170	.2330				
	.2520	.2770	.3180	.6380	.6980				
	.7290	.7520	.7700	.7850	.7980				
	.8090	.8190	.8290	.8380	.8460				
	.8540	.8610	.8680	.8740	.8800				
	.8860	.8920	.8970	.9020	.9070				
	.9120	.9170	.9210	.9250	.9290				
	.9330	.9370	.9410	,9450	.9490				
	.9530	-9570	.9600	.9630	.9660				
	.9690	.9720	.9750	.9780	.9810				
	.9840	.9870	.9900	.9930	.9960				
	,9980	1.0000	1.0000	1.0000	1.0000				
ENDIBL									
TABLE NO.	TIME	INCREMENT					100		
						1 11		A	1000

RAINFL 6	1146	.0200			6	-hour	emergency	spillway	and	Freeboard	hydrogra	en.
	.0000	.0080	.0162	.0246	.0333		2					
A	.0425	.0524	.0630	.0743	.0863							
	.0990	.1124	. 1265	.1420	.1595	1						
	.1800	.2050	.2550	.3450	.4370							
	.5300	,6030	.6330	.6600	.6840							
	.7050	.7240	.7420	.7590	.7750							
	.7900	.8043	.8180	.8312	.8439							
	.8561	.8678	.8790	.8898	.9002							
	.9103	.9201	.9297	.9391	.9483							
	.9573	.9661	.9747	.9832	.9916							
	1.0000	1.0000	1.0000	1.0000	1.0000							
ENDIRI												

Page 110 of 144

0 03-30-92 11:34 MOUNT STORM POND #3 WITH MODIFICATIONS KMB 3/30/92 JOB 1 SUMMARY RE REV PC 09/83(.2) PAGE 14

SUMMARY TABLE 1 - SELECTED RESULTS OF STANDARD AND EXECUTIVE CONTROL INSTRUCTIONS IN THE ORDER PERFORMED (A STAR(*) AFTER THE PEAK DISCHARGE TIME AND RATE (CFS) VALUES INDICATES A FLAT TOP HYDROGRAPH A QUESTION MARK(?) INDICATES A HYDROGRAPH WITH PEAK AS LAST POINT.)

ECTION/	STANDARD		RAIN	ANTEC	MAIN	P	RECIPITAT	NOI	1.72		PEAK DI	SCHARGE	
TRUCTURE	CONTROL	DRAINAGE	TABLE	MOIST	TIME	1.000			RUNOFF				
10	OPERATION	AREA	#	COND	INCREM	BEGIN	AMOUNT	DURATION	AMOUNT	ELEVATION	TIME	RATE	RAIE
		(SQ MI)			(HR)	(HR)	(1N)	(HR)	(IN)	(FT)	(HR)	(CFS)	(CSM)
-													
ALTERNATE	1 ST	ORM 1											
SECTION 10	RUNOFF	.36	2	2	.10	.0	2.88	24.00	.99		12.21	181.82	505.0
STRUCTURE 10	RESVOR	.36	2	2	.10	.0	2.88	24.00	.00	3346.35	25.40?	.01?	.0
										10			
ALTERNATE	1 ST	ORM 3								/			
SECTION 10	RUNOFF	.36	2	2	.10	.0	4.60	24.00	2.29 /	العجلان	12.20	439.95	1222.1
STRUCTURE 10	RESVOR	.36	2	2	.10	.0	4.60	24.00	1.20	3348.42	14.63	28.17	78.3
									/	A			
ALTERNATE	2 51	FORM 5							1-	1			
(SECTION 10	RUNOFF	.36	2	2	.10	.0	5.75	24.00	/3.26	/	12.20	628.16	1744.9
STRUCTURE 10	RESVOR	.36	2	2	. 10	.0	5.75	24.00	2.16	3349.43	12.88	141.01	391.7
									1	1			
ERNATE	2 51	TORM 6						1		1			
(SL JN 10	RUNOFF	.36	6	2	.10	.0	4.63	6.00	2.31	1000	2.67	352.78	979.9
STRUCTURE 10	RESVOR	.36	6	2	.10	.0	4.63	6.00	1/28	3348.88	4.98	75.04	208.4
										1			

2 yr storm < 3346.5 0 10 yr storm < 3348.5 OK.

3349.43+2 = 3351.43 < 3353 ok 50 42

3348,55 +1 = 3349.88 < 3353 04

100 412

SUBJECT VEPLO - MOUNT STORM

CHKD, BY MRL DATE _______ 3/31/92

BY KMB DATE 3/11/92 PROJ. NO. 88-108-51

Engineers • Geologists • Planners Environmental Specialists

DEWATERING

DETERMINE THE DEWATERING TIME FROM THE GLEST OF THE PRINCIPAL SPILLWAY TO THE CREST OF THE DEWATERING ORIFICE. THE IS THE YOURME REQUIRED TO STONE THE 2-42 THE CONFIGURATION OF THE SYSTEM 15: 24. HR STORM.

SHEET NO. 40 OF 43

ORIFICE FLOW WILL BE ANALYZED BETWEEN ELEVATIONS 3346.5 AND 3342. WEIN FLOW WILL BE ANALYZED THROUGHOUT THE ACTUAL ORIFICE.

THE EQUATIONS FOR THESE FLOW TYPES WERE DEFERMINED PREVIOUSLY:

WERE FLOW: Q: CLH^{3/2} (L:1). USE AN AVERAGE VALUE OF "C" FOR A SPAN OF 1 OF HEAD: HEAD (FT) AZ 0.4 0.6 0.9 1.0 32.80 C 2.69 2.72 2.15 2.85 2.98 32.80

8°. Q = 2.80 H312 "H" TAKEN TO 3341

OMFICE FLOW: Q = 4.81 JH "H" TAKEN TO 3341.5 SUBJECT VEPCO - MOUNT STORM

DATE 3/11/92

DATE 3/31/92

Engineers • Geologists • Planners Environmental Specialists

DEWATERING

MRL

KMP

BY-

CHKD. BY

ELEVATION (FT)	HEAD (FT)	STOR, (ac.ft)	DIFF STOR Califo	Q (25)	AVC, Q (c.f.s)	INC. TIME (hrs)	Clum. TIME (hrs)
3346.5	5.0t	28,9		10.8			0
3346	4.5*	26.7	2.2	10, z	10,5	2.5	2.5
3345	3.5+	22.8 +	3.9	9.0	9,6	4.9	7.4
3344	2.5+	19.0	3.8	7.6	8,3	5,5	12,9
3343	1.5+	15.6	3,4	5,9	6.75	6.1	19.0
3242	1.0*	12.2	3.4	2 90	4.35	9.4	284
334	0 *	9.28	2,9	2.00	1.4	25,1	535
0011		1		0			1 2 3 4

PROJ. NO. 88-108-51

41

SHEET NO.

Ł

OF_43

+ ORLEICE FOW

K WEIR FLOW

* INTERPOLATED

WITH THE SLUICE GATE ON THE DEWATERING ORIFICE OPEN ALL THE WAY, THE 2 YEAR STORM NOLUME GAN DEWATER IN 2.2 DAYS.

REQUIRED DEWATERLING TIME IS BETWEEN 1 AND 8 DAYS (REFERENCE 4)

SEPIMENT STORAGE

Required rediment storage = 5 acre - Feet (see sheet 11)

sediment can be stored up to elevation 3341 in both the primary and secondary redimentation ponds. In the primary pond alone, 6.48 acre-test of rediment (interpolated value) can be stored. Thus, rediment storage is adequate. (See sheet 31)

PRIMEIPAL SPILLWAY

Storage between the sediment storage elevation and the principal spillway crest must be adequate to contain the 2-year 24-hour storm rundt volume.

Required runolf Volume = <u>19 aire-feet</u> (ree sheet 11) Available storage volume = <u>19.62 aire-feet</u> $\left[-\frac{20.9 \text{ Ac.-F.}}{9.20 \text{ Ac.-F.}} \stackrel{@ 3346.5}{=}\right]$ (see sheet 34)

Also, when routing the 2-year storm through the ponds using TR-20, maximum water surface elevation = 3346.35, which is less than the principal spillway crest of 3346.5. (see sheet 39)

The principal spillway can dewater the 2-year 24-hour storm runoff volume in 2.2 days. (see sheet 41) The required dewatering time is between 1 and 8 days. SUBJECT

VERO - MOUNT STORM

BY	MRL	DATE	3	1271	192	PROLINO	88-1	08-51	
CHKD. E	BY KOOS	DATE _	3	31	192	SHEET NO.	43	_OF_	43

Engineers • Geologists • Planners Environmental Specialists

EMERGENCY SPILLWAY

The emergency spillway is not to those during a 10-year 24-hour storm. (Reference 3)

When the 10-year storm is routed through the pond using TR-20 maximum water surface elevation = 3340.4 (see sheet 39) Since the emergency spillway crest is at elevation 3348.5, no flow occurs.

- The emergency spillway shall be a minimum of 1.5 feet above the principal spillway crest. (Roference 4). The proposed design calls for a 2 foot difference. (3348.5 - 3346.5)
- The 50-year, 24-hour storm shall pass through the emergency spillway with 2 feet of freeboord. (Reference 3).

When the 50-year storm is routed through the pond, the maximum water suitave elevation = 3349.4. (see sheet 38). Available Treeboard = 3.6 Feet. (3353 - 3349.4)

• The LOD-year, 6-hour storm shall pass through the emergency spillway with 1 toot of the board. (Reference 4)

When the 100-year, 6-hour storm is routed through the pond, the maximum water surface elevation = 3348.9. (see sheet 39)' Available Freeboard = 4.1 Fect. (3353-3340.9)

JO	B TR-20				FUL	LPRINT	SUMMARY	NC	PL	OTS			
TI	TLE 111	M	OUNT STOR	M	POND #3	WITH MODIF	CATIONS	KM	IB	3/30	/92		
3	STRUCT		10										
8					3337.0	0.0	0.0						
8					3338.0	0.001	1.67						
8					3340.0	0.002	6.37						
8					3341.0	0.003	9.28						
8					3342.0	0.004	12.2						
8					3344.0	0.005	19.0						
8					3346.0	0.006	26.7						
8					3346.5	0.007	28.9						
8					3346.75	1.7	30.0						
8					3347.0	4.9	31.0						
8					3347.25	9.0	32.1						
8					3347.5	15.0	33.2						
8					3348.0	24.0	35.4						
8					3348.5	29.0	37.8						
8					3349.0	89.0	40.2						
8					3350.0	209.0	44.9						
8					3351.0	435.0	50.2						
8					3352.0	740.0	55.4						
8					3353.0	1160.0	61.0						
9	ENDTEL												
6	RUNOFF	1	010	5	0.36	77.	0.5	1					
6	RESVOR	2	10 5	6	3341.0			T	1				
	ENDATA												
7	1												
7	REM	6			0.10								
7	COMPUT	7	010	10	0.	2.88	1.	2	2	01	01	2-YR	
	ENDCMP	1											
7	COMPUT	7	010	10	0.	4.60	1.	2	2	01	03	10-YR	
	ENDCMP	1											
7	COMPUT	7	010	10	0.	5.75	1.	2	2	02	05	50-YR	
	ENDCMP	1											
7	COMPUT	7	010	10	0.	4.63	6.	6	2	02	06	100-YR	
	ENDCMP	1											
	ENDJOB	2											

TF 30 03-30-92 11:34 MOUNT STORM POND #3 WITH MODIFICATIONS KMB 3/30/92 KEV PC 09/83(.2)

EXECUTIVE CONTROL OPERATION LIST

RECORO IO

JOB 1 PASS 1

PAGE 1

LISTING OF CURRENT DATA

	STRUCT NO.	ELEVATION	DISCHARGE	STORAGE
3 STRUCT	10			
8		3337.00	.00	.00
8		3338.00	.00	1.67
8		3340.00	.00	6.37
8		3341.00	.00	9.28
8		3342.00	.00	12.20
8		3344.00	.00	19.00
8		3346.00	.01	26.70
8		3346.50	.01	28.90
8		3346.75	1.70	30.00
8		3347.00	4.90	31.00
8		3347.25	9.00	32.10
8		3347.50	15.00	33.20
8		3348.00	24.00	35.40
8		3348.50	29.00	37.80
8		3349.00	89.00	40.20
8		3350.00	209.00	44.90
8		3351.00	435.00	50.20
8		3352.00	740.00	55.40
8		3353.00	1160.00	61.00
9 ENDTBL				
	TI	ME INCREMENT		
4 DIMHYO		.0200		

