

2020 CCR & VSWMR Annual Groundwater Monitoring and Corrective Action Report

Possum Point Power Station Ponds ABC Solid Waste Permit No. 617

Prepared for:

Virginia Electric and Power Company

(d/b/a Dominion Energy Virginia) 120 Tredegar Street Richmond, Virginia 23219

Prepared by:

Golder Associates Inc.

2108 West Laburnum Ave., Suite 200 Richmond, Virginia, USA 23227

+1 804 358-7900

Project No. 20139775.220A

January 29, 2021

EXECUTIVE SUMMARY

This 2020 CCR and VSWMR Annual Groundwater Monitoring and Corrective Action Report (Report) was prepared by Golder Associates Inc. (Golder) on behalf of Virginia Electric and Power Company d/b/a Dominion Energy Virginia (Dominion Energy) for Ponds ABC (Unit) at the Possum Point Power Station (Station). Historically, the Station operated the Unit as an unlined surface impoundment for management of Coal Combustion Residuals (CCR) generated by the power generation operations at the Station. The Unit is considered an inactive CCR surface impoundment under Title 40 Code of Federal Regulations (CFR) Part 257.50 et seq. [Disposal of CCR from Electric Utilities (Final Rule; Federal Register Vol. 80, No. 74, 21302-21501 on April 17, 2015, as amended)], as well as the Commonwealth of Virginia adoption of 40 CFR Part 257 Subpart D by reference [Title 9 Virginia Administrative Code (VAC) Agency 20, Chapter 81-800 et seq. (9VAC20-81-800)]. Pursuant to the CCR Rule and the Virginia Department of Environmental Quality (DEQ)-issued solid waste permit (SWP), the Station is required to complete an Annual Groundwater Monitoring and Corrective Action Report (Report) for the Unit by January 31st annually or within 120 days of completing the laboratory analyses for the second semi-annual compliance event of the year, whichever occurs first.

As an inactive CCR surface impoundment in the Commonwealth of Virginia, the Unit is also subject to regulation under the Virginia Solid Waste Management Regulations (VSWMR). Consistent with this requirement, the Unit is maintained by Dominion Energy under SWP No. 617 issued by the DEQ on June 13, 2019. These regulations and the Unit's SWP require groundwater monitoring and reporting activities in addition to those required by the CCR Rule.

The Report is designed to meet the reporting requirements for both the CCR Rule and the VSWMR. Specifically, this Report documents the status of the groundwater monitoring program for the Unit, summarizes key actions completed, describes issues encountered and actions to resolve identified issues, and key project activities for the upcoming year. More specifically, this Report describes the performance of the Modified Assessment Monitoring Program (AMP) consistent with the Unit's SWP and the CCR Rule, activities performed to comply with CCR Rule and the Unit's SWP requirements, and the progression of future sampling activities pursuant to the CCR Rule and the Unit's SWP.

In accordance with 40 CFR Part 257.90(e)(6), the following information is being provided as an overview of the current status of groundwater monitoring and corrective action for the Unit:

- i. At the start of the current annual reporting period, whether the CCR unit was operating under the Detection Monitoring Program in §257.94 or the Assessment Monitoring Program in §257.95.
 - At the start of 2020, the Unit was operating under the Assessment Monitoring Program in §257.95 and the Modified Assessment Monitoring Program in accordance with the SWP.
- ii. At the end of the current annual reporting period, whether the CCR unit was operating under the Detection Monitoring Program in §257.94 or the Assessment Monitoring Program in §257.95.

ES-1

January 29, 2021

EXECUTIVE SUMMARY

- At the end of 2020, the Unit was operating under the Assessment Monitoring Program in §257.95 and the Modified Assessment Monitoring Program in accordance with the SWP.
- iii. If it was determined that there was a statistically significant increase over background for one or more constituents listed in Appendix III to this part pursuant to §257.94(e).
 - (A) Identify those constituents listed in Appendix III to this part and the names of the monitoring wells associated with such an increase
 - In 2020, there were statistically significant increases over background for the following Appendix III
 constituents at the following wells:
 - Boron wells ABC-1607, ABC-1608, ABC-1614
 - Calcium wells ABC-1607, ABC-1608, ABC-1614
 - Chloride wells ABC-1607, ABC-1608, ABC-1614
 - Total Dissolved Solids wells ABC-1602 (upgradient), ABC-1607, ABC-1608, ABC-1614
 - (B) Provide the date when the assessment program was initiated for the CCR Unit.
 - The Unit initiated the Assessment Monitoring Program on September 24, 2019.
- iv. If it was determined that there was a statistically significant level above the groundwater protection standard for one or more constituents listed in Appendix IV to this part pursuant to §257.95(g)
 - (A) Identify those constituents listed in Appendix IV to this part and the names of the monitoring wells associated with such an increase
 - In 2020, there were statistically significant increases over the federal CCR Rule groundwater protection standard (GWPS) for the following constituents at the following wells:
 - Arsenic well ABC-1614
 - Cobalt well ABC-1608
 - In 2020, there were statistically significant increases over the SWP groundwater protection standard (GPS) for the following constituents at the following wells:
 - Arsenic well ABC-1614
 - Boron wells ABC-1607, ABC-1608, ABC-1614
 - Cobalt well ABC-1608
 - Nickel wells ABC-1608, ABC-1614
 - (B) Provide the date when the Assessment of Corrective Measures was initiated for the CCR Unit
 - An Assessment of Corrective Measures was initiated pursuant to §257.95(g)(5) of CCR Rule for arsenic on January 22, 2020.
 - Boron and nickel were included in the Assessment of Corrective Measures pursuant to 9VAC20-81-260 et seq. of the VSWMR after exceedances over SWP GPS were identified on May 1, 2020.

January 29, 2021

EXECUTIVE SUMMARY

- Due to the SWP GPS exceedance of cobalt at ABC-1608 identified during the second semi-annual 2020 sampling event, Dominion Energy plans to submit an Alternate Source Demonstration (ASD) in accordance with CCR Rule and VSWMR timeframes.
- (C) Provide the date when the public meeting was held for the Assessment of Corrective Measures for the CCR Unit
 - Due to the coronavirus pandemic, a public meeting was not feasible during the reporting period.

 A public meeting will be scheduled for a future date when it is reasonable to do so.
- (D) Provide the date when the Assessment of Corrective Measures was completed for the CCR Unit
 - A draft Assessment of Corrective Measures Report (minus the public participation portion) was completed on June 19, 2020 and was submitted to DEQ the same day.
- v. Whether a remedy was selected pursuant to §257.97 during the current annual reporting period, and if so, the date of the remedy selection
 - A remedy was not selected during the current annual reporting period.
- vi. Whether remedial activities were initiated or are ongoing pursuant to §257.98 during the current annual reporting period
 - Remedial activities were not initiated or are not ongoing during this current annual reporting period.

Based on the 2020 sampling and data evaluation results, Golder recommends that Dominion Energy continue monitoring groundwater at this Unit under the Modified Assessment Monitoring Program and continue with the corrective action process in accordance with the CCR Rule and VSWMR.

January 29, 2021

TABLE OF CONTENTS

EXE	EXECUTIVE SUMMARY ES-1					
1.0	INT	RODUCT	ION	1		
	1.1	Site Lo	ocation	1		
	1.2	Site H	istory	2		
	1.3	Key A	ctions	2		
	1.4	Monito	oring Program Issues	3		
	1.5	Varian	ices	4		
2.0	SIT	E INFORI	MATION	5		
	2.1	Monito	oring Well Network	5		
		2.1.1	Annual Review of Monitoring Network	5		
		2.1.2	Monitoring Well Installation and Decommissioning Activities	5		
	2.2	Geolo	gy and Hydrogeology	5		
		2.2.1	Geology	5		
		2.2.2	Hydrogeology	6		
		2.2.3	Potentiometric Surface Evaluation	6		
		2.2.4	Groundwater Flow Rate Calculation	6		
		2.2.5	Network Certification	7		
3.0	FIE	LD ACTIV	/ITIES	8		
	3.1	First S	semi-Annual 2020 Modified Assessment Monitoring Program Sampling Event	8		
	3.2	Secon	d Semi-Annual 2020 Modified Assessment Monitoring Program Sampling Event	8		
		3.2.1	Second Semi-Annual 2020 Verification Sampling Activities	9		
4.0	LA	BORATO	RY ANALYTICAL RESULTS	10		
	4.1	First S	Semi-Annual 2020 Modified Assessment Program Sampling Event	10		
	4.2	Secon	d Semi-Annual 2020 Modified Assessment Monitoring Program Event	10		
		4.2.1	Second Semi-Annual 2020 Modified Assessment Monitoring Program Verification	4.5		
			Event			
	4.3	Revie	w of Prior Detections	10		

January 29, 2021

TABLE OF CONTENTS - CONTINUED -

5.0	GROU	INDWATER EVALUATION	.11
	5.1	Antimony	.11
	5.2	Arsenic	.11
	5.3	Barium	.11
	5.4	Beryllium	.11
	5.5	Boron	.11
	5.6	Cadmium	.11
	5.7	Calcium	.12
	5.8	Chloride	.12
	5.9	Chromium	.12
	5.10	Chromium, Hexavalent	.12
	5.11	Cobalt	.12
	5.12	Copper	.12
	5.13	Fluoride	.13
	5.14	Hardness	.13
	5.15	Iron	.13
	5.16	Lead	.13
	5.17	Lithium	.13
	5.18	Manganese	.13
	5.19	Mercury	.14
	5.20	Molybdenum	.14
	5.21	Nickel	.14
	5.22	рН	.14
	5.23	Phenolics	.14
	5.24	Potassium	.14
	5.25	Radium-226 and Radium-228 (combined)	.14

January 29, 2021

TABLE OF CONTENTS - CONTINUED -

	5.26	Seleniu	ım	15
	5.27	Silver		15
	5.28	Sodium	1	15
	5.29	Sulfate		15
	5.30	Thalliu	n	15
	5.31	Tin		15
	5.32	Total D	issolved Solids	15
	5.33	Total C	rganic Carbon	16
	5.34	Vanadi	um	16
	5.35	Zinc		16
6.0	DAT	A QUALI	TY VALIDATION	17
	6.1	First Se	emi-Annual 2020 Compliance Event Findings	17
	6.2	Second	I Semi-Annual 2020 Compliance Event Findings	17
	(6.2.1	Second Semi-Annual 2020 Verification Event Findings	18
7.0	STAT	TISTICAL .	EVALUATION OF GROUNDWATER DATA	19
	7.1	Site-Sp	ecific Background Evaluation	19
	7	7.1.1	First Semi-Annual 2020 Modified Assessment Monitoring Program Event	19
	-	7.1.2	Second Semi-Annual 2020 Modified Assessment Monitoring Program Event	19
	7.2		emi-Annual 2020 Modified Assessment Monitoring Program Event Groundwater ion Standards	20
	-	7.2.1	Solid Waste Permit Groundwater Protection Standard Exceedances	20
	7	7.2.2	CCR Groundwater Protection Standard Exceedances	21
	7.3		I Semi-Annual 2020 Modified Assessment Monitoring Program Event Groundwater ion Standards	21
	-	7.3.1	Solid Waste Permit Groundwater Protection Standard Exceedances	21
	-	7.3.2	CCR Groundwater Protection Standard Exceedances	22
8.0	CON	CLUSIO	VS	23

January 29, 2021

Second Semi-Annual Verification Groundwater Monitoring Event (October 2020)

D.3

January 29, 2021

TABLE OF CONTENTS - CONTINUED -

Appendix E	Laboratory Analytical Results
E.1	First Semi-Annual Groundwater Monitoring Event (February 2020)
E.2	Second Semi-Annual Groundwater Monitoring Event (August-September 2020)
E.3	Second Semi-Annual Verification Groundwater Monitoring Event (October 2020)
Appendix F	Historical Laboratory Detections
Appendix G	Data Validation Forms
G.1	First Semi-Annual Groundwater Monitoring Event Data Validation Form (February 2020)
G.2	Second Semi-Annual Groundwater Monitoring Event Data Validation Form
	(August-September 2020)
G.3	Second Semi-Annual Groundwater Verification Monitoring Event Data Validation Form
	(October 2020)
Appendix H	Ponds ABC Assessment of Corrective Measures Extension Demonstration and Certification

January 29, 2021

1.0 INTRODUCTION

This 2020 CCR & VSWMR Annual Groundwater Monitoring and Corrective Action Report (Report) was prepared by Golder Associates Inc. (Golder) on behalf of Virginia Electric and Power Company d/b/a Dominion Energy Virginia (Dominion Energy) for Ponds ABC (Unit) at the Possum Point Power Station (Station). Historically, the Station operated the Unit as an unlined surface impoundment for management of Coal Combustion Residuals (CCR) generated by the power generation operations at the Station. The Unit is considered an inactive CCR surface impoundment under Title 40 Code of Federal Regulations (CFR) Part 257.50 et seq. [Disposal of CCR from Electric Utilities (Final Rule; Federal Register Vol. 80, No. 74, 21302-21501 on April 17, 2015, as amended; Environmental Protection Agency [EPA], 2015, 2016, 2018, 2020a, 2020b)], as well as the Commonwealth of Virginia adoption of 40 CFR Part 257 Subpart D by reference [Title 9 Virginia Administrative Code (VAC) Agency 20, Chapter 81-800 et seq. (9VAC20-81-800; VWMB, 2019)]. Pursuant to the CCR Rule, the Station is required to complete an Annual Groundwater Monitoring and Corrective Action Report (Report) for the Unit by January 31st annually.

As an inactive CCR surface impoundment in the Commonwealth of Virginia, the Unit is also subject to regulation under the Virginia Solid Waste Management Regulations (Title 9, Virginia Administrative Code, Agency 20, Chapter 81 *et seq.*; VSWMR). Consistent with these requirements, the Unit is maintained by Dominion Energy under SWP No. 617 issued by the Virginia Department of Environmental Quality (DEQ; DEQ, 2019). These regulations and the Unit's SWP require groundwater monitoring and reporting activities that are in addition to those required by the CCR Rule. Specifically, the Unit's SWP also requires the submission of an Annual Report by January 31st of each calendar year or within 120 days of completing the laboratory analyses for the compliance event of the year, whichever occurs first. A completed copy of the DEQ's annual report checklist is presented in Appendix A.

Golder has prepared this Report for the Unit on behalf of Dominion Energy in accordance with CCR Rule Part 257.90(e), the Unit's SWP, and VSWMR requirements. This Report provides the monitoring data and the required data evaluations for the first and second semi-annual groundwater sampling events performed in February and August-September 2020.

1.1 Site Location

The Station is located in Prince William County at 19000 Possum Point Road, Dumfries, Virginia. As shown on Figure 1, the Station is located immediately west of the Potomac River and north of Quantico Creek. The Unit is located on the Station property immediately south of Possum Point Road near its intersection with Cockpit Point Road.

1

January 29, 2021

1.2 Site History

The Station has one active power generating unit: Unit 6 (combined cycle). Two of the former generating units (Units 3 and 4) that were converted from coal to natural gas in 2003, and two former generating units that were powered by coal (Units 1 and 2) have been retired. Unit 5 (heavy oil) was retired on December 30, 2020. Historically, the Station stored CCR in four unlined impoundments (Ponds A, B, C, and E) and one clay-lined impoundment (Pond D) located on site.

The Unit was constructed circa 1955 as a single embankment spanning three existing drainage features collectively covering approximately 10.6 acres. During operation, low-volume wastewaters including CCR flowed through the Unit until discharging through a riser structure on the northwest side of Pond C. The Unit operated until around 1967. Further expansion of the Station in the 1960s, as well as decreasing available storage in the Unit, prompted Dominion to construct an additional pond for ash sluicing. Placement of CCR into the Unit ceased in 1967. In 2016, excavation of the contents of the Unit was initiated to consolidate the CCR into Pond D. The DEQ confirmed removal of CCR and subsurface soils in conformance with the Unit's closure plan in August 2019.

1.3 Key Actions

Key actions for the Unit to date are as follows:

- Placed a copy of the Groundwater Monitoring Plan (GMP) documenting the design information for the monitoring wells pursuant to the CCR Rule [257.91(e)(1)] in the Unit's operating record on October 17, 2017 (last updated August 2019), pursuant to the CCR Rule [257.105(h)(2)];
- Initiated the collection of eleven baseline/background samples on November 4, 2016, and completed the background monitoring activities on December 13, 2018, pursuant to the CCR Rule [257.94(b)];
- Conducted the initial Detection Monitoring Program (DMP) compliance sampling event on March 11, 2019, and completed the sample analyses on April 17, 2019 (date of final laboratory analytical package), pursuant to the CCR Rule [257.94];
- Certified the Unit's groundwater monitoring system pursuant to the CCR Rule [257.91(e)(1) and Dominion Energy posted the Certification in the Unit's operating record on April 17, 2019, pursuant to the CCR Rule [257.105(h)(3)];
- Certified the selection of a statistical method pursuant to the CCR Rule [257.93(f)(6)] and Dominion Energy posted the Certification in the Unit's operating record on April 17, 2019, pursuant to the CCR Rule [257.105(h)(4)];
- The DEQ issued SWP No. 617 on June 13, 2019. The SWP initiated the Modified AMP and includes provisions for closure, groundwater monitoring, and surface water monitoring requirements for the Unit:
- Submitted the Pond ABC Closure by Removal Report and Engineer Certification to DEQ on June 25, 2019;

January 29, 2021

A notification of a Statistically Significant Increase (SSI) over Unit background concentrations under

the DMP was placed in the Unit's operating record on July 16, 2019;

- Submitted the Pond ABC Facility Background Determination Report (Golder, 2019b) and proposed Groundwater Protection Standards (GPS) to the DEQ on August 15, 2019;
- Received a letter from DEQ on August 30, 2019 verifying removal of CCR and subsurface soils in accordance with the unit's closure plan;
- Established groundwater protection standards (GWPS) for detected constituents in Appendix IV of Part 257 on October 24, 2019, pursuant to the CCR Rule [257.95(d)(2)];
- An ACM was initiated on January 22, 2020, with the notification of initiation placed in the Unit's operating record on February 21, 2020;
- Conducted the first semi-annual 2020 Modified AMP sampling event on February 19, 2020, and completed the sample analyses on March 18, 2020 (revised April 10, 2020), pursuant to the CCR Rule [257.94] and the Unit's SWP;
- Received a letter from DEQ on April 2, 2020, approving the ACM extension request and approving background based GPS for the Unit;
- Completed and certified an ACM extension demonstration for the Unit's ACM on April 21, 2020, a copy of which is presented in Appendix H;
- Notification of first semi-annual 2020 Federal Maximum Contaminant Level (MCL)-based SWP GPS exceedances was submitted to the DEQ on May 1, 2020;
- Notification of first semi-annual 2020 federal CCR GWPS exceedances was placed in the Unit's operating record on May 1, 2020;
- Completed the ACM for arsenic, boron, and nickel on June 19, 2020, and placed it into the Unit's operating record on the same day (Haley and Aldrich, 2020);
- Conducted the second semi-annual 2020 Modified AMP sampling event on September 2, 2020 (water levels gauged on August 31, 2020), and completed the sample analyses on October 1, 2020 (revised October 13, 2020), pursuant to the CCR Rule [257.94] and the Unit's SWP;
- Conducted a second semi-annual 2020 Modified AMP verification sampling event on October 15, 2020, and completed analysis on October 22, 2020, pursuant to the Unit's SWP;
- Notification of second semi-annual 2020 and SWP GPS exceedances was submitted to the DEQ on November 13, 2020; and
- Notification of second semi-annual 2020 federal CCR GWPS exceedances was placed in the Unit's operating record on November 13, 2020.

1.4 Monitoring Program Issues

There were no monitoring program concerns identified during the compliance monitoring events conducted in 2020.

3

January 29, 2021

1.5 Variances

The Station currently does not have any variances related to the groundwater monitoring program for the Unit.

4

January 29, 2021

2.0 SITE INFORMATION

The Station is owned and maintained by Dominion Energy and consists of approximately 650 acres on a peninsula that is bordered to the east and south by the Potomac River, and to the west by Quantico Creek. The Station property is used for industrial purposes, and the surrounding properties are generally undeveloped or consist of private residential development. Undeveloped areas primarily consist of predominantly hardwoods and deciduous wooded uplands with wetlands present in low lying areas adjacent to stream channels.

The Unit defined as an inactive CCR impoundments per the CCR rule and VSWMR regulations and as an inactive surface impoundment, the Unit was subject to the groundwater monitoring provisions of the CCR Rule by April 17, 2019, and the provisions of the DEQ-issued SWP on June 13, 2019.

2.1 Monitoring Well Network

The Unit's GMP (Golder, 2018; Golder 2019a) details the design of the Unit's CCR Rule groundwater monitoring network. As presented in the GMP, the monitoring network is comprised of one (1) upgradient/background well (ABC-1602) and three (3) downgradient monitoring wells (ABC-1607, ABC-1608, and ABC-1614) designed to monitor the uppermost aquifer beneath the Unit. The groundwater monitoring well locations relative to the Unit are shown on Figure 2.

2.1.1 Annual Review of Monitoring Network

Wells were inspected during each sampling event and were determined to be functioning appropriately and no wells require replacement.

2.1.2 Monitoring Well Installation and Decommissioning Activities

Upgradient compliance well ABC-1602 and downgradient compliance wells ABC-1607, ABC-1608, and ABC-1614 were installed between September and October 2016. As of the date of this report, no compliance wells for the Unit have been decommissioned.

2.2 Geology and Hydrogeology

A summary of the geology and hydrogeology for the Station is presented in the following sections.

2.2.1 Geology

The Station and surrounding area are located entirely within the Coastal Plain physiographic province of Virginia. This province is characterized by transgressive and regressive unconsolidated sediments that generally form broad terraces that slope towards the east. The terraces are transected by surface drainage channels, some of which have since been infilled.

January 29, 2021

The Station is underlain by Cretaceous marine sediments of the Potomac Formation and Tertiary to Quaternary fluvial-deltaic sediments mapped as lower Tertiary terrace deposits, and the Charles City, Shirley, and Tabb Formations. These sediments are unconsolidated and consist of clays, silts, poorly to well sorted sands, and gravel that exist as interbedded, discontinuous, horizontal layers across the site. The thickness of the sedimentary sequence ranges up to at least 600 feet as determined by well logs for the surrounding area. The Station appears to be located immediately west of a northeasterly trending monocline, which may be contributing to the easterly dip observed for the geologic strata.