8	.0000	.0300	.1000	.1900	.3100
8	.4700	.6600	.8200	.9300	.9900
8	1.0000	-9900	.9300	.8600	.7800
8	.6800	.5600	.4600	.3900	.3300
8	.2800	.2410	.2070	.1740	.1470
8	.1260	.1070	.0910	.0770	.0660
8	.0550	.0470	.0400	.0340	.0290
8	.0250	.0210	.0180	.0150	.0130
8	.0110	.0090	.0080	.0070	.0060
8	.0050	.0040	.0030	.0020	.0010
8	.0000	.0000	.0000	.0000	.0000

TF EQ 03-30-92 11:34 MOUNT STORM POND #3 WITH MODIFICATIONS KMB 3/30/92 JOB 1 PASS 1 KEV PC 09/83(.2) PAGE 2

9 ENDTEL

COMPUTED PEAK RATE FACTOR = 484.00

TABLE NO. 5 RAINFL 1	TIME	INCREMENT			
8	.0000	.0080	.0170	.0260	-0350
8	.0450	.0550	.0650	.0760	.0870
8	.0990	.1120	.1260	.1400	.1560
8	.1740	.1940	.2190	.2540	.3030
8	.5150	.5830	.6240	.6550	.6820
8	.7060	.7280	.7480	.7660	.7830
8	.7990	.8150	.8300	.8440	.8570
8	.8700	.8820	.8930	.9050	.9160
8	-9260	.9360	.9460	.9560	.9650
8	.9740	.9830	.9920	1.0000	1.0000
9 ENDTBL					
TABLE NO.	TIME	INCREMENT			
5 RAINFL 2		.2500			
8	.0000	.0020	.0050	.0080	.0110
8	.0140	.0170	.0200	.0230	.0260
8	-0290	.0320	.0350	.0380	.0410
8	.0440	.0480	.0520	.0560	.0600
8	.0640	.0680	.0720	.0760	.0800
8	.0850	.0900	.0950	.1000	.1050
8	.1100	.1150	.1200	.1260	.1330
8	.1400	.1470	.1550	.1630	.1720
8	.1810	.1910	.2030	.2180	.2360
8	.2570	.2830	.3870	.6630	.7070
8	.7350	,7580	.7760	.7910	.8040
8	.8150	.8250	.8340	.8420	.8490
8	.8560	48630	.8690	_8750	.8810
8	.8870	.8930	.8980	.9030	.9080
8	-9130	.9180	.9220	.9260	.9300
8	.9340	.9380	.9420	.9460	.9500
8	.9530	,9560	.9590	.9620	.9650
8	.9680	.9710	.9740	.9770	.9800
8	-9830	.9860	.9890	.9920	.9950
8	.9980	1.0000	1.0000	1.0000	1.0000
O CHOTPI					

TF	20 03-30-92 11:34	MOUNT STORM	POND #3	WITH MODIFICATIONS	KMB 3/30/92	JOB	1	PASS	1
	REV PC 09/83(.2)							PAGE	3

1

TABLE NO.	TIME	INCREMENT			
5 RAINFL 3		.5000			
8	.0000	.0100	.0220	.0360	.0510
8	.0670	.0830	.0990	.1160	.1350
8	.1560	.1790	.2040	.2330	.2680
8	.3100	.4250	.4800	.5200	.5500
8	.5770	.6010	.6230	.6440	.6640
8	.6830	.7010	.7190	.7360	.7530
8	,7690	.7850	.8000	.8150	.8300
8	.8440	.8580	.8710	.8840	.8960
8	.9080	.9200	-9320	.9440	.9560
8	.9670	.9780	.9890	1.0000	1.0000
9 ENDTBL					
TABLE NO.	TIME	INCREMENT			
5 RAINFL 4		.5000			
8	.0000	.0040	.0080	.0120	.0160
8	,0200	.0250	.0300	.0350	.0400
8	-0450	.0500	.0550	.0600	.0650
8	.0700	.0750	.0810	.0870	.0930
8	.0990	.1050	-1110	.1180	.1250
8	. 1320	.1400	.1480	.1560	. 1650
8	. 1740	.1840	.1950	.2070	.2200
8	.2360	.2550	.2770	.3030	.4090
8	.5150	.5490	.5830	.6050	.6240
8	.6400	.6550	.6690	.6820	.6940
8	.7050	.7160	.7270	.7380	.7480
8	.7580	.7670	.7760	.7840	.7920
8	.8000	.8080	.8160	.8230	.8300
8	.8370	.8440	.8510	.8580	.8640
8	.8700	.8760	.8820	.8880	.8940
8	.9000	.9060	-9110	.9160	.9210
8	,9260	.9310	.9360	.9410	.9460
8	.9510	.9560	-9610	.9660	.9710
8	.9760	.9800	.9840	.9880	.9920
8	.9960	1.0000	1.0000	1.0000	1.0000
9 ENDTBL					
TABLE NO.	TIME	INCREMENT			
5 RAINFL 5		.5000			
8	.0000	.0020	.0050	.0080	.0110
8	.0140	.0170	.0200	.0230	-0260

TF EQ 03-30-	92 11:34	MOUNT S	TORM POND	#3 WITH MC	DIFICATIONS	KMB 3/30/92	JOE	1	PASS	1
REV PC 09/	83(.2)								PAGE	4
8	0200	0720	0750	0790	0/ 10					
8	.0290	0470	.0510	.0550	.0410					
8	0630	0670	0710	0750	0700					
R	0840	0800	0940	0000	1040					
8	1000	1140	1200	1260	1330					
8	1400	1470	1540	1620	1710					
8	1810	1920	-2040	2170	2330					
8	2520	2770	3180	6380	.6980					
8	.7290	.7520	.7700	.7850	.7980					
8	- 8090	.8190	-8290	.8380	-8460					
8	.8540	.8610	.8680	.8740	.8800					
8	.8860	.8920	.8970	.9020	.9070					
8	-9120	.9170	-9210	.9250	.9290					
8	.9330	.9370	.9410	.9450	-9490					
8	.9530	.9570	.9600	.9630	.9660					
8	.9690	.9720	.9750	.9780	-9810					
8	.9840	.9870	.9900	.9930	.9960					
8	.9980	1.0000	1.0000	1.0000	1.0000					
9 ENDTBL										
TABLE NO.	TIME	INCREMENT								
5 RAINFL 6		.0200								
8	.0000	.0080	.0162	.0246	.0333					
8	.0425	.0524	.0630	.0743	.0863					
8	.0990	.1124	. 1265	.1420	. 1595					
8	.1800	,2050	.2550	.3450	.4370					
8	.5300	.6030	.6330	.6600	.6840					
8	.7050	.7240	.7420	.7590	.7750					
8	.7900	.8043	.8180	.8312	.8439					
8	.8561	.8678	.8790	.8898	.9002					
8	.9103	.9201	.9297	.9391	.9483					
8	.9573	-9661	.9747	.9832	.9916					
8	1.0000	1,0000	1.0000	1.0000	1.0000					
Q ENDIRI										

TE EQ 03-30-92 11:34 MOUNT STORM POND #3 WITH MODIFICATIONS KMB 3/30/92 JOB 1 PASS 1 REV PC 09/83(.2) PAGE 5

STANDARD CONTROL INSTRUCTIONS

6	RUNOFF	1	10	5	.3600	77.0000	.50001	0	0	1	0	1
6	RESVOR	2	10 5	6	3341.0000		1	1	Ū	1	Ò	1
	ENDATA											

END OF LISTING

1 I.

TF E0 03-30-92 11:34 MOUNT STORM POND #3 WITH MODIFICATIONS KMB 3/30/92 JOB 1 PASS REV PC 09/83(.2) PAGE 6

EXECUTIVE CONTROL OPERATION INCREM MAIN TIME INCREMENT = .10 HOURS RECORD ID

EXECUTIVE CONTROL OPERATION COMPUT FROM XSECTION 10 TO STRUCTURE 10 RECORD ID 2-YR STARTING TIME = .00 RAIN DEPTH = 2.88 RAIN DURATION= 1.00 RAIN TABLE NO.= 2 ANT. MOIST. COND= 2 STORM NO.= 1 MAIN TIME INCREMENT = .10 HOURS ALTERNATE NO.= 1

OPERATION RUNOFF CROSS SECTION 10 OUTPUT HYDROGRAPH= 5 AREA= .36 SQ MI INPUT RUNOFF CURVE= 77. TIME OF CONCENTRATION= .50 HOURS INTERNAL HYDROGRAPH TIME INCREMENT= .0667 HOURS

PEAK TIME(HRS)	PEAK DISCHARGE(CFS)	PEAK ELEVATION(FEET)
12.21	181.82	(RUNOFF)
16.46	10.17	(RUNOFF)
17.66	8.63	(RUNOFF)
19.68	7.03	(RUNOFF)
23.67	5.43	(RUNOFF)

RUNOFF VOLUME ABOVE BASEFLOW = .99 WATERSHED INCHES, 229.51 CFS-HRS, 18.97 ACRE-FEET; BASEFLOW = .00 CFS

ION RESVOR STRUCTURE 10 OP. INPUT HYDROGRAPH= 5 OUTPUT HYDROGRAPH= 6 SURFACE ELEVATION= 3341.00

*** WARNING-NO PEAK FOUND, MAXIMUM DISCHARGE = .01 CFS.

	PEAK TI	MECHRS	5)	PE	AK	OISCHARGE	CFS)	PEAK	ELEVATI	ON(FEET)			
	25.4	0				.01		3	346.35				
TIME(HRS)		FIRST	HYDROGRAPH	POINT	=	.00 HOURS		TIME INCREMENT	= .10	HOURS	DRAINAGE	AREA =	.36 SO.MI.
13.00	DISCHG		.01	.01		.01	.01	.01	.01	.01	.01	.01	.01
14.00	DISCHG		.01	.01		.01	.01	.01	.01	.01	.01	.01	.01
15.00	DISCHG		.01	.01		.01	.01	.01	.01	.01	.01	.01	.01
16.00	DISCHG		.01	.01		.01	.01	.01	.01	.01	.01	.01	.01
17.00	DISCHG		.01	.01		.01	.01	.01	.01	.01	.01	.01	.01
18.00	DISCHG		.01	.01		.01	.01	.01	.01	.01	.01	.01	.01
19.00	DISCHG		.01	.01		.01	.01	.01	.01	.01	.01	.01	.01
20.00	DISCHG		.01	.01		.01	.01	.01	.01	.01	.01	.01	.01
21.00	DISCHG		.01	.01		.01	.01	.01	.01	.01	.01	.01	.01
22.00	DISCHG		.01	.01		.01	.01	.01	.01	.01	.01	.01	.01
23.00	DISCHG		.01	.01		.01	.01	.01	.01	.01	.01	.01	.01
24.00	DISCHG		.01	.01		.01	.01	.01	.01	.01	.01	.01	.01
25.00	DISCHG		.01	.01		.01	.01	.01	.01	.01			
RUNOFF V	OLUME AB	OVE B	ASEFLOW =	.00 WA	TER	SHED INCHE	s,	.08 CFS-HRS		.01 ACRE-F	EET; BAS	EFLOW =	.00 CFS