Based on geological data obtained from soil borings advanced at the Station, the Potomac Confining Unit is considered to be a confining unit for the underlying Potomac Aquifer. The Potomac Confining Unit is present across the upland study area beneath the Unit. Therefore, the uppermost aquifer beneath the study area, which is present within the overlaying Quaternary/Tertiary and Cretaceous sediments, is physically and hydrologically separated from the lower confined Potomac Aquifer.

2.2.2 Hydrogeology

The uppermost aquifer beneath the Unit is unconfined and is present in the Quaternary/Tertiary and Cretaceous sediments that overlie the Potomac Confining Unit. Locally, the groundwater flow direction in the uppermost aquifer beneath the Unit is from the northeast to the southwest.

2.2.3 Potentiometric Surface Evaluation

The purpose of this evaluation is to determine the elevation of the groundwater surface beneath the Unit by generating a potentiometric surface contour map using groundwater elevations from compliance wells. Historical static water level data for the Unit are summarized in Appendix B.

The Groundwater Surface Contour Map presented as Figure 2 was prepared using static water level data obtained during the first semi-annual Modified AMP compliance event on February 19, 2020. The Groundwater Surface Contour Map presented as Figure 3 was prepared using static water level data obtained during the second semi-annual Modified AMP compliance event on August 31, 2020. The interpreted data indicates that the groundwater gradient and flow directions remain consistent (southwest) with previous interpretations. Consequently, the groundwater monitoring network continues to adequately monitor the uppermost aquifer in accordance with provisions of the CCR Rule (257.91) and the VSWMR (9VAC20-81-250.A.3).

2.2.4 Groundwater Flow Rate Calculation

Consistent with the requirements of the CCR Rule, the rate and direction of groundwater flow within the uppermost aquifer beneath the Unit was determined after each sampling event. Appendix C presents the equations used to calculate the approximate horizontal rate of groundwater flow in the uppermost aquifer beneath the Unit. Concurrently, with the June 2019 ACM performed for Pond D (Golder, 2019c), the average estimated hydraulic

January 29, 2021

conductivity for the uppermost aquifer (site-wide) was recalculated. As presented in the 2019 Pond D ACM (Golder, 2019c), the average estimated hydraulic conductivity decreased from 3.16E-04 centimeters per second (cm/s) to 2.01E-04 cm/s. Using this updated hydraulic conductivity estimate, the estimated average groundwater flow rate in the uppermost aquifer beneath the Unit was calculated at approximately 25.6 to 27.1 feet per year.

2.2.5 Network Certification

Based on this evaluation and previous evaluations completed for the Unit, the Unit's permitted groundwater monitoring system continues to adequately monitor the uppermost aquifer beneath the Unit in accordance with requirements of 9VAC20-81-250.A.3 and 9VAC20 81 250.E.2.a.(2)(e).

7

January 29, 2021

3.0 FIELD ACTIVITIES

Compliance groundwater sampling activities that occurred during 2020 are summarized in the following sections.

3.1 First Semi-Annual 2020 Modified Assessment Monitoring Program Sampling Event

Pursuant to the requirements in 40 CFR 257.95(d)(1) and the SWP, a semi-annual Modified AMP monitoring event was completed for the Unit on February 19, 2020, for the constituents and parameters listed Appendices III and IV of the CCR Rule and the additional constituents and parameters listed the SWP (VSWMR Table 3.1 metals not included in the CCR Rule, former Virginia Pollutant Discharge Elimination System [VPDES] constituents not included in the CCR Rule, and hexavalent chromium).

During the first semi-annual Modified AMP sampling event, the compliance monitoring wells were sampled in accordance with the procedures presented in the Station's GMP (Golder, 2018; Golder, 2019a). Samples collected during the first semi-annual Modified AMP event, with the exception of hexavalent chromium, were submitted on ice in secured coolers under chain of custody control to Pace Analytical Services, LLC (Pace) in Mechanicsville, Virginia. The samples were then shipped to the Asheville, North Carolina (#460222), Ormond Beach, Florida (#460165), and Greensburg, Pennsylvania (#460198) locations of Pace for analysis. The hexavalent chromium samples were submitted on ice in secured coolers under chain of custody control to Air Water & Soil Laboratories, Inc. (AWS) in Richmond, Virginia. Pace and AWS (#460021) are Virginia Environmental Laboratory Accreditation Program (VELAP)-accredited laboratories for the analyses required under the federal and state regulations as outlined in the GMP and SWP. The field data sheets for the first semi-annual 2020 Modified AMP sampling events are included in Appendix D.1.

Monitoring Event	Sample Date(s)	Final Laboratory Package Receipt Date
First Semi-Annual Modified AMP E	Event February 19, 2020	March 18, 2020 (revised April 10, 2020)

3.2 Second Semi-Annual 2020 Modified Assessment Monitoring Program Sampling Event

Pursuant to the requirements in 40 CFR 257.95(d)(1) and the SWP, a semi-annual Modified AMP monitoring event was completed for the Unit on September 2, 2020 (water levels gauged on August 31, 2020), for the constituents and parameters listed Appendices III and IV of the CCR Rule and the additional constituents and parameters listed the SWP.

During the second semi-annual Modified AMP sampling event, the compliance monitoring wells were sampled in accordance with the procedures presented in the Station's GMP (Golder, 2018; Golder, 2019a). Samples collected

January 29, 2021

during the second semi-annual Modified AMP event, with the exception of hexavalent chromium, were submitted on ice in secured coolers under chain of custody control to Pace in Mechanicsville, Virginia. The samples were then shipped to the Asheville, North Carolina (#460222), Eden, North Carolina (#460025), Baton Rouge, Louisiana (#460215), and Greensburg, Pennsylvania (#460198) locations of Pace for analysis. The hexavalent chromium samples were submitted on ice in secured coolers under chain-of-custody control to Enthalpy Analytical, Inc. (Enthalpy; formerly AWS) in Richmond, Virginia. Enthalpy retains the VELAP-accreditation held by AWS. The field

Monitoring Event	Sample Date(s)	Final Laboratory Package Receipt Date
Second Semi-Annual Modified AMP Event	September 2, 2020	October 1, 2020 (revised October 13, 2020)

data sheets for the second semi-annual 2020 Modified AMP sampling events are included in Appendix D.2.

3.2.1 Second Semi-Annual 2020 Verification Sampling Activities

Due to the identification of suspect analytical results for cobalt in the sample collected from compliance monitoring well ABC-1608, a verification sampling event was conducted on October 15, 2020. The well was sampled in accordance with the GMP. The field data sheets for the second semi-annual 2020 Modified AMP verification sampling event are included in Appendix D.3. After completing the field activities, the groundwater verification sample and associated quality control sample (field blank) were submitted on October 15, 2020, on ice and in a secured cooler under chain of-custody control to Pace in Mechanicsville, Virginia and shipped to the Asheville, North Carolina (#460222) location.

A summary of the second semi-annual 2020 Modified AMP verification sampling event is presented in the following table:

Monitoring Event	Sample Date(s)	Final Laboratory Package Receipt Date
Second Semi-Annual Modified AMP Verification Event	October 15, 2020	October 21, 2020

January 29, 2021

4.0 LABORATORY ANALYTICAL RESULTS

Laboratory analytical results from the sampling events conducted in 2020 are summarized in the following sections.

4.1 First Semi-Annual 2020 Modified Assessment Program Sampling Event

Groundwater samples collected during the first semi-annual 2020 Modified AMP event were analyzed by Pace and AWS for the presence and concentrations of the constituents and parameters listed in Appendices III and IV of the CCR Rule as well as additional SWP-required constituents. The laboratory certificates of analysis and chain-of-custody forms for the sampling event are presented in Appendix E.1. A summary of the CCR and VSWMR sampling data for the event is presented in Table 1.

4.2 Second Semi-Annual 2020 Modified Assessment Monitoring Program Event

Groundwater samples collected during the second semi-annual 2020 Modified AMP event were analyzed by Pace and Enthalpy for the presence and concentrations of the constituents and parameters listed in Appendices III and IV of the CCR Rule as well as additional SWP-required constituents. The laboratory certificates of analysis and chain-of-custody forms for the sampling event are presented in Appendix E.2. A summary of the CCR and VSWMR sampling data for the event is presented in Table 2.

4.2.1 Second Semi-Annual 2020 Modified Assessment Monitoring Program Verification Event

Groundwater samples collected during the second semi-annual 2020 Modified AMP verification event were analyzed for the presence and concentration of cobalt. The laboratory certificates of analysis and chain-of-custody forms for the sampling event are presented in Appendix E.3. A summary of the sampling data for the event is presented in Table 3.

4.3 Review of Prior Detections

A summary of historically detected constituents for each well is presented in Appendix F.

10

January 29, 2021

5.0 GROUNDWATER EVALUATION

Groundwater samples collected in 2020 were analyzed for constituents and parameters listed in Appendices III and IV of the CCR Rule as well as additional SWP-required constituents. Constituent and parameter data are discussed in the following sections.

5.1 Antimony

Antimony was not detected in the 2020 samples.

5.2 Arsenic

Arsenic was detected at estimated concentrations above the laboratory method detection limit (MDL) in the samples collected from ABC-1608. Arsenic was detected at quantified concentrations above the laboratory reporting limit (RL) in the first and second semi-annual samples collected from ABC-1614 at concentrations of 44.4 micrograms per liter (μ g/L) and 44.1 μ g/L, respectively.

5.3 Barium

Barium was detected at quantified concentrations above the laboratory RL in each compliance well with concentrations ranging from 50.6 μ g/L in the first semi-annual sample collected from ABC-1607 to 185 μ g/L in the second semi-annual sample collected from ABC-1614.

5.4 Beryllium

Beryllium was detected at an estimated concentration above the laboratory MDL in the sample collected from upgradient well ABC-1602 during the first semi-annual sampling event. Beryllium was not detected at quantified concentrations above the laboratory RL in the 2020 samples.

5.5 Boron

Boron was detected at quantified concentrations above the laboratory RL in wells ABC-1607, ABC-1608, and ABC-1614 at concentrations ranging from 190 μ g/L to 225 μ g/L in the first and second semi-annual samples, respectively, collected from ABC-1607.

5.6 Cadmium

Cadmium was not detected in the 2020 samples.

11

January 29, 2021

5.7 Calcium

Calcium was detected at quantified concentrations above the laboratory RL with concentrations ranging from $6,480~\mu g/L$ in the second semi-annual sample collected from upgradient well ABC-1602 to $24,000~\mu g/L$ in the first semi-annual sample collected from ABC-1614.

5.8 Chloride

Chloride was detected at quantified concentrations above the laboratory RL with concentrations ranging from 2.9 milligrams per liter (mg/L) in the first semi-annual sample collected from upgradient well ABC-1602 to 54.7 mg/L in the second semi-annual sample collected from ABC-1608.

5.9 Chromium

Total chromium was detected at an estimated concentration above the laboratory MDL in the sample collected from upgradient well ABC-1602 during the first semi-annual sampling event. Chromium was not detected at quantified concentrations above the laboratory RL in the 2020 samples.

5.10 Chromium, Hexavalent

Hexavalent chromium was detected at a quantified concentration above the laboratory RL of $5.0 \,\mu\text{g/L}$ in the sample collected from ABC-1614 (14.0 $\,\mu\text{g/L}$) during the second semi-annual sampling event. However, this result was qualified as estimated due to presumed matrix interference since the total chromium result was reported as a non-detect, less than the laboratory MDL of $3.7 \,\mu\text{g/L}$ (see Table 2).

5.11 Cobalt

Cobalt was detected at quantified concentrations above the laboratory RL in each compliance well with concentrations ranging from 8.2 μ g/L in the second semi-annual sample collected from ABC-1607 to 26.5 μ g/L in the second semi-annual sample collected from ABC-1608. Verification sampling confirmed the cobalt result in the second semi-annual sample collected from ABC-1608 (25.4 μ g/L).

5.12 Copper

Copper was detected at quantified concentrations above the laboratory RL in the first and second semi-annual samples collected from upgradient well ABC-1602 at concentrations of 7.7 μ g/L to 8.7 μ g/L, respectively.

12

January 29, 2021

5.13 Fluoride

Fluoride was detected at estimated concentrations above the laboratory MDL in one or both of the semi-annual samples collected from ABC-1607, ABC-1608, and ABC-1614. Fluoride was not detected at quantified concentrations above the laboratory RL in the 2020 samples.

5.14 Hardness

Hardness is a former VPDES constituent that is currently monitored under the SWP. Hardness was detected at quantified concentrations above the laboratory RL at each compliance well with concentrations ranging from 32.8 mg/L in the second semi-annual sample collected from upgradient well ABC-1602 to 97.0 mg/L in the first semi-annual sample collected from ABC-1614.

5.15 Iron

Iron is a former VPDES constituent that is currently monitored under the SWP. Iron was detected at quantified concentrations above the laboratory RL in each compliance well with concentrations ranging from 55.6 μ g/L in the first semi-annual sample collected from upgradient well ABC-1602 to 31,600 μ g/L in the second semi-annual sample collected from ABC-1614.

5.16 Lead

Lead was detected at estimated concentrations above the laboratory MDL in the first semi-annual samples collected at ABC-1607 and ABC-1608 and in the second semi-annual sample collected from upgradient well ABC-1602. Lead was detected at quantified concentrations above the laboratory RL in the first semi-annual samples collected from upgradient well upgradient well ABC-1602 (0.12 μ g/L) and ABC-1614 (0.18 μ g/L) and in the second semi-annual sample collected from ABC-1614 (0.20 μ g/L).

5.17 Lithium

Lithium was detected at quantified concentrations above the laboratory RL at each compliance well with concentrations ranging from 3.1 μ g/L in the second semi-annual sample collected from ABC-1607 to 15.7 μ g/L in the first semi-annual sample collected from ABC-1614.

5.18 Manganese

Manganese is a former VPDES constituent that is currently monitored under the SWP. Manganese was detected at quantified concentrations above the laboratory RL at each compliance well with concentrations ranging from $164 \mu g/L$ in the first semi-annual sample collected from ABC-1608 to $312 \mu g/L$ in the first semi-annual sample collected from ABC-1614.

13

January 29, 2021

5.19 Mercury

Mercury was not detected in the 2020 samples.

5.20 Molybdenum

Molybdenum was detected at an estimated concentration above the laboratory MDL in the sample collected from ABC-1608 during the first semi-annual sampling event. Molybdenum was not detected at quantified concentrations above the laboratory RL in the 2020 samples.

5.21 Nickel

Nickel was detected at quantified concentrations above the laboratory RL at each compliance well with concentrations ranging from 7.1 μ g/L in the second semi-annual sample collected from upgradient well ABC-1602 to 19.8 μ g/L in the second semi-annual sample collected from ABC-1608.

5.22 pH

pH measurements ranged from 4.44 Standard Units (S.U.) in the second semi-annual sample collected from upgradient well ABC-1602 to 6.15 S.U. in the first semi-annual sample collected from ABC-1614.

5.23 Phenolics

Groundwater samples were analyzed for total phenolics which is a former VPDES permit required constituent that is now monitored under the SWP. Total phenolics were detected at an estimated concentration above the laboratory MDL in the first semi-annual sample collected from upgradient well ABC-1602. Total phenolics were detected at quantified concentrations above the laboratory RL with concentrations ranging from 12.0 µg/L to 120 µg/L in the first and second semi-annual samples, respectively, collected from ABC-1614. It is noted that the second semi-annual results for phenolics were qualified as estimated using EPA guidance based on similar detections in the associated field blank.

5.24 Potassium

Potassium is a former VPDES constituent that is currently monitored under the SWP. Potassium was detected at quantified concentrations above the laboratory RL with concentrations ranging from 2,060 μ g/L in the first semi-annual sample collected from ABC-1607 to 6,450 μ g/L in the first semi-annual sample collected from upgradient well ABC-1602.

5.25 Radium-226 and Radium-228 (combined)

Radium-226 and radium-228 (combined) were detected at concentrations above the Minimum Detectable Concentration (MDC) in samples collected at each compliance well during the first semi-annual sampling event with

January 29, 2021

concentrations ranging from 1.52 picoCuries per liter (pCi/L; ABC-1614) to 2.79 pCi/L (upgradient well ABC-1602). It is noted that the first semi-annual results for total radium are qualified as estimated using Department of Energy (DOE) guidance based on similar detections of radium-226 in the associated method blank.

For the second semi-annual samples, radium-226 and radium-228 (combined) were detected at a concentration above the MDC in the sample collected from upgradient well ABC-1602 (3.29 pCi/L).

5.26 Selenium

Selenium was not detected in the 2020 samples.

5.27 Silver

Silver was not detected in the 2020 samples.

5.28 Sodium

Sodium is a former VPDES constituent that is currently monitored under the SWP. Sodium was detected at quantified concentrations above the laboratory RL at each compliance well with concentrations ranging from $8,240 \mu g/L$ in the first semi-annual sample collected from upgradient well ABC-1602 to $33,400 \mu g/L$ in the first semi-annual sample collected from ABC-1608.

5.29 Sulfate

Sulfate was detected at quantified concentrations above the laboratory RL at each compliance well with concentrations ranging from 28.1 mg/L in the first semi-annual sample collected from ABC-1608 to 56.7 mg/L in the first semi-annual sample collected from upgradient well ABC-1602.

5.30 Thallium

Thallium was not detected in the 2020 samples.

5.31 Tin

Tin was detected at an estimated concentration above the laboratory MDL in the sample collected from ABC-1607 during the first semi-annual sampling event. Tin was not detected at quantified concentrations above the laboratory RL in the 2020 samples.

5.32 Total Dissolved Solids

Total dissolved solids (TDS) was detected at quantified concentrations above the laboratory RL in each compliance well with concentrations ranging from 123 mg/L in the first semi-annual sample collected from ABC-1607 to 244 mg/L in the second semi-annual sample collected from ABC-1614.

15

January 29, 2021

5.33 Total Organic Carbon

Groundwater samples were analyzed for total organic carbon (TOC) which is a former VPDES permit required constituent that is now monitored under the SWP. TOC was detected at estimated concentrations above the laboratory MDL in both semi-annual samples collected from ABC-1607. TOC was detected at quantified concentrations above the laboratory RL in samples collected from ABC-1608 and ABC-1614 ranging from 1.2 mg/L in the first semi-annual sample collected from ABC-1608 to 3.0 mg/L in the second semi-annual sample collected from ABC-1614.

5.34 Vanadium

Vanadium was detected at estimated concentrations above the laboratory MDL in the first semi-annual sample collected from ABC-1614. Vanadium was not detected at quantified concentrations above the laboratory RL in the 2020 samples.

5.35 Zinc

Zinc was detected at an estimated concentration above the laboratory MDL in the first semi-annual samples collected from upgradient well ABC-1602 and ABC-1608. Zinc was detected at quantified concentrations above the laboratory RL in the first and second semi-annual samples collected from ABC-1607 at concentrations of 21.3 μg/L to 19.8 μg/L, respectively, and in the second semi-annual sample collected from ABC-1608 (12.3 μg/L).

January 29, 2021

6.0 DATA QUALITY VALIDATION

The Quality Assurance (QA) and quality control (QC) data provided by the laboratory for the Modified AMP sampling events were reviewed to ensure that the analytical results met the project's data quality objectives as outlined in the Station's GMP. The review process was performed in general accordance with procedures outlined in the following EPA guidance documents:

- National Functional Guidelines for Inorganic Superfund Methods Data Review, January 2017 (EPA, 2017);
- National Functional Guidelines for Organic Superfund Methods Data Review, January 2017 (EPA, 2017); and
- Evaluation of Radiochemical Data Usability. 1997. Department of Energy (DOE; Paar, G. et al., April 1997).

6.1 First Semi-Annual 2020 Compliance Event Findings

The laboratory and field QA/QC data for the initial DMP compliance monitoring event samples collected February 19, 2020, were reviewed in accordance with EPA/DOE protocol. The field QA/QC samples for this event included a field blank and a duplicate sample that were collected at the Unit on February 19, 2020. These samples were analyzed for the same constituents as the groundwater samples. A description of the laboratory QA/QC data associated with the February groundwater monitoring event is presented in Appendix G.1.

As presented in Appendix G.1, with the exception of fluoride, phenolics, potassium, sodium, and sulfate matrix spike and/or matrix spike duplicate recoveries that are outside of QC limits, laboratory QC results were within acceptable limits and interference free. The associated sample delivery group (analytical batch) and recoveries outside QC limits are detailed in the laboratory certificates of analysis presented in Appendix E.1 and data are accepted using professional judgement based on review of historical results and acceptable laboratory control sample (LCS) recoveries. It is noted that a reported sample results in one or more wells (manganese, sodium, and radium-226) were qualified as estimated per EPA/DOE protocol due to similar analyte detections in one or more sample-group associated QC samples (method blank). Per DOE guidance, qualified for results for radium-226 will result in qualified results for total radium (see Table 1). Based on review of the laboratory-provided QC data, EPA/DOE guidance recommendations, and Golder's professional judgement, the data for the February 2020 compliance event were determined to meet the data quality objectives for the project.

6.2 Second Semi-Annual 2020 Compliance Event Findings

The laboratory and field QA/QC data for the second semi-annual compliance monitoring event samples collected September 2, 2020, were reviewed in accordance with EPA and DOE Protocol. Field QA/QC samples for this event included a field blank and a duplicate sample that was collected at the Unit on September 2, 2020. These QA/QC

January 29, 2021

samples were analyzed for the same constituents as the groundwater samples. A description of the laboratory QA/QC data associated with the February groundwater monitoring event is presented in Appendix G.2.