TI EQ 03-30-92 11:34 MOUNT STORM POND #3 WITH MODIFICATIONS KMB 3/30/92 JOB 1 PASS 2 REV PC 09/83(.2) PAGE 7

EXECUTIVE CONTROL OPERATION ENDCMP COMPUTATIONS COMPLETED FOR PASS 1

RECORD ID

	PC 09/83(.2)	54 N	NOUNT STORM	POND 1	#3 WITH	MODIFICATIONS	5	кмв 3/30/9	2		JOB 1	PASS PAGE
EXECUTIVE	CONTROL OPERA	TION COMP	PUT FROM RAIN DEPTH	XSECTIO	N 10 TO RAIN) STRUCTURE 10 DURATION= 1.) 00 RA	IN TABLE N	0.= 2 A	NT. MOIST.	RECORD I COND= 2	D 10-YR
AL	TERNATE NO.=	1	STORM NO.=	= 3 MA	IN TIME 1	INCREMENT =	.10 HOUR	S				
OPERATION	RUNOFF CROS	S SECTION	10									
	AREA= .36 INTERNAL HYD	SQ MI ROGRAPH 1	D INPUT RUNOF FIME INCREME	F CURVE=	77. 1 57 HOURS	TIME OF CONCEN	ITRATION=	.50 HOU	RS.			
	PEAK TIME(HR	s)	PEAK	OISCHAR	GE(CFS)	PEAK	ELEVATI	ON(FEET)				
	12.20			439.95			(RUNOFF)				
	19.67			13,72			(RUNOFF	>				
	23.66			10.45			RUNOFF	2				
RUNOFF V	OLUME ABOVE B	ASEFLOW =	= 2.29 WATE	RSHED INC	CHES.	532.05 CFS-HR	s. 43	.97 ACRE-F	EET: BAS	EFLOW =	.00 CFS	
OPERATION	RESVOR STRU INPUT HYDROG	ICTURE 10 RAPH= 5	OUTPUT H	IYOROGRAPI	H= 6							
	SURFACE ELEV	ATION= 33	341.00									
-	SURFACE ELEV	ATION= 33	341.00 PEAK	DISCHAR	GE(CFS)	PEAK	ELEVATI	ON(FEET)				
0	SURFACE ELEV PEAK TIME(HR 14.63	ATION= 33	541.00 PEAK	DISCHARG	GE(CFS)	PEAK	ELEVATI 3348.42	ON(FEET)				
TIME(HRS)	SURFACE ELEV PEAK TIME(HR 14.63 FIRST	ATION= 33	341.00 PEAK APH POINT =	DISCHARO 28.17	GE(CFS) JRS	PEAK	ELEVATI 3348.42	ON(FEET)	ORAINAGE	AREA =	.36 SQ.MI	
TIME(HRS) 12.00	SURFACE ELEV PEAK TIME(HR 14.63 FIRST DISCHG	ATION= 33 (S) HYDROGRA 400	241.00 PEAK APH POINT = .00	DISCHAR(28.17 .00 HOL .01	GE(CFS) JRS .01	PEAK TIME INCREMEN .01	ELEVATI 3348.42 IT = _10 1.22	ON(FEET) HOURS 6.13	ORAINAGE 11.54	AREA = 16.26	.36 SQ.MI 19.26	
TIME(HRS) 12.00 13.00	SURFACE ELEV PEAK TIME(HR 14.63 FIRST DISCHG DISCHG	ATION= 33 (S) HYDROGRA 200 21.66	241.00 PEAK APH POINT = .00 23.60	DISCHAR(28.17 .00 HOL .01 24.60	GE(CFS) JRS .01 25.27	PEAK TIME INCREMEN .01 25.83	ELEVATI 3348.42 IT = .10 1.22 26.29	ON(FEET) HOURS 6.13 26.68	ORAINAGE 11.54 27.01	AREA = 16.26 27.28	.36 SQ.MI 19.26 27.51	
TIME(HRS) 12.00 13.00 14.00	SURFACE ELEV PEAK TIME(HR 14.63 FIRST DISCHG DISCHG DISCHG DISCHG	ATION= 33 (S) HYDROGRA 200 21.66 27.69	241.00 PEAK APH POINT = .00 23.60 27.84	DISCHAR(28.17 .00 HOL .01 24.60 27.96	GE(CFS) JRS .01 25.27 28.05	PEAK TIME INCREMEN .01 25.83 28.11	ELEVATI 3348.42 IT = _10 1.22 26.29 28.16	ON(FEET) HOURS 6.13 26.68 28.17	ORAINAGE 11.54 27.01 28.17	AREA = 16.26 27.28 28.14	.36 sq.MI 19.26 27.51 28.10	
TIME(HRS) 12.00 13.00 14.00 15.00	SURFACE ELEV PEAK TIME(HR 14.63 FIRST DISCHG DISCHG DISCHG DISCHG DISCHG	ATION= 33 HYDROGRA 00 21.66 27.69 28.04	241.00 PEAK APH POINT = .00 23.60 27.84 27.97	DISCHAR(28.17 .00 HOL .01 24.60 27.96 27.90	GE(CFS) JRS .01 25.27 28.05 27.82	PEAK TIME INCREMEN .01 25.83 28.11 27.75	ELEVATI 3348.42 IT = .10 1.22 26.29 28.16 27.66	ON(FEET) HOURS 6.13 26.68 28.17 27.57	0RAINAGE 11.54 27.01 28.17 27.46	AREA = 16.26 27.28 28.14 27.35	.36 SQ.MI 19.26 27.51 28.10 27.23	
TIME(HRS) 12.00 13.00 14.00 15.00 16.00	SURFACE ELEV PEAK TIME(HR 14.63 FIRST DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG	ATION= 33 HYDROGRA 00 21.66 27.69 28.04 27.12	241.00 PEAK APH POINT = .00 23.60 27.84 27.97 27.00	DISCHAR(28.17 .00 HOL .01 24.60 27.96 27.90 26.88	GE(CFS) JRS .01 25.27 28.05 27.82 26.77	PEAK TIME INCREMEN .01 25.83 28.11 27.75 26.65	ELEVATI 3348.42 IT = _10 1.22 26.29 28.16 27.66 26.54	ON(FEET) HOURS 6.13 26.68 28.17 27.57 26.43	ORAINAGE 11.54 27.01 28.17 27.46 26.32	AREA = 16.26 27.28 28.14 27.35 26.20	.36 SQ.MI 19.26 27.51 28.10 27.23 26.07	
TIME(HRS) 12.00 13.00 14.00 15.00 16.00 17.00	SURFACE ELEV PEAK TIME(HR 14.63 FIRST DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG	ATION= 33 HYDROGRA 200 21.66 27.69 28.04 27.12 25.93	241.00 PEAK APH POINT = .00 23.60 27.84 27.97 27.00 25.79	DISCHAR(28.17 .00 HOL .01 24.60 27.96 27.90 26.88 25.64	GE(CFS) JRS .01 25.27 28.05 27.82 26.77 25.50	PEAK TIME INCREMEN .01 25.83 28.11 27.75 26.65 25.35	ELEVATI 3348.42 IT = .10 1.22 26.29 28.16 27.66 26.54 25.21	ON(FEET) HOURS 6.13 26.68 28.17 27.57 26.43 25.07	0RAINAGE 11.54 27.01 28.17 27.46 26.32 24.93	AREA = 16.26 27.28 28.14 27.35 26.20 24.80	.36 SQ.MI 19.26 27.51 28.10 27.23 26.07 24.66	
TIME(HRS) 12.00 13.00 14.00 15.00 16.00 17.00 18.00	SURFACE ELEV PEAK TIME(HR 14.63 FIRST DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG OISCHG OISCHG	ATION= 33 HYDROGRA 200 21.66 27.69 28.04 27.12 25.93 24.52	241.00 PEAK APH POINT = .00 23.60 27.84 27.97 27.00 25.79 24.37	DISCHAR(28.17 .00 HOU .01 24.60 27.96 27.90 26.88 25.64 24.21	GE(CFS) JRS .01 25.27 28.05 27.82 26.77 25.50 24.04	PEAK .01 25.83 28.11 27.75 26.65 25.35 23.75	ELEVATI 3348.42 IT = _10 1.22 26.29 28.16 27.66 26.54 25.21 23.43	ON(FEET) HOURS 6.13 26.68 28.17 27.57 26.43 25.07 23.11	0RAINAGE 11.54 27.01 28.17 27.46 26.32 24.93 22.80	AREA = 16.26 27.28 28.14 27.35 26.20 24.80 22.50	.36 SQ.MI 19.26 27.51 28.10 27.23 26.07 24.66 22.20	
TIME(HRS) 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00	SURFACE ELEV PEAK TIME(HR 14.63 FIRST DISCHG DISCHG DISCHG DISCHG DISCHG OISCHG OISCHG OISCHG	ATION= 33 HYDROGRA 200 21.66 27.69 28.04 27.12 25.93 24.52 21.92	241.00 PEAK APH POINT = .00 23.60 27.84 27.97 27.00 25.79 24.37 21.65	DISCHAR(28.17 .00 HOU .01 24.60 27.96 27.90 26.88 25.64 24.21 21.38	GE(CFS) JRS .01 25.27 28.05 27.82 26.77 25.50 24.04 21.13	PEAK .01 25.83 28.11 27.75 26.65 25.35 23.75 20.88	ELEVATI 3348.42 IT = _10 1.22 26.29 28.16 27.66 26.54 25.21 23.43 20.64	ON(FEET) HOURS 6.13 26.68 28.17 27.57 26.43 25.07 23.11 20.41	0RAINAGE 11.54 27.01 28.17 27.46 26.32 24.93 22.80 20.19	AREA = 16.26 27.28 28.14 27.35 26.20 24.80 22.50 19.97	.36 SQ.MI 19.26 27.51 28.10 27.23 26.07 24.66 22.20 19.76	4
TIME(HRS) 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 20.00	SURFACE ELEV PEAK TIME(HR 14.63 FIRST DISCHG DISCHG DISCHG DISCHG DISCHG OISCHG OISCHG OISCHG	ATION= 33 HYDROGRA 200 21.66 27.69 28.04 27.12 25.93 24.52 21.92 19.54	241.00 PEAK APH POINT = .00 23.60 27.84 27.97 27.00 25.79 24.37 21.65 19.30	DISCHAR(28.17 .00 HOU .01 24.60 27.96 27.90 26.88 25.64 24.21 21.38 19.05	GE(CFS) JRS .01 25.27 28.05 27.82 26.77 25.50 24.04 21.13 18.79	PEAK .01 25.83 28.11 27.75 26.65 25.35 23.75 20.88 18.53	ELEVATI 3348.42 IT = _10 1.22 26.29 28.16 27.66 26.54 25.21 23.43 20.64 18.26	ON(FEET) HOURS 6.13 26.68 28.17 27.57 26.43 25.07 23.11 20.41 18.01	ORAINAGE 11.54 27.01 28.17 27.46 26.32 24.93 22.80 20.19 17.76	AREA = 16.26 27.28 28.14 27.35 26.20 24.80 22.50 19.97 17.51	.36 S0.MI 19.26 27.51 28.10 27.23 26.07 24.66 22.20 19.76 17.27	
TIME(HRS) 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 20.00 21.00	SURFACE ELEV PEAK TIME(HR 14.63 FIRST DISCHG DISCHG DISCHG DISCHG DISCHG OISCHG OISCHG OISCHG DISCHG DISCHG	ATION= 33 HYDROGRA 200 21.66 27.69 28.04 27.12 25.93 24.52 21.92 19.54 17.05	241.00 PEAK APH POINT = .00 23.60 27.84 27.97 27.00 25.79 24.37 21.65 19.30 16.82	DISCHAR(28.17 .00 HOU .01 24.60 27.96 27.90 26.88 25.64 24.21 21.38 19.05 16.61	GE(CFS) JRS .01 25.27 28.05 27.82 26.77 25.50 24.04 21.13 18.79 16.40	PEAK .01 25.83 28.11 27.75 26.65 25.35 23.75 20.88 18.53 16.20	ELEVATI 3348.42 IT = _10 1.22 26.29 28.16 27.66 26.54 25.21 23.43 20.64 18.26 16.01	ON(FEET) HOURS 6.13 26.68 28.17 27.57 26.43 25.07 23.11 20.41 18.01 15.82	ORAINAGE 11.54 27.01 28.17 27.46 26.32 24.93 22.80 20.19 17.76 15.64	AREA = 16.26 27.28 28.14 27.35 26.20 24.80 22.50 19.97 17.51 15.46	.36 S0.M1 19.26 27.51 28.10 27.23 26.07 24.66 22.20 19.76 17.27 15.29	
TIME(HRS) 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 20.00 21.00 22.00	SURFACE ELEV PEAK TIME(HR 14.63 FIRST DISCHG DISCHG DISCHG DISCHG DISCHG OISCHG OISCHG DISCHG DISCHG DISCHG DISCHG	ATION= 33 HYDROGRA 200 21.66 27.69 28.04 27.12 25.93 24.52 21.92 19.54 17.05 15.13	241.00 PEAK APH POINT = .00 23.60 27.84 27.97 27.00 25.79 24.37 21.65 19.30 16.82 14.96	DISCHAR(28.17 .00 HOU .01 24.60 27.96 27.90 26.88 25.64 24.21 21.38 19.05 16.61 14.76	GE(CFS) JRS .01 25.27 28.05 27.82 26.77 25.50 24.04 21.13 18.79 16.40 14.57	PEAK .01 25.83 28.11 27.75 26.65 25.35 23.75 20.88 18.53 16.20 14.39	ELEVATI 3348.42 IT = .10 1.22 26.29 28.16 27.66 26.54 25.21 23.43 20.64 18.26 16.01 14.21	ON(FEET) HOURS 6.13 26.68 28.17 27.57 26.43 25.07 23.11 20.41 18.01 15.82 14.04	ORAINAGE 11.54 27.01 28.17 27.46 26.32 24.93 22.80 20.19 17.76 15.64 13.88	AREA = 16.26 27.28 28.14 27.35 26.20 24.80 22.50 19.97 17.51 15.46 13.73	.36 S0.M1 19.26 27.51 28.10 27.23 26.07 24.66 22.20 19.76 17.27 15.29 13.58	