As presented in Appendix G.2, with the exception of calcium, cobalt, iron, manganese, phenolics, potassium, and sodium matrix spike and/or matrix spike duplicate recoveries that are outside of QC limits, laboratory QC results were within acceptable limits and interference free. The associated sample delivery group (analytical batch) and recoveries outside QC limits are detailed in the laboratory certificates of analysis presented in Appendix E.2 and data are accepted using professional judgement based on review of historical results and acceptable laboratory control sample (LCS) recoveries. It is noted that a reported sample results in one or more wells (total phenolics) were qualified as estimated per EPA/DOE protocol due to similar analyte detections in one or more sample-group associated QC samples (field blank). It is noted that the reported sample result for total phenolics in the sample collected from upgradient well ABC-1602 was also qualified as estimated per EPA protocol due to duplicate imprecision; thus, the total phenolics results reported at upgradient well ABC-1602 and in the duplicate sample are qualified with a non-directionally biased qualifier (J) as it supersedes the directionally biased qualifier (J+). The reported sample result for hexavalent chromium in the sample collected from ABC-1614 was qualified as estimated per EPA guidance due to total chromium sample results reported as non-detect. Based on review of the laboratory-provided QC data, EPA/DOE guidance recommendations, and Golder's professional judgement, the data for the September 2020 compliance event were determined to meet the data quality objectives for the project.

6.2.1 Second Semi-Annual 2020 Verification Event Findings

The laboratory and field QA/QC data for the second semi-annual 2020 verification sampling event collected October 15, 2020, were reviewed in accordance with EPA protocol. Laboratory QC results were within acceptable limits and interference free. A description of the laboratory QA/QC data associated with the October groundwater monitoring event is presented in Appendix G.3. Based on review of the laboratory-provided QC data, EPA guidance recommendations, and Golder's professional judgement, the data for the October 2020 verification event were determined to meet the data guality objectives for the project.

January 29, 2021

7.0 STATISTICAL EVALUATION OF GROUNDWATER DATA

This section presents a statistical evaluation for the 2020 data according to the requirements of the CCR Rule and the SWP. Two types of statistical analyses have been conducted as follows:

- Data have been evaluated with respect to background data; this evaluation identifies statistically significant increases (SSIs) in downgradient wells over site-specific background using a value-to-value comparison; and
- Data have been evaluated with respect to GPS/GWPS using a value-to-standard comparison.

7.1 Site-Specific Background Evaluation

7.1.1 First Semi-Annual 2020 Modified Assessment Monitoring Program Event

Consistent with XI.H.2 of the Unit's SWP and §257.93(h) of the CCR Rule, Golder evaluated the DMP constituent detections against established site background concentrations. The evaluation was performed with the background concentrations submitted to the DEQ in the August 15, 2019, *Facility Background Determination Report*. The Unit's background concentrations were approved by the DEQ on April 2, 2020. Based on this evaluation, the following SSIs for DMP constituents (CCR Rule Appendix III constituents) over the Unit's background concentrations were identified during the 2020 first semi-annual groundwater monitoring event (see Table 1):

- Boron (ABC-1607, ABC-1608, ABC-1614)
- Calcium (ABC-1608, ABC-1614)
- Chloride (ABC-1607, ABC-1608, ABC-1614)
- Total Dissolved Solids (ABC-1602 [upgradient], ABC-1608, ABC-1614)

The following SSIs for AMP constituents (CCR Rule Appendix IV constituents) over the Unit's background concentrations were identified during the 2020 first semi-annual groundwater monitoring event (see Table 1):

- Arsenic (ABC-1614)
- Barium (ABC-1614)

A notification of these SSIs was submitted to the DEQ on May 1, 2014, pursuant to Section XI.H.4.a of the SWP.

7.1.2 Second Semi-Annual 2020 Modified Assessment Monitoring Program Event

Consistent with XI.H.2 of the Unit's SWP and §257.93(h) of the CCR Rule, Golder evaluated the DMP constituent detections against established site background concentrations. The evaluation was performed with the background concentrations submitted to the DEQ in the August 15, 2019, *Facility Background Determination Report*. The Unit's background concentrations were approved by the DEQ on April 2, 2020. Based on this evaluation, the following

January 29, 2021

SSIs for DMP constituents over the Unit's background concentrations were identified during the 2020 second

Boron (ABC-1607, ABC-1608, ABC-1614)

semi-annual groundwater monitoring event (see Table 2):

- Calcium (ABC-1607, ABC-1608, ABC-1614)
- Chloride (ABC-1607, ABC-1608, ABC-1614)
- Total Dissolved Solids (ABC-1602 [upgradient], ABC-1607, ABC-1608, ABC-1614)

The following SSIs for AMP constituents over the Unit's background concentrations were identified during the 2020 second semi-annual groundwater monitoring event (see Table 2):

- Arsenic (ABC-1614)
- Barium (ABC-1614)
- Cobalt (ABC-1608)

A notification of these SSIs was submitted to the DEQ on November 13, 2020, pursuant to Section XI.H.4.a of the SWP. As the Unit is already monitoring groundwater under the Modified AMP, no additional actions beyond reporting these background exceedances were required for the first and second semi-annual periods of 2020.

7.2 First Semi-Annual 2020 Modified Assessment Monitoring Program Event Groundwater Protection Standards

7.2.1 Solid Waste Permit Groundwater Protection Standard Exceedances

Consistent with XI.H.2 of the Unit's SWP, Golder evaluated the Modified AMP constituents (CCR Rule Appendix IV constituents, VSWMR metals, and boron) against SWP GPS. Based on this evaluation, the following SWP GPS exceedances were identified during the 2020 first semi-annual groundwater monitoring event. Background based SWP GPS were approved by the DEQ on April 2, 2020.

Constituent Groundwater Protection Standa		Assessment Monitoring Well	1SA 2020 Concentration	
Arsenic (µg/L)	Arsenic (µg/L) 10.0 ABC-		44.4 (43.7)	
		ABC-1607	190	
Boron (µg/L)	94.5	ABC-1608	220	
		ABC-1614 (ABC-1614 Duplicate)	200 (190)	

January 29, 2021

Constituent	Groundwater Protection Standard	Assessment Monitoring Well	1SA 2020 Concentration
		ABC-1608	18.0
Nickel (μg/L)	11.3	ABC-1614 (ABC-1614 Duplicate)	14.8 (14.5)

Note: μg/L = Microgram per liter

A notification of these SWP GPS exceedances was submitted to the DEQ on May 1, 2020, pursuant to Section XI.H.4.a of the SWP. In response to these SWP GPS exceedances, Dominion Energy initiated an NES and an ACM in accordance with 9VAC-81-260 *et seq.* of the VSWMR. The ACM was completed and submitted to the DEQ on June 19, 2020.

7.2.2 CCR Groundwater Protection Standard Exceedances

Consistent with §257.95(h)(2) of the CCR Rule, Golder evaluated the AMP constituents (CCR Rule Appendix IV constituents) against the established federal Groundwater Protection Standards (GWPS). Based on this evaluation, the following federal CCR GWPS exceedances were identified during the 2020 first semi-annual groundwater monitoring event.

Constituent	Groundwater Protection Standard	Assessment Monitoring Well	1SA 2020 Concentration
Arsenic (µg/L)	10.0	ABC-1614 (ABC-1614 Duplicate)	44.4 (43.7)

Note: μg/L = Microgram per liter

A notification of these federal CCR GWPS exceedances was placed in the Unit's operating record on May 1, 2020, pursuant to §257.95(g) and §257.105(h)(8) of the CCR Rule. In response to a federal CCR GWPS exceedance of arsenic identified for the second semi-annual 2019 sampling event, Dominion Energy initiated an NES and an ACM in accordance with §257.96 and §257.105 of the CCR Rule. The ACM was completed and placed in the Unit's operating record on June 19, 2020.

7.3 Second Semi-Annual 2020 Modified Assessment Monitoring Program Event Groundwater Protection Standards

7.3.1 Solid Waste Permit Groundwater Protection Standard Exceedances

Consistent with XI.H.2 of the Unit's SWP, Golder evaluated the Modified AMP constituents against SWP GPS. Based on this evaluation, the following SWP GPS exceedances were identified during the 2020 second semi-annual groundwater monitoring event.

January 29, 2021

Constituent	Groundwater Protection Standard	Assessment Monitoring Well	2SA 2020 Concentration	2SA 2020 Verification Concentration
Arsenic (μg/L)	10.0	ABC-1614	44.1	
	94.5	ABC-1607	225	
Boron (µg/L)		ABC-1608	217	
		ABC-1614	212	
Cobalt (µg/L)	24.9	ABC-1608	26.5	25.4
Niekal (ve/l)	11.3	ABC-1608	19.8	
Nickel (μg/L)		ABC-1614	15.1	

Note: μg/L = Microgram per liter

A notification of these SWP GPS exceedances was submitted to the DEQ on November 13, 2020, pursuant to Section XI.H.4.a of the SWP. The arsenic, boron, and nickel exceedances were previously addressed in the June 2020 ACM. In response to the cobalt exceedance identified at ABC-1608, Dominion Energy will submit an alternate source demonstration (ASD) pursuant to 9VAC-81-250.A.5 of the VSWMR.

7.3.2 CCR Groundwater Protection Standard Exceedances

Consistent with §257.95(h)(2) of the CCR Rule, Golder evaluated the AMP constituents (CCR Rule Appendix IV constituents) against the established federal CCR GWPS. Based on this evaluation, the following federal CCR GWPS exceedances were identified during the 2020 second semi-annual groundwater monitoring event.

Constituent	Groundwater Protection Standard	Assessment Monitoring Well	2SA 2020 Concentration	2SA 2020 Verification Concentration
Arsenic (μg/L)	10.0	ABC-1614	44.1	
Cobalt (µg/L)	24.9	ABC-1608	26.5	25.4

Note: μg/L = Microgram per liter

A notification of these federal CCR GWPS exceedances was placed in the Unit's operating record on November 13, 2020, pursuant to §257.95(g) and §257.105(h)(8) of the CCR Rule. The arsenic exceedance identified at ABC-1614 was previously addressed in the June 2020 ACM. In response to the cobalt exceedance identified at ABC-1608, Dominion Energy will submit an ASD pursuant to §257.94(e)(2) of the CCR Rule.

January 29, 2021

8.0 CONCLUSIONS

The following findings are presented based on the results of the groundwater sampling activities conducted for the Unit in 2020:

8.1 Summary of Findings

- The overall direction of groundwater flow at the Unit generally follows topography and flows at an estimated horizontal velocity of 25.6 to 27.1 feet/year;
- Downgradient wells are located close to the Unit boundary and are able to determine groundwater quality downgradient to the Unit;
- During 2020, the monitoring well network functioned as designed and had the ability to determine the Unit's impact on the quality of the groundwater in the uppermost aquifer;
- Review of the current potentiometric map indicates the monitoring wells network fulfills the requirements of 9VAC20-81-250.A.3;
- Review of the 2020 Modified AMP monitoring data did not indicate any significant changes in the groundwater quality with the exception of a new second semi-annual 2020 GPS/GWPS exceedance of cobalt at ABC-1608;
- Modified assessment monitoring identified SSIs over background for arsenic, barium, boron, calcium, chloride, cobalt, and total dissolved solids;
- Modified assessment monitoring identified SWP GPS exceedances of arsenic, boron, cobalt, and nickel in one or more downgradient compliance wells;
- Modified assessment monitoring identified a federal CCR GWPS exceedance of arsenic at well ABC-1614 during both the first and second semi-annual 2020 sampling events and a federal CCR GWPS exceedance of cobalt at well ABC-1608 during the second semi-annual 2020 sampling event; and
- An NES and ACM for arsenic, boron, and nickel were completed on June 16, 2020, in accordance with the timeframes in the VSWMR and the CCR Rule.