TIME(HRS) 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 20.00 21.00 22.00 23.00	SURFACE ELEV PEAK TIME(HR 14.63 FIRST DISCHG DISCHG DISCHG DISCHG DISCHG OISCHG DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG	ATION= 33 HYDROGRA 200 21.66 27.69 28.04 27.12 25.93 24.52 21.92 19.54 17.05 15.13 13.44	241.00 PEAK APH POINT = .00 23.60 27.84 27.97 27.00 25.79 24.37 21.65 19.30 16.82 14.96 13.31	DISCHAR(28.17 .00 HOL .01 24.60 27.96 27.90 26.88 25.64 24.21 21.38 19.05 16.61 14.76 13.18	GE(CFS) JRS .01 25.27 28.05 27.82 26.77 25.50 24.04 21.13 18.79 16.40 14.57 13.06	PEAK .01 25.83 28.11 27.75 26.65 25.35 23.75 20.88 18.53 16.20 14.39 12.95	ELEVATI 3348.42 IT = .10 1.22 26.29 28.16 27.66 26.54 25.21 23.43 20.64 18.26 16.01 14.21 12.84	ON (FEET) HOURS 6.13 26.68 28.17 27.57 26.43 25.07 23.11 20.41 18.01 15.82 14.04 12.73	ORAINAGE 11.54 27.01 28.17 27.46 26.32 24.93 22.80 20.19 17.76 15.64 13.88 12.63	AREA = 16.26 27.28 28.14 27.35 26.20 24.80 22.50 19.97 17.51 15.46 13.73 12.53	.36 S0.M1 19.26 27.51 28.10 27.23 26.07 24.66 22.20 19.76 17.27 15.29 13.58 12.43	
TIME(HRS) 12.00 13.00 14.00 15.00 16.00 17.00 18.00 17.00 18.00 19.00 20.00 21.00 22.00 23.00 24.00	SURFACE ELEV PEAK TIME(HR 14.63 FIRST DISCHG DISCHG DISCHG DISCHG DISCHG OISCHG DISCHG DISCHG DISCHG DISCHG DISCHG OISCHG OISCHG	ATION= 33 HYDROGRA 200 21.66 27.69 28.04 27.12 25.93 24.52 21.92 19.54 17.05 15.13 13.44 12.32	241.00 PEAK APH POINT = .00 23.60 27.84 27.97 27.00 25.79 24.37 21.65 19.30 16.82 14.96 13.31 12.17	DISCHAR(28.17 .00 HOL .01 24.60 27.96 27.90 26.88 25.64 24.21 21.38 19.05 16.61 14.76 13.18 11.98	GE(CFS) JRS .01 25.27 28.05 27.82 26.77 25.50 24.04 21.13 18.79 16.40 14.57 13.06 11.72	PEAK .01 25.83 28.11 27.75 26.65 25.35 23.75 20.88 18.53 16.20 14.39 12.95 11.38	ELEVATI 3348.42 IT = .10 1.22 26.29 28.16 27.66 26.54 25.21 23.43 20.64 18.26 16.01 14.21 12.84 11.00	ON (FEET) HOURS 6.13 26.68 28.17 27.57 26.43 25.07 23.11 20.41 18.01 15.82 14.04 12.73 10.58	ORAINAGE 11.54 27.01 28.17 27.46 26.32 24.93 22.80 20.19 17.76 15.64 13.88 12.63 10.16	AREA = 16.26 27.28 28.14 27.35 26.20 24.80 22.50 19.97 17.51 15.46 13.73 12.53 9.74	.36 S0.MI 19.26 27.51 28.10 27.23 26.07 24.66 22.20 19.76 17.27 15.29 13.58 12.43 9.33	
TIME(HRS) 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 20.00 21.00 22.00 23.00 24.00 25.00	SURFACE ELEV PEAK TIME(HR 14.63 FIRST DISCHG DISCHG DISCHG DISCHG DISCHG OISCHG DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG	ATION= 33 HYDROGRA 200 21.66 27.69 28.04 27.12 25.93 24.52 21.92 19.54 17.05 15.13 13.44 12.32 8.95	241.00 PEAK APH POINT = .00 23.60 27.84 27.97 27.00 25.79 24.37 21.65 19.30 16.82 14.96 13.31 12.17 8.68	DISCHAR(28.17 .00 HOL .01 24.60 27.96 27.90 26.88 25.64 24.21 21.38 19.05 16.61 14.76 13.18 11.98 8.42	GE(CFS) JRS .01 25.27 28.05 27.82 26.77 25.50 24.04 21.13 18.79 16.40 14.57 13.06 11.72 8.17	PEAK .01 25.83 28.11 27.75 26.65 25.35 23.75 20.88 18.53 16.20 14.39 12.95 11.38 7.92	ELEVATI 3348.42 IT = .10 1.22 26.29 28.16 27.66 26.54 25.21 23.43 20.64 18.26 16.01 14.21 12.84 11.00 7.68	ON (FEET) HOURS 6.13 26.68 28.17 27.57 26.43 25.07 23.11 20.41 18.01 15.82 14.04 12.73 10.58 7.44	ORAINAGE 11.54 27.01 28.17 27.46 26.32 24.93 22.80 20.19 17.76 15.64 13.88 12.63 10.16 7.22	AREA = 16.26 27.28 28.14 27.35 26.20 24.80 22.50 19.97 17.51 15.46 13.73 12.53 9.74 7.00	.36 S0.MI 19.26 27.51 28.10 27.23 26.07 24.66 22.20 19.76 17.27 15.29 13.58 12.43 9.33 6.79	
TIME(HRS) 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 20.00 21.00 22.00 23.00 24.00 25.00 26.00	SURFACE ELEV PEAK TIME(HR 14.63 FIRST DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG	ATION= 33 HYDROGRA 200 21.66 27.69 28.04 27.12 25.93 24.52 21.92 19.54 17.05 15.13 13.44 12.32 8.95 6.58	241.00 PEAK APH POINT = .00 23.60 27.84 27.97 27.00 25.79 24.37 21.65 19.30 16.82 14.96 13.31 12.17 8.68 6.38	DISCHAR(28.17 .00 HOL .01 24.60 27.96 27.90 26.88 25.64 24.21 21.38 19.05 16.61 14.76 13.18 11.98 8.42 6.19	GE(CFS) JRS .01 25.27 28.05 27.82 26.77 25.50 24.04 21.13 18.79 16.40 14.57 13.06 11.72 8.17 6.00	PEAK .01 25.83 28.11 27.75 26.65 25.35 23.75 20.88 18.53 16.20 14.39 12.95 11.38 7.92 5.82	ELEVATI 3348.42 IT = .10 1.22 26.29 28.16 27.66 26.54 25.21 23.43 20.64 18.26 16.01 14.21 12.84 11.00 7.68 5.64	ON (FEET) HOURS 6.13 26.68 28.17 27.57 26.43 25.07 23.11 20.41 18.01 15.82 14.04 12.73 10.58 7.44 5.47	ORAINAGE 11.54 27.01 28.17 27.46 26.32 24.93 22.80 20.19 17.76 15.64 13.88 12.63 10.16 7.22 5.31	AREA = 16.26 27.28 28.14 27.35 26.20 24.80 22.50 19.97 17.51 15.46 13.73 12.53 9.74 7.00 5.14	.36 S0.MI 19.26 27.51 28.10 27.23 26.07 24.66 22.20 19.76 17.27 15.29 13.58 12.43 9.33 6.79 4.99	
TIME(HRS) 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 20.00 21.00 22.00 23.00 24.00 25.00 26.00 27.00	SURFACE ELEV PEAK TIME(HR 14.63 FIRST DISCHG DISCHG DISCHG DISCHG DISCHG OISCHG DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG	ATION= 33 HYDROGRA 200 21.66 27.69 28.04 27.12 25.93 24.52 21.92 19.54 17.05 15.13 13.44 12.32 8.95 6.58 4.85	PEAK PPH POINT = .00 23.60 27.84 27.97 27.00 25.79 24.37 21.65 19.30 16.82 14.96 13.31 12.17 8.68 6.38 4.72	DISCHAR(28.17 .00 HOL .01 24.60 27.96 27.90 26.88 25.64 24.21 21.38 19.05 16.61 14.76 13.18 11.98 8.42 6.19 4.60	GE(CFS) JRS .01 25.27 28.05 27.82 26.77 25.50 24.04 21.13 18.79 16.40 14.57 13.06 11.72 8.17 6.00 4.48	PEAK TIME INCREMEN .01 25.83 28.11 27.75 26.65 25.35 23.75 20.88 18.53 16.20 14.39 12.95 11.38 7.92 5.82 4.36	ELEVATI 3348.42 IT = .10 1.22 26.29 28.16 27.66 26.54 25.21 23.43 20.64 18.26 16.01 14.21 12.84 11.00 7.68 5.64 4.25	ON (FEET) HOURS 6.13 26.68 28.17 27.57 26.43 25.07 23.11 20.41 18.01 15.82 14.04 12.73 10.58 7.44 5.47 4.13	ORAINAGE 11.54 27.01 28.17 27.46 26.32 24.93 22.80 20.19 17.76 15.64 13.88 12.63 10.16 7.22 5.31 4.03	AREA = 16.26 27.28 28.14 27.35 26.20 24.80 22.50 19.97 17.51 15.46 13.73 12.53 9.74 7.00 5.14 3.92	.36 SQ.MI 19.26 27.51 28.10 27.23 26.07 24.66 22.20 19.76 17.27 15.29 13.58 12.43 9.33 6.79 4.99 3.82	
TIME(HRS) 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 20.00 21.00 22.00 23.00 24.00 25.00 26.00 25.00 26.00 27.00 28.00	SURFACE ELEV PEAK TIME(HR 14.63 FIRST DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG	ATION= 33 HYDROGRA 200 21.66 27.69 28.04 27.12 25.93 24.52 21.92 19.54 17.05 15.13 13.44 12.32 8.95 6.58 4.85 3.72	241.00 PEAK APH POINT = .00 23.60 27.84 27.97 27.00 25.79 24.37 21.65 19.30 16.82 14.96 13.31 12.17 8.68 6.38 4.72 3.62	DISCHAR(28.17 .00 HOL .01 24.60 27.96 27.90 26.88 25.64 24.21 21.38 19.05 16.61 14.76 13.18 11.98 8.42 6.19 4.60 3.53	GE(CFS) JRS .01 25.27 28.05 27.82 26.77 25.50 24.04 21.13 18.79 16.40 14.57 13.06 11.72 8.17 6.00 4.48 3.44	PEAK TIME INCREMEN .01 25.83 28.11 27.75 26.65 25.35 23.75 20.88 18.53 16.20 14.39 12.95 11.38 7.92 5.82 4.36 3.35	ELEVATI 3348.42 IT = .10 1.22 26.29 28.16 27.66 26.54 25.21 23.43 20.64 18.26 16.01 14.21 12.84 11.00 7.68 5.64 4.25 3.26	ON (FEET) HOURS 6.13 26.68 28.17 27.57 26.43 25.07 23.11 20.41 18.01 15.82 14.04 12.73 10.58 7.44 5.47 4.13 3.17	ORAINAGE 11.54 27.01 28.17 27.46 26.32 24.93 22.80 20.19 17.76 15.64 13.88 12.63 10.16 7.22 5.31 4.03 3.09	AREA = 16.26 27.28 28.14 27.35 26.20 24.80 22.50 19.97 17.51 15.46 13.73 12.53 9.74 7.00 5.14 3.92 3.01	.36 S0.MI 19.26 27.51 28.10 27.23 26.07 24.66 22.20 19.76 17.27 15.29 13.58 12.43 9.33 6.79 4.99 3.82 2.93	
TIME(HRS) 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 20.00 21.00 22.00 23.00 24.00 25.00 26.00 25.00 26.00 27.00 28.00 29.00	SURFACE ELEV PEAK TIME(HR 14.63 FIRST DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG OISCHG OISCHG	ATION= 33 HYDROGRA 200 21.66 27.69 28.04 27.12 25.93 24.52 21.92 19.54 17.05 15.13 13.44 12.32 8.95 6.58 4.85 3.72 2.86	PEAK APH POINT = .00 23.60 27.84 27.97 27.00 25.79 24.37 21.65 19.30 16.82 14.96 13.31 12.17 8.68 6.38 4.72 3.62 2.78	DISCHAR(28.17 .00 HOL .01 24.60 27.96 27.90 26.88 25.64 24.21 21.38 19.05 16.61 14.76 13.18 11.98 8.42 6.19 4.60 3.53 2.71	GE(CFS) JRS .01 25.27 28.05 27.82 26.77 25.50 24.04 21.13 18.79 16.40 14.57 13.06 11.72 8.17 6.00 4.48 3.44 2.64	PEAK .01 25.83 28.11 27.75 26.65 25.35 23.75 20.88 18.53 16.20 14.39 12.95 11.38 7.92 5.82 4.36 3.35 2.57	ELEVATI 3348.42 IT = .10 1.22 26.29 28.16 27.66 26.54 25.21 23.43 20.64 18.26 16.01 14.21 12.84 11.00 7.68 5.64 4.25 3.26 2.50	ON (FEET) HOURS 6.13 26.68 28.17 27.57 26.43 25.07 23.11 20.41 18.01 15.82 14.04 12.73 10.58 7.44 5.47 4.13 3.17 2.44	0RAINAGE 11.54 27.01 28.17 27.46 26.32 24.93 22.80 20.19 17.76 15.64 13.88 12.63 10.16 7.22 5.31 4.03 3.09 2.37	AREA = 16.26 27.28 28.14 27.35 26.20 24.80 22.50 19.97 17.51 15.46 13.73 12.53 9.74 7.00 5.14 3.92 3.01 2.31	.36 SQ.MI 19.26 27.51 28.10 27.23 26.07 24.66 22.20 19.76 17.27 15.29 13.58 12.43 9.33 6.79 4.99 3.82 2.93 2.25	