8.2 Planned Activities

Based on the results from the 2020 compliance sampling, Dominion Energy intends to continue with the Modified AMP in 2021 consistent with the provisions in the CCR Rule [part 257.95] and the Unit's SWP. Also, pending selection of the final remedy and consistent with the provisions of the CCR Rule [parts 257.95(a) and 257.105(h)(12)], Dominion Energy will begin to prepare the semi-annual progress reports for remedy design and selection in 2021. Based on the second semi-annual SWP GPS and federal CCR GWPS exceedances for cobalt at ABC-1608 Dominion Energy will submit an ASD in 2021 consistent with VSWMR and CCR Rule timeframes.

January 29, 2021

9.0 REFERENCES

Department of Environmental Quality (DEQ). 2019. Solid Waste Facility Permit Number 617. June 13.

- EPA (United States Environmental Protection Agency). 2009. Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance. Office of Resource Conservation and Recovery Program Implementation and Information Division. March.
- EPA. 2015. Federal Register. Volume 80. No. 74. Friday April 17, 2015. Part II. Environmental Protection Agency. 40 CFR Parts 257and 261. Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule. [EPA HQ RCRA–2009–0640; FRL–9919–44– OSWER]. RIN–2050–AE81. April.
- EPA. 2016. Federal Register. Volume 81. No. 151. Friday August 5, 2016. Part II. Environmental Protection Agency. 40 CFR Parts 257 and 261. Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule. [EPA HQ OLEM–2016–0274; FRL–9949–44– OLEM]. August.
- EPA. 2017. National Functional Guidelines for Inorganic Superfund Methods Data Review. January.
- EPA. 2017. National Functional Guidelines for Organic Superfund Methods Data Review. January.
- EPA. 2018. Federal Register. Volume 83. No. 146. Monday July 30, 2018. Part II. Environmental Protection Agency. 40 CFR Parts 257 and 261. Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule. [EPA HQ OLEM–2017–0286; FRL–9981–18– OLEM]. RIN–2050–AG88. July.
- EPA. 2020a. Federal Register. Volume 85. No. 168. Friday, August 28, 2020. Environmental Protection Agency. 40 CFR Part 257. Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; A Holistic Approach to Closure Part A: Deadline To Initiate Closure. [EPA-HQ-OLEM-2019-0172 and EPA-HQ-OLEM-2018-0524; FRL-10013-20-OLEM]. RIN-2050-AH10. August.
- EPA. 2020b. Federal Register. Volume 85. No. 219. Thursday, November 12, 2020. Environmental Protection Agency. 40 CFR Part 257. Hazardous and Solid Waste Management System; Disposal of CCR; A Holistic Approach to Closure Part B: Alternate Demonstration for Unlined Surface Impoundments. [EPA-HQ-OLEM-2019-0173; FRL-10015-88-OLEM]. RIN-2050-AH11. November.
- Paar, J. & Porterfield, D. 1997. Evaluation of radiochemical data usability. DOE (Department of Energy) 10.2172/461261. April.

January 29, 2021

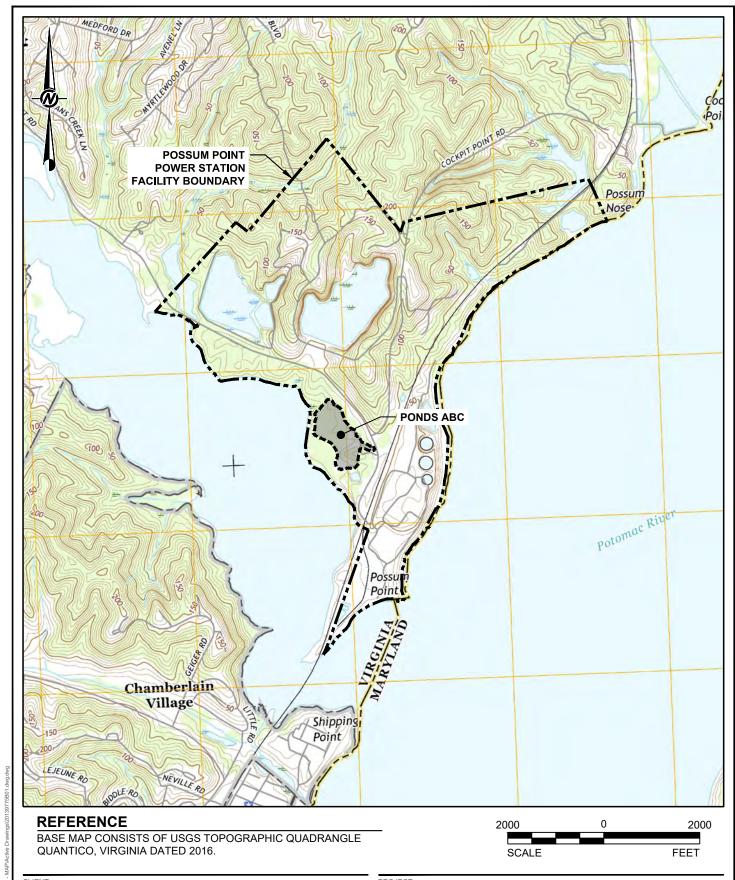
- January 29, 2021 Project No.: 20139775.220A
- Golder Associates Inc. (Golder). 2017. *Groundwater Monitoring Plan*, Possum Point Power Station, Dumfries, Virginia. October.
- Golder. 2018. Groundwater Monitoring Plan, Possum Point Power Station, Dumfries, Virginia. September.
- Golder. 2019a. Groundwater Monitoring Plan, Possum Point Power Station, Dumfries, Virginia. August.
- Golder. 2019b. *Pond ABC Facility Background Determination Report*, Possum Point Power Station, Dumfries, Virginia. August 15.
- Golder. 2019c. Assessment of Corrective Measures Report, Possum Point Power Station Pond D, Dumfries, Virginia. June 27.
- Haley and Aldrich, Inc. 2020. Assessment of Corrective Measures Report, Ponds ABC, Solid Waste Permit No. 617, Possum Point Power Station, Dumfries, Virginia. June 19.
- Virginia Waste Management Board (VWMB). 2019. Virginia Solid Waste Management Regulations (9VAC20-81 *et seq.*). March.

10.0 SIGNATURE SECTION

This 2020 CCR & VSWMR Annual CCR Groundwater Monitoring and Corrective Action Report (Report) has been prepared by qualified groundwater scientists and engineers on behalf of Virginia Electric and Power Company d/b/a Dominion Energy Virginia (Dominion Energy) for Ponds ABC at the Possum Point Power Station in Dumfries, Virginia. This document was prepared by scientists and engineers who have received baccalaureate and/or post-graduate degrees in the natural sciences and/or engineering and who have sufficient training and experience in groundwater hydrology, engineering, statistical evaluations, and related fields as demonstrated by state professional registrations and completion of an accredited university program that enables sound professional judgments consistent with the industry standard of care for groundwater monitoring, contaminant fate and transport, environmental corrective actions, and cost estimate development. This Report also satisfies the reporting requirements specified in 9VAC20-81-250.E.2.a of the VSWMR (VWMB, 2019) and the DEQ SWP No. 617 (DEQ, 2019).

Signature

Name & Title


Michael G. Williams, C.P.G. Principal, Senior Hydrogeologist

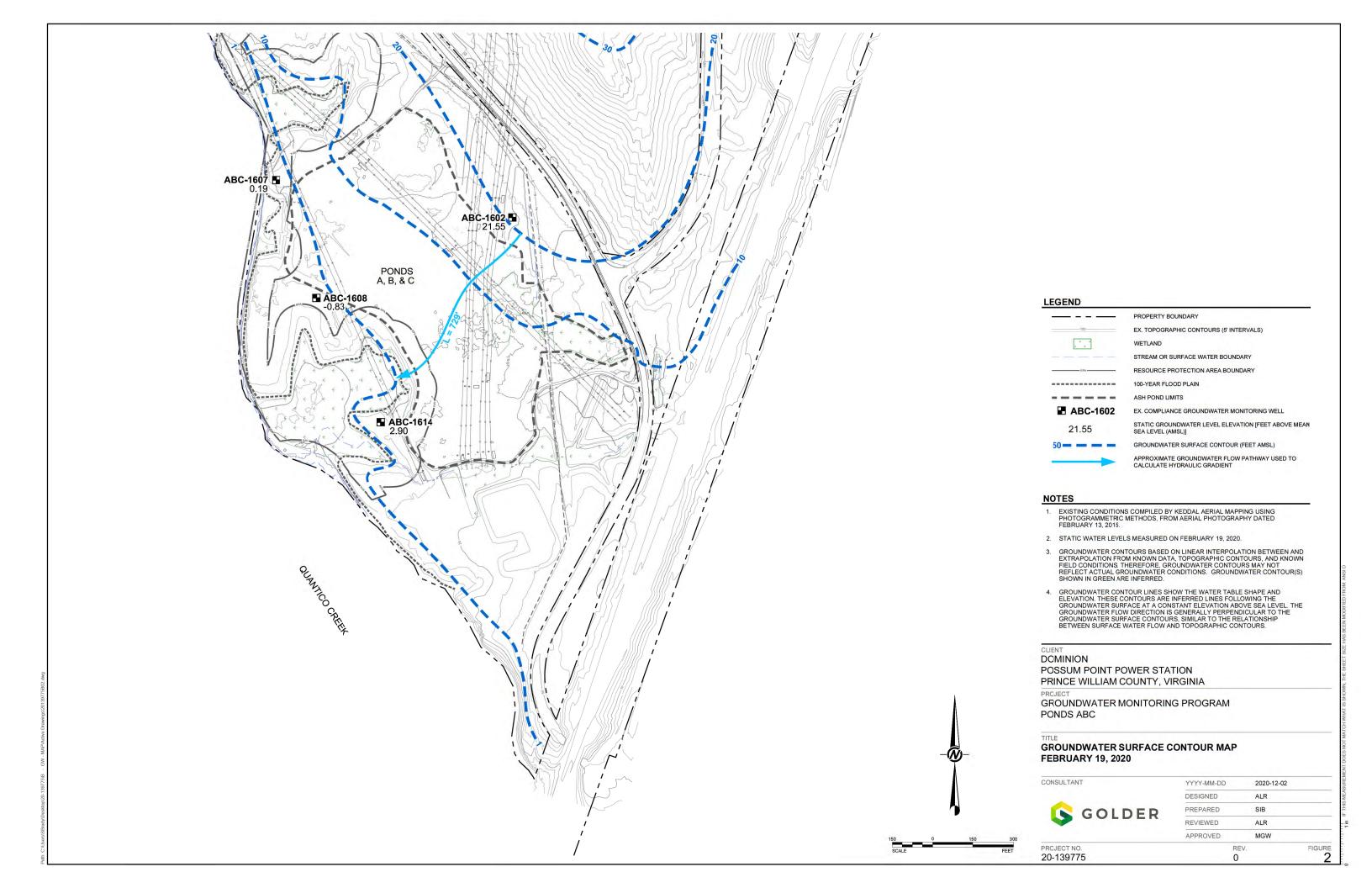
Golder and the G logo are trademarks of Golder Associates Corporation