EXECUTIVE CONTROL OPERATION ENDCMP COMPUTATIONS COMPLETED FOR PASS 2

RECORD ID

T EQ 03-30-92 11:34 MOUNT STORM POND #3 WITH MODIFICATIONS KMB 3/30/92 REV PC 09/83(.2)

	03-30-92 PC 09/83(.	11:34 2)	MOUNT STOR	RM POND	#3 QITH	MODIFICATIC	DNS	KMB 3/30/5	22		JOB 1	PASS PAGE
EXECUTIVE S Al	CONTROL C TARTING TI LTERNATE N	PERATION COM ME = .00 NO.= 2	PUT FR RAIN DEF STORM NO	20M XSECTIC 2TH = 5.75 0.= 5 M/	DN 10 TO 5 RAIN AIN TIME D) STRUCTURE DURATION= INCREMENT =	10 1.00 RA .10 HOUR	AIN TABLE N RS	10.= 2 A	NT. MOIST.	RECORD 1D COND= 2	50-YF
OPERATION	RUNOFF OUTPUT H	CROSS SECTIO	N 10 5	IOFE CURVE-	77 1		ENTRATION	- 50 HOI	IPC			
	INTERNAL	HYDROGRAPH	TIME INCRE	MENT= .06	67 HOURS	THE OF CONC	ENTRATION-		NG -			
	PEAK TIM 12.20 19.66 23.66	IE(HRS)	PE	AK DISCHAR 628.16 18.24 13.84	GE(CFS)	PE	AK ELEVATI (RUNOFF (RUNOFF (RUNOFF	ON(FEET)				
RUNOFF	VOLUME ABC	VE BASEFLOW	= 3.26 WA	TERSHED IN	ICHES,	757.14 CFS-	HRS, 62	2.57 ACRE-F	EET; BAS	EFLOW ≈	.00 CFS	
OPERATION	RESVOR INPUT HY	STRUCTURE 10 DROGRAPH= 5	OUTPUT	HYDROGRAF	PH= 6							
	SURFACE	ELEVATION= 3	341.00									
	SURFACE PEAK TIM 12.88	ELEVATION= 3 E(HRS)	341.00 PE	AK DISCHAR 141.01	GE(CFS)	PE	AK ELEVATI 3349.43	ON(FEET)				
TIME(HRS)	SURFACE PEAK TIM 12.88	ELEVATION= 3 E(HRS) IRST HYDROGR	341.00 PE APH POINT	AK DISCHAR 141.01 = .00 HC	GE(CFS)	PE TIME INCREM	AK ELEVATI 3349.43 ENT = .10	ON(FEET)	DRAINAGE	AREA =	.36 SQ.MI.	
TIME(HRS) 12.00	SURFACE PEAK TIM 12.88 F DISCHG	ELEVATION= 3 E(HRS) IRST HYDROGR .01	341.00 PE APH POINT .01	AK DISCHAR 141.01 = .00 HC .01	GE(CFS) DURS 12.86	PE TIME INCREM 26.73	AK ELEVATI 3349.43 ENT = .10 69.62	ON(FEET)) HOURS 109.96	DRAINAGE 130.88	AREA = 139.60	.36 sg.мl. 140.93	
TIME(HRS) 12.00 13.D0	SURFACE PEAK TIM 12.88 F DISCHG DISCHG	ELEVATION= 3 HE(HRS) FIRST HYDROGR .01 137.94	341.00 PE APH POINT .01 132.44	AK DISCHAR 141.01 = .00 HC .01 125.59	GE(CFS) DURS 12.86 118.14	PE TIME INCREM 26.73 110.57	AK ELEVATI 3349.43 NENT = .10 69.62 103.17	ON(FEET) HOURS 109.96 96.14	DRAINAGE 130.88 89.61	AREA = 139.60 83.69	.36 sa.ml. 140.93 78.24	
TIME(HRS) 12.00 13.D0 14.00	SURFACE PEAK TIM 12.88 F DISCHG DISCHG DISCHG DISCHG	ELEVATION= 3 HE(HRS) IRST HYDROGR .01 137.94 73.25	341.00 PE APH POINT .01 132.44 68.72	AK DISCHAR 141.01 = .00 HC .01 125.59 64.62	GE(CFS) DURS 12.86 118.14 60.90	PE TIME INCREM 26.73 110.57 57.53	AK ELEVATI 3349.43 NENT = .10 69.62 103.17 54.44	ON(FEET) HOURS 109.96 96.14 51.60	DRAINAGE 130.88 89.61 48.96	AREA = 139.60 83.69 46.49	.36 sa.M1. 140.93 78.24 44.20	
TIME(HRS) 12.00 13.D0 14.00 15.00	SURFACE PEAK TIM 12.88 DISCHG DISCHG DISCHG DISCHG DISCHG	ELEVATION= 3 HE(HRS) IRST HYDROGR .01 137.94 73.25 42.12	341.00 PE APH POINT .01 132.44 68.72 40.28	AK DISCHAR 141.01 = .00 HC .01 125.59 64.62 38.69	GE(CFS) DURS 12.86 118.14 60.90 37.35	PE TIME INCREM 26.73 110.57 57.53 36.19	AK ELEVATI 3349.43 IENT = .10 69.62 103.17 54.44 35.13	ON(FEET) HOURS 109.96 96.14 51.60 34.09	DRAINAGE 130.88 89.61 48.96 33.08	AREA = 139.60 83.69 46.49 32.12	.36 S0.MI. 140.93 78.24 44.20 31.25	
TIME(HRS) 12.00 13.D0 14.00 15.00 16.0D	SURFACE PEAK TIM 12.88 DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG	ELEVATION= 3 HE(HRS) IRST HYDROGR .01 137.94 73.25 42.12 30.50	341.00 PE APH POINT .01 132.44 68.72 40.28 29.86	AK DISCHAR 141.01 = .00 HC .01 125.59 64.62 38.69 29.33	GE(CFS) DURS 12.86 118.14 60.90 37.35 28.99	PE TIME INCREM 26.73 110.57 57.53 36.19 28.95	AK ELEVATI 3349.43 IENT = .10 69.62 103.17 54.44 35.13 28.92	ON(FEET) HOURS 109.96 96.14 51.60 34.09 28.88	DRAINAGE 130.88 89.61 48.96 33.08 28.84	AREA = 139.60 83.69 46.49 32.12 28.79	.36 50.M1. 140.93 78.24 44.20 31.25 28.72	
TIME(HRS) 12.00 13.D0 14.00 15.00 16.0D 17.D0	SURFACE PEAK TIM 12.88 P DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG	ELEVATION= 3 HE(HRS) IRST HYDROGR .01 137.94 73.25 42.12 30.50 28.64	341.00 PE APH POINT .01 132.44 68.72 40.28 29.86 28.55	AK DISCHAR 141.01 = .00 HC .01 125.59 64.62 38.69 29.33 28.46	GE(CFS) 12.86 118.14 60.90 37.35 28.99 28.36	PE TIME INCREM 26.73 110.57 57.53 36.19 28.95 28.27	AK ELEVATI 3349.43 ENT = .10 69.62 103.17 54.44 35.13 28.92 28.17	ON(FEET)) HOURS 109.96 96.14 51.60 34.09 28.88 28.08	DRAINAGE 130.88 89.61 48.96 33.08 28.84 27.99	AREA = 139.60 83.69 46.49 32.12 28.79 27.89	.36 SG.MI. 140.93 78.24 44.20 31.25 28.72 27.80	
TIME(HRS) 12.00 13.D0 14.00 15.00 16.0D 17.D0 18.00	SURFACE PEAK TIM 12.88 F DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG	ELEVATION= 3 (HRS) (IRST HYDROGR 01 137.94 73.25 42.12 30.50 28.64 27.70	341.00 PE APH POINT .01 132.44 68.72 40.28 29.86 28.55 27.58	AK DISCHAR 141.01 = .00 HC .01 125.59 64.62 38.69 29.33 28.46 27.45	CFS) 200RS 12.86 118.14 60.90 37.35 28.99 28.36 27.31	PE 71ME INCREM 26.73 110.57 57.53 36.19 28.95 28.27 27.17	AK ELEVATI 3349.43 MENT = .10 69.62 103.17 54.44 35.13 28.92 28.17 27.02	ON(FEET) HOURS 109.96 96.14 51.60 34.09 28.88 28.08 26.88	DRAINAGE 130.88 89.61 48.96 33.08 28.84 27.99 26.73	AREA = 139.60 83.69 46.49 32.12 28.79 27.89 26.58	.36 S0.M1. 140.93 78.24 44.20 31.25 28.72 27.80 26.44	
TIME(HRS) 12.00 13.D0 14.00 15.00 16.0D 17.D0 18.00 19.00	SURFACE PEAK TIM 12.88 DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG	ELEVATION= 3 IE(HRS) IRST HYDROGR .01 137.94 73.25 42.12 30.50 28.64 27.70 26.30	341.00 PE APH POINT .01 132.44 68.72 40.28 29.86 28.55 27.58 26.16	AK DISCHAR 141.01 = .00 HC .01 125.59 64.62 38.69 29.33 28.46 27.45 26.03	EGE (CFS) 12.86 118.14 60.90 37.35 28.99 28.36 27.31 25.89	PE 71ME INCREM 26.73 110.57 57.53 36.19 28.95 28.27 27.17 25.76	AK ELEVATI 3349.43 NENT = .10 69.62 103.17 54.44 35.13 28.92 28.17 27.02 25.63	ON(FEET)) HOURS 109.96 96.14 51.60 34.09 28.88 28.08 26.88 25.51	DRAINAGE 130.88 89.61 48.96 33.08 28.84 27.99 26.73 25.38	AREA = 139.60 83.69 46.49 32.12 28.79 27.89 26.58 25.26	.36 S0.M1. 140.93 78.24 44.20 31.25 28.72 27.80 26.44 25.14	
TIME(HRS) 12.00 13.D0 14.00 15.00 16.0D 17.D0 18.00 19.00 20.00	SURFACE PEAK TIM 12.88 P DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG	ELEVATION= 3 IE(HRS) IRST HYDROGR .01 137.94 73.25 42.12 30.50 28.64 27.70 26.30 25.00	341.00 PE APH POINT .01 132.44 68.72 40.28 29.86 28.55 27.58 26.16 24.86	AK DISCHAR 141.01 = .00 HC .01 125.59 64.62 38.69 29.33 28.46 27.45 26.03 24.70	EGE (CFS) 12.86 118.14 60.90 37.35 28.99 28.36 27.31 25.89 24.54	PE 71ME INCREM 26.73 110.57 57.53 36.19 28.95 28.27 27.17 25.76 24.36	AK ELEVATI 3349.43 MENT = .10 69.62 103.17 54.44 35.13 28.92 28.17 27.02 25.63 24.19	ON(FEET)) HOURS 109.96 96.14 51.60 34.09 28.88 28.08 26.88 25.51 24.01	DRAINAGE 130.88 89.61 48.96 33.08 28.84 27.99 26.73 25.38 23.69	AREA = 139.60 83.69 46.49 32.12 28.79 27.89 26.58 25.26 23.36	.36 S0.M1. 140.93 78.24 44.20 31.25 28.72 27.80 26.44 25.14 23.04	
TIME(HRS) 12.00 13.D0 14.00 15.00 16.0D 17.D0 18.00 19.00 20.00 21.00	SURFACE PEAK TIM 12.88 P DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG	ELEVATION= 3 E(HRS) IRST HYDROGR .01 137.94 73.25 42.12 30.50 28.64 27.70 26.30 25.00 22.74	341.00 PE APH POINT .01 132.44 68.72 40.28 29.86 28.55 27.58 26.16 24.86 22.44	AK DISCHAR 141.01 = .00 HC .01 125.59 64.62 38.69 29.33 28.46 27.45 26.03 24.70 22.15	2GE(CFS) 12.86 118.14 60.90 37.35 28.99 28.36 27.31 25.89 24.54 21.87	PE TIME INCREM 26.73 110.57 57.53 36.19 28.95 28.27 27.17 25.76 24.36 21.60	AK ELEVATI 3349.43 ENT = .10 69.62 103.17 54.44 35.13 28.92 28.17 27.02 25.63 24.19 21.34	ON(FEET)) HOURS 109.96 96.14 51.60 34.09 28.88 28.08 26.88 25.51 24.01 21.09	DRAINAGE 130.88 89.61 48.96 33.08 28.84 27.99 26.73 25.38 23.69 20.84	AREA = 139.60 83.69 46.49 32.12 28.79 27.89 26.58 25.26 23.36 20.61	-36 S0.M1. 140.93 78.24 44.20 31.25 28.72 27.80 26.44 25.14 23.04 20.38	
TIME(HRS) 12.00 13.D0 14.00 15.00 16.0D 17.D0 18.00 19.00 20.00 21.00 22.00	SURFACE PEAK TIM 12-88 DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG	ELEVATION= 3 IE(HRS) IRST HYDROGR .01 137.94 73.25 42.12 30.50 28.64 27.70 26.30 25.00 22.74 20.16	341.00 PE APH POINT .01 132.44 68.72 40.28 29.86 28.55 27.58 26.16 24.86 22.44 19.95	AK DISCHAR 141.01 = .00 HC .01 125.59 64.62 38.69 29.33 28.46 27.45 26.03 24.70 22.15 19.74	2GE(CFS) 12.86 118.14 60.90 37.35 28.99 28.36 27.31 25.89 24.54 21.87 19.54	PE TIME INCREM 26.73 110.57 57.53 36.19 28.95 28.27 27.17 25.76 24.36 21.60 19.35	AK ELEVATI 3349.43 MENT = .10 69.62 103.17 54.44 35.13 28.92 28.17 27.02 25.63 24.19 21.34 19.17	ON(FEET)) HOURS 109.96 96.14 51.60 34.09 28.88 28.08 26.88 25.51 24.01 21.09 18.99 18.99	DRAINAGE 130.88 89.61 48.96 33.08 28.84 27.99 26.73 25.38 23.69 20.84 18.82	AREA = 139.60 83.69 46.49 32.12 28.79 27.89 26.58 25.26 23.36 20.61 18.65	-36 S0.M1. 140.93 78.24 44.20 31.25 28.72 27.80 26.44 25.14 23.04 20.38 18.49	
TIME(HRS) 12.00 13.D0 14.00 15.00 16.0D 17.D0 18.00 19.00 20.00 21.00 22.00 23.00	SURFACE PEAK TIM 12.88 DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG	ELEVATION= 3 IE(HRS) IRST HYDROGR .01 137.94 73.25 42.12 30.50 28.64 27.70 26.30 25.00 25.00 22.74 20.16 18.33	341.00 PE APH POINT .01 132.44 68.72 40.28 29.86 28.55 27.58 26.16 24.86 22.44 19.95 18.18	AK DISCHAR 141.01 = .00 HC .01 125.59 64.62 38.69 29.33 28.46 27.45 26.03 24.70 22.15 19.74 18.04	2GE(CFS) 12.86 118.14 60.90 37.35 28.99 28.36 27.31 25.89 24.54 21.87 19.54 17.90	PE TIME INCREM 26.73 110.57 57.53 36.19 28.95 28.27 27.17 25.76 24.36 21.60 19.35 17.76	AK ELEVATI 3349.43 MENT = .10 69.62 103.17 54.44 35.13 28.92 28.17 27.02 25.63 24.19 21.34 19.17 17.63	ON(FEET)) HOURS 109.96 96.14 51.60 34.09 28.88 28.08 26.88 25.51 24.01 21.09 18.99 17.51	DRAINAGE 130.88 89.61 48.96 33.08 28.84 27.99 26.73 25.38 23.69 20.84 18.82 17.38	AREA = 139.60 83.69 46.49 32.12 28.79 27.89 26.58 25.26 23.36 20.61 18.65 17.26	-36 S0.M1. 140.93 78.24 44.20 31.25 28.72 27.80 26.44 25.14 23.04 20.38 18.49 17.14	
TIME(HRS) 12.00 13.D0 14.00 15.00 16.0D 17.D0 18.00 19.00 20.00 21.00 22.00 23.00 24.00	SURFACE PEAK TIM 12.88 DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG	ELEVATION= 3 IE(HRS) IRST HYDROGR .01 137.94 73.25 42.12 30.50 28.64 27.70 26.30 25.00 25.00 22.74 20.16 18.33 17.01	341.00 PE APH POINT .01 132.44 68.72 40.28 29.86 28.55 27.58 26.16 24.86 22.44 19.95 18.18 16.84 16.84	AK DISCHAR 141.01 = .00 HC .01 125.59 64.62 38.69 29.33 28.46 27.45 26.03 24.70 22.15 19.74 18.04 16.62	2GE(CFS) 12.86 118.14 60.90 37.35 28.99 28.36 27.31 25.89 24.54 21.87 19.54 17.90 16.33	PE TIME INCREM 26.73 110.57 57.53 36.19 28.95 28.27 27.17 25.76 24.36 21.60 19.35 17.76 15.97 15.97	AK ELEVATI 3349.43 ENT = .10 69.62 103.17 54.44 35.13 28.92 28.17 27.02 25.63 24.19 21.34 19.17 17.63 15.56	ON(FEET)) HOURS 109.96 96.14 51.60 34.09 28.88 26.88 25.51 24.01 21.09 18.99 17.51 15.11	DRAINAGE 130.88 89.61 48.96 33.08 28.84 27.99 26.73 25.38 23.69 20.84 18.82 17.38 14.54	AREA = 139.60 83.69 46.49 32.12 28.79 27.89 26.58 25.26 23.36 20.61 18.65 17.26 13.93	-36 S0.M1. 140.93 78.24 44.20 31.25 28.72 27.80 26.44 25.14 23.04 20.38 18.49 17.14 13.34	
TIME(HRS) 12.00 13.D0 14.00 15.00 16.0D 17.D0 18.00 19.00 20.00 21.00 22.00 23.00 24.00 25.D0	SURFACE PEAK TIM 12.88 DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG	ELEVATION= 3 IE(HRS) IRST HYDROGR .01 137.94 73.25 42.12 30.50 28.64 27.70 26.30 25.00 22.74 20.16 18.33 17.01 12.76	341.00 PE APH POINT .01 132.44 68.72 40.28 29.86 28.55 27.58 26.16 24.86 22.44 19.95 18.18 16.84 12.21	AK DISCHAR 141.01 = .00 HC .01 125.59 64.62 38.69 29.33 28.46 27.45 26.03 24.70 22.15 19.74 18.04 16.62 11.67	GE(CFS) 12.86 118.14 60.90 37.35 28.99 28.36 27.31 25.89 24.54 21.87 19.54 17.90 16.33 11.16	PE TIME INCREM 26.73 110.57 57.53 36.19 28.95 28.27 27.17 25.76 24.36 21.60 19.35 17.76 15.97 10.67	AK ELEVATI 3349.43 ENT = .10 69.62 103.17 54.44 35.13 28.92 28.17 27.02 25.63 24.19 21.34 19.17 17.63 15.56 10.20	ON(FEET)) HOURS 109.96 96.14 51.60 34.09 28.88 26.88 25.51 24.01 21.09 18.99 17.51 15.11 9.75	DRAINAGE 130.88 89.61 48.96 33.08 28.84 27.99 26.73 25.38 23.69 20.84 18.82 17.38 14.54 9.32	AREA = 139.60 83.69 46.49 32.12 28.79 27.89 26.58 25.26 23.36 20.61 18.65 17.26 13.93 8.94	.36 S0.M1. 140.93 78.24 44.20 31.25 28.72 27.80 26.44 25.14 23.04 20.38 18.49 17.14 13.34 8.67	
TIME(HRS) 12.00 13.D0 14.00 15.00 16.0D 17.D0 18.00 19.00 20.00 21.00 22.00 23.00 24.00 25.D0 26.D0 26.D0	SURFACE PEAK TIM 12.88 PISCHG DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG	ELEVATION= 3 IRST HYDROGR .01 137.94 73.25 42.12 30.50 28.64 27.70 26.30 25.00 22.74 20.16 18.33 17.01 12.76 8.40 .01	341.00 PE APH POINT .01 132.44 68.72 40.28 29.86 28.55 27.58 26.16 24.86 22.44 19.95 18.18 16.84 12.21 8.15	AK DISCHAR 141.01 = .00 HC .01 125.59 64.62 38.69 29.33 28.46 27.45 26.03 24.70 22.15 19.74 18.04 16.62 11.67 7.90	AGE (CFS) 12.86 118.14 60.90 37.35 28.99 28.36 27.31 25.89 24.54 21.87 19.54 17.90 16.33 11.16 7.66	PE TIME INCREM 26.73 110.57 57.53 36.19 28.95 28.27 27.17 25.76 24.36 21.60 19.35 17.76 15.97 10.67 7.43	AK ELEVATI 3349.43 ENT = .10 69.62 103.17 54.44 35.13 28.92 28.17 27.02 25.63 24.19 21.34 19.17 17.63 15.56 10.20 7.20	ON(FEET) HOURS 109.96 96.14 51.60 34.09 28.88 28.08 26.88 25.51 24.01 21.09 18.99 17.51 15.11 9.75 6.99	DRAINAGE 130.88 89.61 48.96 33.08 28.84 27.99 26.73 25.38 23.69 20.84 18.82 17.38 14.54 9.32 6.77	AREA = 139.60 83.69 46.49 32.12 28.79 27.89 26.58 25.26 23.36 20.61 18.65 17.26 13.93 8.94 6.57	.36 SG.MI. 140.93 78.24 44.20 31.25 28.72 27.80 26.44 25.14 23.04 20.38 18.49 17.14 13.34 8.67 6.37	
TIME(HRS) 12.00 13.D0 14.00 15.00 16.0D 17.D0 18.00 19.00 20.00 21.00 22.00 23.00 24.00 25.D0 26.D0 27.00	SURFACE PEAK TIM 12-88 DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG	ELEVATION= 3 FIRST HYDROGR .01 137.94 73.25 42.12 30.50 28.64 27.70 26.30 25.00 22.74 20.16 18.33 17.01 12.76 8.40 6.18	341.00 PE APH POINT .01 132.44 68.72 40.28 29.86 28.55 27.58 26.16 24.86 22.44 19.95 18.18 16.84 12.21 8.15 5.99 .97	AK DISCHAR 141.01 = .00 HC .01 125.59 64.62 38.69 29.33 28.46 27.45 26.03 24.70 22.15 19.74 18.04 16.62 11.67 7.90 5.81	AGE (CFS) DURS 12.86 118.14 60.90 37.35 28.99 28.36 27.31 25.89 24.54 21.87 19.54 17.90 16.33 11.16 7.66 5.63	PE TIME INCREM 26.73 110.57 57.53 36.19 28.95 28.27 27.17 25.76 24.36 21.60 19.35 17.76 15.97 10.67 7.43 5.46	AK ELEVATI 3349.43 ENT = .10 69.62 103.17 54.44 35.13 28.92 28.17 27.02 25.63 24.19 21.34 19.17 17.63 15.56 10.20 7.20 5.29 5.29	ON(FEET) HOURS 109.96 96.14 51.60 34.09 28.88 28.08 26.88 25.51 24.01 21.09 18.99 17.51 15.11 9.75 6.99 5.13	DRAINAGE 130.88 89.61 48.96 33.08 28.84 27.99 26.73 25.38 23.69 20.84 18.82 17.38 14.54 9.32 6.77 4.98	AREA = 139.60 83.69 46.49 32.12 28.79 27.89 26.58 25.26 23.36 20.61 18.65 17.26 13.93 8.94 6.57 4.84	.36 S0.M1. 140.93 78.24 44.20 31.25 28.72 27.80 26.44 25.14 23.04 20.38 18.49 17.14 13.34 8.67 6.37 4.71	
TIME(HRS) 12.00 13.D0 14.00 15.00 16.0D 17.D0 18.00 19.00 20.00 21.00 22.00 23.00 24.00 25.D0 26.D0 27.00 28.00	SURFACE PEAK TIM 12.88 DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG	ELEVATION= 3 FIRST HYDROGR .01 137.94 73.25 42.12 30.50 28.64 27.70 26.30 25.00 22.74 20.16 18.33 17.01 12.76 8.40 6.18 4.59	341.00 PE APH POINT .01 132.44 68.72 40.28 29.86 28.55 27.58 26.16 24.86 22.44 19.95 18.18 16.84 12.21 8.15 5.99 4.47	AK DISCHAR 141.01 = .00 HC .01 125.59 64.62 38.69 29.33 28.46 27.45 26.03 24.70 22.15 19.74 18.04 16.62 11.67 7.90 5.81 4.35	AGE (CFS) DURS 12.86 118.14 60.90 37.35 28.99 28.36 27.31 25.89 24.54 21.87 19.54 17.90 16.33 11.16 7.66 5.63 4.24	PE TIME INCREM 26.73 110.57 57.53 36.19 28.95 28.27 27.17 25.76 24.36 21.60 19.35 17.76 15.97 10.67 7.43 5.46 4.13	AK ELEVATI 3349.43 ENT = .10 69.62 103.17 54.44 35.13 28.92 28.17 27.02 25.63 24.19 21.34 19.17 17.63 15.56 10.20 7.20 5.29 4.02	ON(FEET) HOURS 109.96 96.14 51.60 34.09 28.88 28.08 26.88 25.51 24.01 21.09 18.99 17.51 15.11 9.75 6.99 5.13 3.91	DRAINAGE 130.88 89.61 48.96 33.08 28.84 27.99 26.73 25.38 23.69 20.84 18.82 17.38 14.54 9.32 6.77 4.98 3.81	AREA = 139.60 83.69 46.49 32.12 28.79 27.89 26.58 25.26 23.36 20.61 18.65 17.26 13.93 8.94 6.57 4.84 3.71	.36 S0.M1. 140.93 78.24 44.20 31.25 28.72 27.80 26.44 25.14 23.04 20.38 18.49 17.14 13.34 8.67 6.37 4.71 3.62	