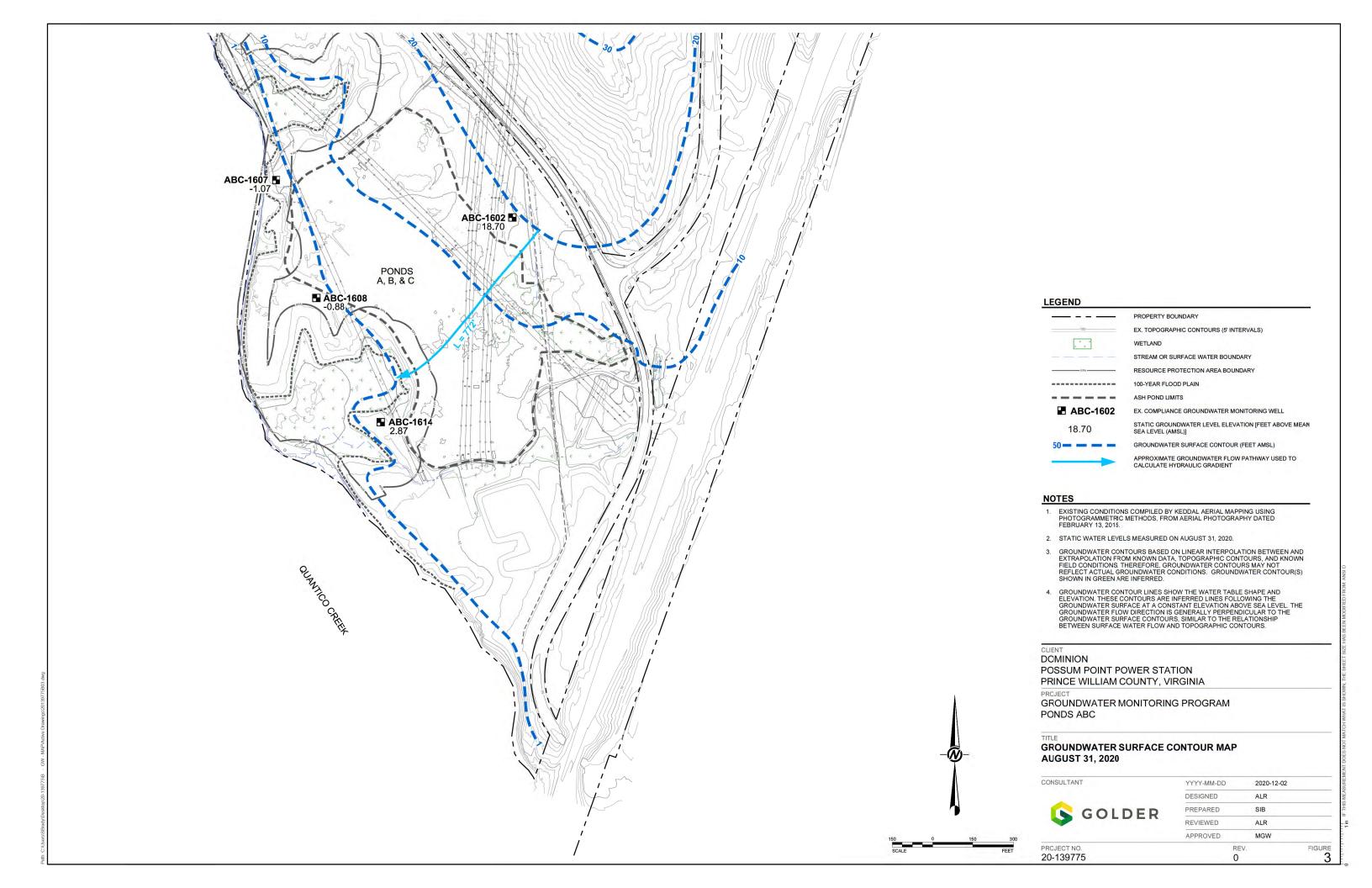
https://golderassociates.sharepoint.com/sites/123488/project.files/6 deliverables/2021-01-29 ppt pond abc.ccr+vswmr.amr/2021-01-29 possum point ponds abc.ccr+vswmr.agwmr.docx

FIGURES

DOMINION ENERGY

CONSULTANT




YYYY-MM-DD	2020-12-02
DESIGNED	ALR
PREPARED	SIB
REVIEWED	ALR
APPROVED	MGW

POSSUM POINT POWER STATION PONDS ABC PRINCE WILLIAM COUNTY, VIRGINIA

SITE LOCATION MAP

PROJECT NO. 20-139775	REV.	FIGURE

TABLES

Summary of First Semi-Annual Modified Assessment Monitoring Program Sampling Event Data (February 2020) Possum Point Power Station, Ponds ABC Permit No. 617

						Upgradien	t Well							owngradient W	ells								Field	QC			
				Sample ID:		ABC-16				ABC-				ABC-1608			ABC-				ABC-1614 DI	JP			Field E		
				Sample Date:		2/19/20	20			2/19	2020			2/19/2020			2/19/	2020			2/19/2020				2/19/2	2020	
Parameter Name	Units	Site-Specific Background	Federal GWPS	Virginia GPS	Result	Qualifier	MDL	RL	Result	Qualifier	MDL	RL	Result C	ualifier MD	L F	RL	Result Qualifier	MDL	RL	Result (Qualifier MI	DL	RL	Result	Qualifier	MDL	RL
CCR Appendix III Constituents		Dackground	GWF3		l								1														
Boron	µq/L	94.5		94.5	< 6.6		6.6	50.0	190		6.6	50.0	220	6.6	5 5	50.0	200	6.6	50.0	190	6	6	50.0	< 6.6		6.6	50.0
Calcium	µg/L	7,222			7100		24.0	100	7100		24.0	100	20600	24.		100	24000	24.0	100	23400	24		100	< 24.0		24.0	100
Chloride	ma/L	5.1			2.9		0.60	1.0	18.7		0.60	1.0	53.2	0.6		1.0	15.0	0.60	1.0	15.0	0.		1.0	< 0.60		0.60	1.0
Fluoride	mg/L	QL (0.10)	4	4	< 0.050		0.050	0.10	0.063	J	0.050	0.10	0.068 J	0.05		0.10	0.057 J	0.050	0.10	0.064 J	0.0		0.10	< 0.050		0.050	0.10
pH	SU	3.45-6.23	-		4.62		0.01	0.01	5.09		0.01	0.01	5.89	0.0	1 0	0.01	6.15	0.01	0.01		-	-					
Sulfate	mg/L	70.45	-		56.7		0.50	1.0	33.5		0.50	1.0	28.1	0.5	0 1	1.0	39.3	0.50	1.0	39.8	0.	50	1.0	< 0.50		0.50	1.0
Total Dissolved Solids	mg/L	126	-		131		25.0	25.0	123		25.0	25.0	241	25.		25.0	242	25.0	25.0	246	25		25.0	< 25.0		25.0	25.0
CCR Appendix IV Constituents									1				1							- 1		-		1			
Antimony	μg/L	QL (5)	6	6	< 3.0		3.0	5.0	< 3.0		3.0	5.0	< 3.0	3.0) 5	5.0	< 3.0	3.0	5.0	< 3.0	3	0	5.0	< 3.0		3.0	5.0
Arsenic	μg/L	QL (10)	10	10	< 4.7		4.7	10.0	< 4.7		4.7	10.0	5.8 J	4.7	7 1	10.0	44.4	4.7	10.0	43.7	4	7	10.0	< 4.7		4.7	10.0
Barium	μg/L	100.6	2000	2,000	67.9		1.0	5.0	50.6		1.0	5.0	64.2	1.0) 5	5.0	175	1.0	5.0	167	1.	0	5.0	< 1.0		1.0	5.0
Beryllium	μg/L	QL (1)	4	4	0.68	J	0.20	1.0	< 0.20		0.20	1.0	< 0.20	0.2	0 1	1.0	< 0.20	0.20	1.0	< 0.20	0.:	20	1.0	< 0.20		0.20	1.0
Cadmium	μg/L	QL (1)	5	5	< 0.40	İ	0.40	1.0	< 0.40		0.40	1.0	< 0.40	0.4	0 1	1.0	< 0.40	0.40	1.0	< 0.40	0.4	10	1.0	< 0.40		0.40	1.0
Chromium	μg/L	QL (5)	100	100	1.3	J	1.0	5.0	< 1.0		1.0	5.0	< 1.0	1.0) 5	5.0	< 1.0	1.0	5.0	< 1.0	1.	0	5.0	< 1.0		1.0	5.0
Cobalt	μg/L	24.9	24.9	24.9	15.0	İ	0.050	0.10	8.7		0.050	0.10	23.5	0.05	0.	0.10	19.9	0.050	0.10	19.8	0.0	50 (0.10	< 0.050		0.050	0.10
Fluoride	mg/L	QL (0.10)	4	4	< 0.050		0.050	0.10	0.063	J	0.050	0.10	0.068 J	0.0	0.	0.10	0.057 J	0.050	0.10	0.064 J	0.0	50 (0.10	< 0.050		0.050	0.10
Lead	μg/L	QL (5)	15*	5 (QL)	0.12		0.050	0.10	0.088	J	0.050	0.10	0.071 J	0.0	0.	0.10	0.18	0.050	0.10	0.13	0.0	50 (0.10	< 0.050		0.050	0.10
Lithium	μg/L	QL (25)	40	25 (QL)	11.6		0.42	2.5	3.9		0.42	2.5	13.6	0.4	2 2	2.5	15.7	0.42	2.5	16.5	0.4	12	2.5	< 0.42		0.42	2.5
Mercury	μg/L	QL (0.2)	2	2	< 0.10		0.10	0.20	< 0.10		0.10	0.20	< 0.10	0.1	0 0.	0.20	< 0.10	0.10	0.20	< 0.10	0.	10 (0.20	< 0.10		0.10	0.20
Molybdenum	μg/L	QL (5)	100	5 (QL)	< 0.90		0.90	5.0	< 0.90		0.90	5.0	2.0 J	0.9	0 5	5.0	< 0.90	0.90	5.0	0.99 J	0.	90	5.0	< 0.90		0.90	5.0
Selenium	μg/L	QL (10)	50	50	< 4.7		4.7	10.0	< 4.7		4.7	10.0	< 4.7	4.7	7 1	10.0	< 4.7	4.7	10.0	< 4.7	4	7	10.0	< 4.7		4.7	10.0
Thallium	μg/L	QL (1)	2	2	< 0.060		0.060	0.10	< 0.060		0.060	0.10	< 0.060	0.00	0.	0.10	< 0.060	0.060	0.10	< 0.060	0.0	60 (0.10	< 0.060		0.060	0.10
Total Radium	pCi/L	3.727	5	5	2.79	J	1.53	1.53	1.76	J	1.41	1.41	2.00 J	1.6	2 1.	1.62	1.52 J	1.41	1.41	1.07 U	1.3	21	1.21	0.359 l	J	1.37	1.37
Additional VSWMR Constituents	•				·	•	•							•				•				•			•		
Copper	μg/L	25.3		1,300*	7.7		2.1	5.0	< 2.1		2.1	5.0	< 2.1	2.1		5.0	< 2.1	2.1	5.0	< 2.1	2		5.0	< 2.1		2.1	5.0
Nickel	μg/L	11.3		11.3	7.8		0.90	5.0	10.7		0.90	5.0	18.0	0.9		5.0	14.8	0.90	5.0	14.5	0.		5.0	< 0.90		0.90	5.0
Silver	μg/L	QL (5)		5 (QL)	< 2.5		2.5	5.0	< 2.5		2.5	5.0	< 2.5	2.5		5.0	< 2.5	2.5	5.0	< 2.5	2		5.0	< 2.5		2.5	5.0
Tin	μg/L	11.4		11.4	< 0.090		0.090	0.50	0.091	J	0.090	0.50	< 0.090	0.09		0.50	< 0.090	0.090	0.50	< 0.090	0.0		0.50	< 0.090		0.090	0.50
Vanadium	μg/L	QL (5)		5 (QL)	< 1.3		1.3	5.0	< 1.3		1.3	5.0	< 1.3	1.0		5.0	1.4 J	1.3	5.0	1.3 J	1.		5.0	< 1.3		1.3	5.0
Zinc	μg/L	QL (50)		50 (QL)	4.0	J	3.9	10.0	21.3		3.9	10.0	9.6 J	3.9	9 1	10.0	< 3.9	3.9	10.0	< 3.9	3	9	10.0	< 3.9		3.9	10.0
Speciation of Chromium	1								1	1							, , , , , , , , , , , , , , , , , , , ,							1			
Hexavalent Chromium	μg/L	QL (10)			< 5.0		5.0	5.0	< 5.0		5.0	5.0	< 5.0	5.0) 5	5.0	< 5.0	5.0	5.0	< 5.0	5	0	5.0	< 5.0		5.0	5.0
Former VPDES Constituents																					1 .						
Hardness	mg/L			-	36.3		0.131	0.662	33.1		0.131	0.662	90.4	0.13		.662	97.0	0.131	0.662	94.2	0.1		.662	< 0.131		0.131	0.662
Iron	μg/L			-	55.6		7.5	50.0	1740		7.5	50.0	5660	7.5		50.0	28300	7.5	50.0	28300	7.	_	50.0	< 7.5		7.5	50.0
Manganese	μg/L				200		0.14	0.50	181		0.14	0.50	164	0.1		0.50	312	0.14	0.50	312	0.		0.50	0.46	J+	0.14	0.50
Phenolics, Total	μg/L			-	6.4	J	5.0	10.0	< 5.0		530	10.0	< 5.0	5.0		10.0	12.0	5.0	10.0	< 5.0	5		10.0	< 5.0		5.0	10.0
Potassium	μg/L				6450		6.2	50.0	2060		6.2	50.0	3840	6.2		50.0	4240	6.2	50.0	4360	6		50.0	< 6.2		6.2	50.0
Sodium	μg/L				8240		14.3	250	14000		285	5000	33400	28		5000	22100	285	5000	22000	28		0000	41.0	j+	14.3	250
Total Organic Carbon	mg/L		-		< 0.50		0.50	1.0	0.63	J	0.50	1.0	1.2	0.5	υ 1	1.0	2.8	0.50	1.0	2.5	0.	υ	1.0	< 0.50		0.50	1.0
Field Parameters	1 0/				405.0		0.4	0.4	1710				1 070 4			o 4	100.4	2.4	0.4	1	ı			1			
Conductivity	μS/cm		-		165.2	-	0.1	0.1	171.6		0.1	0.1	378.4	0.1		0.1	400.4	0.1	0.1							-	
Depth to Water**	ft btoc				12.53		0.01	0.01	23.44		0.01	0.01	21.96	0.0		0.01	12.72	0.01	0.01		-						
Dissolved Oxygen	mg/L				2.69		0.01	0.01	2.46		0.01	0.01	1.77	0.0		0.01	1.01	0.01	0.01			- -					
Groundwater Elevation**	ft msl				21.55		0.01	0.01	0.19		0.01	0.01	-0.83	0.0		0.01	2.90	0.01	0.01			-					-
Oxidation Reduction Potential	millivolts				374.9		0.1	0.1	173.1		0.1	0.1	61.0	0.1		0.1	-13.9	0.1	0.1		-						
Temperature	C				14.3		0.01	0.01	15.0		0.01	0.01	13.8	0.0		0.01	14.2	0.01	0.01		-						
Turbidity	NTU		-	-	2.3		0.1	0.1	8.1		0.1	0.1	7.23	0.1	ı (0.1	8.2	0.1	0.1		-	-					