EXECUTIVE CONTROL OPERATION ENDCMP COMPUTATIONS COMPLETED FOR PASS 3

RECORD ID

3 1D

KED 03-30-92 11:34 MOUNT STORM POND #3 WITH MODIFICATIONS KMB 3/30/92 1

REV PC 09/83(.2)

T XEQ 03-30-92 11:34 REV PC 09/83(.2)	MOUNT STORM	POND #3 WITH MODIFI	CATIONS KMB 3/30/92	JOB 1 PASS 4 PAGE 12
EXECUTIVE CONTROL OPERATION C STARTING TIME = .00 ALTERNATE NO.= 2	COMPUT FROM) RAIN DEPTH STORM NO.=	XSECTION 10 TO STRUC = 4.63 RAIN DURATI 6 MAIN TIME INCREME	TURE 10 ON= 6.00 RAIN TABLE NO.= 6 NT = .10 HOURS	RECORD ID 100-YR ANT. MOIST. CONO= 2
OPERATION RUNOFF CROSS SECT OUTPUT HYDROGRAPH= AREA= .36 SQ MI INTERNAL HYDROGRAF	ION 10 5 INPUT RUNOFF PH TIME INCREMEN	CURVE= 77. TIME OF T= .0667 HOURS	CONCENTRATION= .50 HOURS	

PEAK TIME(HRS)	PEAK DISCHARGE(CFS)	PEAK ELEVATION(FEET)	
2.67	352.78	(RUNOFF)	

RUNOFF VOLUME ABOVE BASEFLOW = 2.31 WATERSHED INCHES, 537.76 CFS-HRS, 44.44 ACRE-FEET; BASEFLOW = .00 CFS

OPERATION RESVOR STRUCTURE 10 INPUT HYDROGRAPH= 5 OUTPUT HYDROGRAPH= 6 SURFACE ELEVATION= 3341.00

PEAK TIME(HRS)	PEAK DISCHARGE(CFS)	PEAK ELEVATION(FEET)
4.98	75.04	3348.88

T. IRS)		FIRST HYDROGRA	PH POINT =	.00 HOL	URS	TIME INCREM	ENT = .10	HOURS	DRAINAGE	AREA =	.36 SQ.MI.
2.00	DISCHG	.00	.00	.00	.00	.00	.00	.00	.01	.01	.01
3.00	DISCHG	.01	.13	3.29	7.91	13.59	18.00	21.62	24.45	25.96	27.35
4.00	DISCHG	28.64	38.22	48.97	57.16	63.30	67.78	70.94	73.04	74.30	74.91
5.00	DISCHG	75.03	74.79	74.28	73.61	72.82	71.96	71.05	70.11	69.15	68.20
6.00	DISCHG	67.27	66.18	64.29	60.76	55.40	48.87	42.05	35.60	29.80	28,61
7.00	DISCHG	28.15	27.69	27.23	26.77	26.31	25.87	25.42	24.99	24,56	24.14
8.00	DISCHG	23.48	22.70	21.94	21.21	20.51	19.83	19.17	18.53	17.91	17.32
9.00	DISCHG	16.74	16.19	15.65	15.13	14.50	13.86	13.25	12.67	12.11	11.58
10.00	DISCHG	11.07	10.58	10.11	9.67	9.24	8.88	8.61	8.35	8.10	7.85
11.00	DISCHG	7.62	7.38	7.16	6.94	6.73	6.53	6.33	6.14	5.95	5.77
12.00	DISCHG	5.60	5.43	5.26	5.10	4.95	4.81	4.69	4.56	4.45	4.33
13.00	DISCHG	4.22	4.11	4.00	3.89	3,79	3.69	3.60	3.50	3.41	3.32
14.00	DISCHG	3.24	3.15	3.07	2.99	2.91	2.84	2.76	2.69	2.62	2,55
15.00	DISCHG	2.48	2.42	2.36	2.29	2.23	2.18	2.12	2.06	2.01	1.96
16.00	DISCHG	1.91	1.86	1.81	1.76	1.72	1.69	1.66	1.64	1.62	1.60
17.00	DISCHG	1.58	1.56	1.54	1.52	1.50	1.48	1.47	1.45	1.43	1-41
18.00	DISCHG	1.39	1.38	1.36	1.34	1.32	1.31	1.29	1.27	1.26	1,24
19.00	DISCHG	1.23	1.21	1.20	1.18	1.17	1.15	1.14	1.12	1.11	1.09
20.00	DISCHG	1.08	1.07	1.05	1.04	1.03	1.01	1.00	.99	.98	.96
21.00	DISCHG	.95	.94	.93	.92	,90	.89	.88	.87	.86	. 85
22.00	DISCHG	.84	.83	.82	.81	.80	.79	.78	.77	.76	.75
23.00	DISCHG	.74	.73	.72	.71	.70	.69	.68	.67	.67	-66
24.00	DISCHG	.65	.64	.63	.63	.62	.61	.60	.59	.59	.58
25,00	DISCHG	.57	.56	.56	.55	.54	.54	.53	.52	.52	.51
26.00	DISCHG	.50	.50	.49	.48	-48	-47	-47	-46	.45	-45

T (EC REV	03-30-92 1 PC 09/83(.2	1:34 M	OUNT STORM	POND #3	WITH MO	DIFICATIONS	KI	MB 3/30/92			JOB 1	PASS PAGE	4 13
27.00	D1SCHG D1SCHG	.44	.44	.43	.43	.42	.42	.41	.41	_40 _35	.40		
29.00	DISCHG	.34	.34	.34	.33	.33	.32	.32	.31	.31	.31		
RUNOF	VOLUME ABOV	E BASEFLOW =	1.28 WATE	RSHED INCH	ES, 29	8.04 CFS-HRS,	24,0	63 ACRE-FEET;	BASE	FLOW =	.00 CFS		
EXECUTIV	E CONTROL OP	ERATION ENDER	IP COMP	UTATIONS C	OMPLETED	FOR PASS 4					RECORD II	D	

EXECUTIVE CONTROL OPERATION ENDJOB

RECORD 1D

T	(EQ 03-30-92 11:34	MOUNT STORM	POND #3	WITH MODIFICATIONS	KMB 3/30/92	JOB 1	SUMMARY
	REV PC 09/83(.2)						PAGE 14

SUMMARY TABLE 1 - SELECTED RESULTS OF STANDARD AND EXECUTIVE CONTROL INSTRUCTIONS IN THE ORDER PERFORMED (A STAR(*) AFTER THE PEAK DISCHARGE TIME AND RATE (CFS) VALUES INDICATES A FLAT TOP HYDROGRAPH A QUESTION MARK(?) INDICATES A HYDROGRAPH WITH PEAK AS LAST POINT.)

SECTION/	STANDARD		RAIN	ANTEC	MAIN	P	RECIPITAT	ION	-		PEAK DI	SCHARGE	
1D	OPERATION	AREA (SQ MI)	RAINAGE TABLE AREA # SQ MI)		INCREM (HR)	BEGIN (HR)	AMOUNT (IN)	DURATION (HR)	AMOUNT (IN)	ELEVATION (FT)	TIME (HR)	RATE (CFS)	RATE (CSM)
ALTERNATE	1 51	ORM 1											
XSECTION 10	RUNOFF	.36	2	2	.10	.0	2.88	24.00	.99		12.21	181.82	505.0
STRUCTURE 10	RESVOR	.36	2	2	.10	,0	2.88	24.00	.00	3346.35	25.40?	-01?	.0
ALTERNATE	1 51	ORM 3											
XSECTION 10	RUNOFF	.36	2	2	.10	.0	4.60	24.00	2.29		12.20	439.95	1222.1
STRUCTURE 10	RESVOR	.36	2	2	.10	.0	4.60	24.00	1.20	3348.42	14.63	28.17	78.3
ALTERNATE	2 ST	ORM 5											
XSECTION 10	RUNOFF	.36	2	2	.10	.0	5.75	24.00	3.26		12.20	628.16	1744.9
STRUCTURE 10	RESVOR	.36	2	2	.10	.0	5.75	24.00	2.16	3349.43	12,88	141.01	391.7
ALTERNATE	2 ST	ORM 6											
X' 10N 10	RUNOFF	.36	6	z	.10	.0	4.63	6.00	2.31	111.	2.67	352.78	979.9
S. FURE 10	RESVOR	.36	6	2	-10	.0	4.63	6.00	1.28	3348.88	4.98	75.04	208.4

Page 130 of 144

3	KEQ 03-30-92 11:34	MOUNT STORM	POND #3 WITH MODIFICATIONS	KMB 3/30/92	JOB 1	SUMMARY
	REV PC 09/83(.2)					PAGE 15

SUMMARY	TABLE	3	-	DISCHARGE	(CFS)	AT	XSECTIONS	AND	STRUCTURES	FOR	ALL	STORMS	AND	ALTERNATES

XSECTION/ STRUCTURE		DRAINAGE AREA	STORM	NUMBE	RS			
ID		(SQ MI)		1	3	5	6	
STRUCTURE 10	_	.36						
ALTERNATE	1			.01	28.17	.00	.00	
ALTERNATE	2			.00	.00	141.01	75.04	
XSECTION 10	1	.36						
ALTERNATE	1		181	.82	439.95	.00	.00	
ALTERNATE	2			,00	.00	628.16	352.78	

END OF 1 JOBS IN THIS RUN

CULVERTS

Calculation package includes: 1. Mt. Storm Haul Road Cross Culvert Design

SUBJECT Mt Storm	Haulroad		
BY PWC D	ATE 6/24/96	PROJ. NO. 88-108-85	CONSULTANTS, INC.
CHKD. BY KAB D.	ATE	SHEET NO OF	Engineers • Geologists • Planners

It is proposed to replace the existing CMP cross-culverts on the Mt Storm haulroad with RCP culverts. The design discharge of the culverts is unknown. The location of the RCP culverts will be the same as the existing CMP culverts, including the same slapes. Since the design Q for each culvert is unknown, calculate Qmax for the CMP culvert using Manning's Equation, ascuming full Flow. Then size an RCP culvert using Manning's Equation and Qmax. Since the design Q and headwater culcs are not available for the CMP culverts, inlet control cannot be effectively evaluated for each cross-culvert.

The lengths and inverts of each existing cross-culvert is Fram survey duta provided by Virginia Power.

Manning's n volues

Minimum pipe size shall be 12" RCP

RCP: n=0.015 CMP n=0.025

Note: Culvert 1 is an existing 30" RCP

Culvert 2

5 = 3320.48Ft-3319.67Ft = 0.0198Ft/Ft

21" CMP

$$\varphi = \frac{1.466}{n} R^{2/3} 5^{1/2} A$$

$$N = 0.025$$

$$R = \frac{A}{WP} = \frac{\frac{110^{2}}{4}}{170} = \frac{D}{4} = \frac{(21in)}{4} \left(\frac{Ft}{12in}\right) = 0.4375 Ft$$

$$A = \frac{TD^{2}}{4} = \frac{T\left[(21in)\left(\frac{Ft}{12in}\right)\right]^{2}}{4} = 2.405 Ft^{2}$$

$$\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\end{array}\\
\begin{array}{c}
\end{array}\\
\begin{array}{c}
\begin{array}{c}
\end{array}\\
\end{array}\\
\end{array}\\
\end{array}\\
\end{array}\\
\end{array}\\
\end{array}\\
\end{array}\\
\begin{array}{c}
\begin{array}{c}
\end{array}\\
\end{array}\\
\end{array}\\
\end{array}\\
\end{array}\\
\end{array}\\
\end{array}\\
\end{array}\\
\begin{array}{c}
\begin{array}{c}
\end{array}\\
\end{array}\\
\end{array}\\
\end{array}\\
\end{array}\\
\end{array}\\
\end{array}\\
\end{array}\\
\end{array}\\
\begin{array}{c}
\begin{array}{c}
\end{array}\\
\end{array}\\
\end{array}\\
\end{array}\\
\end{array}\\
\end{array}\\
\end{array}\\
\end{array}\\
\begin{array}{c}
\begin{array}{c}
\end{array}\\
\end{array}\\
\end{array}\\
\end{array}\\
\end{array}\\
\end{array}\\
\end{array}\\
\begin{array}{c}
\end{array}\\
\end{array}\\
\end{array}\\
\end{array}\\
\end{array}\\
\begin{array}{c}
\end{array}\\
\end{array}\\
\end{array}\\
\end{array}\\
\begin{array}{c}
\end{array}\\
\end{array}\\
\end{array}\\
\end{array}\\
\end{array}\\
\begin{array}{c}
\end{array}\\
\end{array}\\
\end{array}\\
\end{array}\\
\end{array}\\
\begin{array}{c}
\end{array}\\
\end{array}\\
\end{array}\\
\end{array}\\
\begin{array}{c}
\end{array}\\
\end{array}\\
\end{array}$$
\left)
\begin{array}{c}
\end{array}\\
\end{array}\\
\end{array}\\
\bigg\\
\bigg
\left)
\begin{array}{c}
\end{array}\\
\bigg
\left)
\begin{array}{c}
\end{array}\\
\bigg
\left)
\bigg

$$S = \frac{3321.18 \, Ft - 3316.07 \, Ft}{43.6 \, Ft} = 0.117 \, Ft/Ft$$

6

18" CMP

œ
SUBJECT Mt Storm Haulread
Cross Culvert Design
BY Pwc DATE 6/24/96 PROJ. NO. 88-108-85
CHKD. BY MB DATE 1196 SHEET NO. 3 OF 6
Engineers • Geologists • Planners
Environmental Specialists

$$Q_{mex} = \frac{1.486}{n} R^{2/3} 5^{1/2} A$$

CONSULTANTS, INC.

1.12

.

$$A = 0.025$$

$$R = \frac{0}{4} = \frac{1.5Ft}{4} = 0.325Ft$$

$$5 = 0.117Ft/Ft$$

$$A = \frac{770^{2}}{4} = \frac{(77)(1.5Ft)^{2}}{4} = 1.767Ft^{2}$$

$$I(4486) = 1.767Ft^{2}$$

$$\varphi_{max} = \left(\frac{1.486}{0.025}\right) \left(0.375\right)^{\frac{2}{3}} \left(0.117\right)^{\frac{4}{2}} \left(1.767\right) = 18.7 \text{ cFs}$$

$$d = \left(\frac{2.159 \text{ n Gmax}}{5'/2}\right)^{3/8}$$

$$d = \left[\frac{\left(2.159\right)(0.015)(18.7)}{(0.117)^{4/2}}\right]^{3/8}$$

$$d = \left(1.239Ft\right)\left(\frac{12\text{ in}}{Ft}\right) = 14.9\text{ in} \qquad 5ay 15''$$

$$N = 0.025$$

$$R = \frac{a}{44} = \left(\frac{2.5ft}{4}\right) = 0.625 Ft$$

$$5 = 0.0645 Ft/Ft$$

$$A = \frac{Md^{2}}{4} = \frac{M(2.5ft)^{2}}{4} = 4.909Ft^{2}$$

SUBJECT Mt Storm Houlroad
Cross Culvert Design
BY Auc DATE
$$\frac{G/24/96}{140}$$
 PROJ. NO. 88-108-85
CHKD. BY COR DATE $-1(1-9\frac{1}{2})$ SHEET NO. 4 OF 6 Engineers • Geologists • Planners
Environmental Specialists
 $Q_{mdx} = \left(\frac{1.486}{0.025}\right) \left(0.025\right)^{\frac{2}{3}} \left(0.0645\right)^{\frac{1}{3}} \left(4.909\right) = 54.2 \text{ CFS}$
 $d = \left(\frac{2.159 n Q_{mdx}}{5^{\frac{1}{3}}}\right)^{\frac{2}{3}}$
 $d = \left[\frac{(2.159)(0.015)(54.0)}{(0.0045)^{\frac{1}{3}}}\right]^{\frac{2}{3}}$
 $d = \left[\frac{(2.055)(0.015)(54.0)}{(0.0045)^{\frac{1}{3}}}\right]^{\frac{2}{3}}$
 $d = \left(2.065Fe\right)\left(\frac{12m}{FE}\right) = 24.8 \text{ m}$ Say 27 "

* the actual design discharge For this culvert should be evaluated against available head water at the site to determine "Fad4" RCP will be sufficient at the site.

Culvert 5

S= 3319.15 Ft - 3317.20 Ft 39.9 Ft = 0.0489 Ft/Ft 30" CMP

ou use 27 "RCP *

$$\varphi_{max} = \left(\frac{1.486}{0.025}\right) \left(0.625\right)^{2/3} \left(0.0489\right)^{1/2} \left(4.909\right) = 47.2 \text{ cfs}$$

1.1

SUBJECT Mt Storm Houlroad
Cross-Culvert Design
BY Pwc DATE 6/24/96 PROJ. NO. 88-/08-85
CHKD. BY DATE 1/1/96 SHEET NO. 5 OF 6
Engineers • Geologists • Planners
Environmental Specialists

$$d = \left(\frac{0.159 n Q_{max}}{5^{1/2}}\right)^{\frac{3}{2}}$$

$$d = \left[\frac{(0.151)(0.015)(47.2)}{(0.0489)^{1/2}}\right]^{\frac{3}{2}}$$

$$d = \left(\frac{2.065 Ft}{(5-1)}\right) = 24.8 \text{ in } 5ay 27''$$

* the octual design discharge For this culvert should be evaluated against available headwater at the site to determine if a 24" RCP will be sufficient at the site

Culvert 6

S = <u>3334.94 FE - 3330.73 FE</u> 57.0 FE = 0.0739 FE/FE

36" CMP

Qmdx = 1.486 R 23 5 12 A

N= 0.025

$$R = \frac{d}{4!} = \frac{3Ft}{4} = 0.75 Ft$$

$$A = \frac{17 J^2}{4} = \frac{17 (3Ft)^2}{4} = 7.069 Ft^2$$

or Use 30" RCP

31

SUBJECT Mt Sto	rm Roadway Improv	ements -1996	
BY PWC	DATE _2/11/96	PROJ. NO. 88-108-85	CONSULTANTS, INC.
снкд. ву	DATE 7-11-96	SHEET NO OF	Engineers • Geologists • Planners Environmental Specialists

Determine the disturbed areas associated with Construction of the 1996 roadway improvements for the Coal Yard Entrance Road/Coal Dump Road. The Cut and Fill lines for the roadway improvements are shown on the attached Drug No. 88-108-E77. As shown on the drawing, a partion of the roadway will be constructed as a Future, separate project. Also, a partion of the site drains to the Low-volume treatment plant for the Mt Storm Power Station. The Low-volume treatment system is included in the NPDES permit For the Power Station. The remainder of the site drains as uncontrolled discharges (i.e. not covered by an NPDES permit).

Current Construction

1) Watershed draining to Low-volume treatment system (NPDES discharges)

disturbed area = Area 1 = 1.17 dcres

2) Uncontrolled drainage areas

disturbed area = Area 2 + Area 3 = 0.51 act 1.83 ac = 2.34 acres

Future Construction

disturbed area = Area 4 = 1.14 dcres

DRAINAGE CONTROL

Calculation package includes: 1. Phase B Drainage Control

SUBJECT PAN	SE B D	RAINAGE CONTROL	
BY JES	- DATE 3/11+12/91	6_ PROJ. NO. 88-108-84	CONSUL
CHKD. BY Pwc	_ DATE	SHEET NO, OF <u>3</u>	Engineers • Geologists Environmental Specialis

[·] Planners

DRAINAGE CONTROL DIKE ANALYSIS.

CONSTRUCT BOTTOM ASH DRAINAGE CONTROL DINES ON CONTOURS TO CONTAIN AND CONTROL RUN-OFF FOR UP TO S INCHES OF RAINFALL AND 100% PUNOFF

DATA:

AUG	SLOPE	OF 7	NILE	FLOO	K -	- 10	16
DIKE	Upstre	Mm FF	ACE		- 2	8	
11	Down	STREVIN	11		- 3	81	
predu	DE 105	PEZT	FRE	E BO	ARIO	WITH	SHALE
LINER	SPILL	WAYS	ATE	NOS	01= ,	DIKES	
top 1	BIDTH	OF	DIKE	-	16	2	

TYPICAL SECTION

SUBJECT PHYSE B DRAINA		
BY DATE 3/11-12/96	PROJ. NO. <u>88-102-84</u>	Engineers • Geologists • Planners
CHKD. BY DATE 3/13/96	SHEET NO. <u>Z</u> OF <u>3</u>	Environmental Specialists

SUBJECT PLATE B. DRATINGE (OLTER)

$$CCLL 3$$

 $DCLL 3$
 $DCLL 3$

145

*