Notes:

MDL = Method Detection Limit RL = Reporting Limit mg/L = Milligram per liter μg/L = Microgram per liter pCi/L = picoCurie per liter

μS/cm = MicroSiemen per centimeter ft btoc = below top of casing

SU = Standard Units ft msl = feet above mean sea level

C = Degrees Celsius NTU = Nephelometric Turbidity Unit MDC = Minimum Detection Concentration

CCR = Coal Combustion Residuals

QL = Laboratory quantitation limit (value shown in parentheses is a recent QL and is subject to change)

GPS/GWPS = Groundwater Protection Standards

VSWMR = Virginia Solid Waste Management Regulations VPDES = Virginia Pollutant Discharge Elimination System

Bold font = Detected constituent

* - EPA Action Level

** - Water levels gauged on February 19, 2020

Qualifiers:
J = Estimated Result
J+ = Potential Bias High

U = Not detected above the Minimum Detection Concentration

UJ = Estimated Non-Detect

= Concentration greater than site-specific background

= Concentration greater than Federal GWPS, Virginia GPS, and site-specific background

= Concentration greater than Virginia GPS and site-specific background

Table 2 Summary of Second Semi-Annual Modifed Assessment Monitoring Program Sampling Event Data (August-September 2020) Possum Point Power Station, Ponds ABC Permit No. 617

						Upgradient Well			Downgradient Wells								Field QC								
				Sample ID:		ABC-16	02			ABC-				ABC-1608			-1614			602 DUP			Field Blanl		
				Sample Date:		09/02/20	20			09/02	/2020			09/02/2020		09/02	2/2020		09/02	09/02/2020 09/0			09/02/2020)	
Parameter Name	Units	Site Specific Background	Federal GWPS	Virginia GPS	Result	Qualifier	MDL	RL	Result	Qualifier	MDL	RL	Result C	Qualifier MDL	RL	Result Qualifier	MDL	RL	Result Qualifier	MDL	RL	Result Qua	lifier M	DL	RL
CCR Appendix III Constituents																									
Boron	μg/L	94.5		94.5	< 32.4		32.4	50.0	225		32.4	50.0	217	32.4	50.0	212	32.4	50.0	< 32.4	32.4	50.0	< 32.4		2.4	50.0
Calcium	μg/L	7,222			6480		94.2	100	8380		94.2	100	20600	94.2	100	21600	94.2	100	6670	94.2	100	< 94.2		4.2	100
Chloride	mg/L	5.1			3.1		0.60	1.0	16.2		0.60	1.0	54.7	0.60	1.0	17.2	0.60	1.0	3.1	0.60	1.0	< 0.60		.60	1.0
Fluoride	mg/L	QL (0.10)	4	4	< 0.050		0.050	0.10	< 0.050		0.050	0.10	0.079 J	0.050	0.10	0.092 J	0.050	0.10	< 0.050	0.050	0.10	< 0.050		050	0.10
pH	SU	3.45-6.23			4.44		0.01	0.01	5.43		0.01	0.01	6.09	0.01	0.01	5.86	0.01	0.01							
Sulfate	mg/L	70.45			50.8		0.50	1.0	39.3		0.50	1.0	29.6	0.50	1.0	38.5	0.50	1.0	52.2	0.50	1.0	0.84 J		.50	1.0
Total Dissolved Solids	mg/L	126			131		25.0	25.0	130		25.0	25.0	239	25.0	25.0	244	25.0	25.0	128	25.0	25.0	< 25.0	28	5.0	25.0
CCR Appendix IV Constituents		OL (F)	•				2.0	F 0	- 0 0		2.0	50	100	1 20	F 0	100	2.0	F 0	1 .00	2.0	F 0	100			
Antimony	µg/L	QL (5) QL (10)	6 10	6 10	< 3.0 < 4.7		3.0 4.7	5.0 10.0	< 3.0 < 4.7		3.0 4.7	5.0 10.0	< 3.0 5.7 J	3.0	5.0 10.0	< 3.0 44.1	3.0 4.7	5.0 10.0	< 3.0 7.0 J	3.0 4.7	5.0 10.0	< 3.0 < 4.7		3.0	5.0 10.0
Arsenic	µg/L	100.6	2000	2,000	65.9		3.5	5.0	51.7		3.5	5.0	67.3	3.5	5.0	185	3.5	5.0	67.8	3.5	5.0	< 3.5		3.5	5.0
Barium Beryllium	μg/L μg/L	QL (1)	<u>2000</u> 4	2,000	< 0.70		0.70	1.0	< 0.70		0.70	1.0	< 0.70	0.70	1.0	< 0.70	0.70	1.0	< 0.70	0.70	1.0	< 0.70		.70	1.0
Cadmium	µg/L µg/L	QL (1)	<u>4</u> 5	4	< 0.70		0.70	1.0	< 0.70		0.70	1.0	< 0.70	0.70	1.0	< 0.70	0.70	1.0	< 0.70	0.70	1.0	< 0.70		.70	1.0
Chromium	µg/L µg/L	QL (1)	100	100	< 3.7		3.7	5.0	< 3.7		3.7	5.0	< 3.7	3.7	5.0	< 3.7	3.7	5.0	< 3.7	3.7	5.0	< 3.7		3.7	5.0
Cobalt	μg/L	24.9	24.9	24.9	11.5		0.050	0.10	8.2		0.050	0.10	26.5	0.50	1.0	21.7	0.50	1.0	12.0	0.050	0.10	< 0.050		050	0.10
Fluoride	mg/L	QL (0.10)	4	4	< 0.050		0.050	0.10	< 0.050		0.050	0.10	0.079 J	0.050	0.10	0.092 J	0.050	0.10	< 0.050	0.050	0.10	< 0.050		050	0.10
Lead	µq/L	QL (5)	 15*	5 (QL)	0.089		0.077	0.10	< 0.077		0.077	0.10	< 0.077	0.077	0.10	0.20	0.000	0.10	< 0.077	0.000	0.10	< 0.077		077	0.10
Lithium	µg/L	QL (25)	40	25 (QL)	10.1	-	0.39	2.5	3.1		0.39	2.5	12.3	0.39	2.5	14.6	0.39	2.5	8.7	0.39	2.5	< 0.39		.39	2.5
Mercury	ua/L	QL (0.2)	2	2	< 0.12		0.12	0.20	< 0.12		0.12	0.20	< 0.12	0.12	0.20	< 0.12	0.12	0.20	< 0.12	0.12	0.20	< 0.12		.12	0.20
Molybdenum	µg/L	QL (5)	100	5 (QL)	< 3.9		3.9	5.0	< 3.9		3.9	5.0	< 3.9	3.9	5.0	< 3.9	3.9	5.0	< 3.9	3.9	5.0	< 3.9		3.9	5.0
Selenium	µg/L	QL (10)	50	50	< 4.7		4.7	10.0	< 4.7		4.7	10.0	< 4.7	4.7	10.0	< 4.7	4.7	10.0	< 4.7	4.7	10.0	< 4.7		.7	10.0
Thallium	µg/L	QL (1)	2	2	< 0.050		0.050	0.10	< 0.050		0.050	0.10	< 0.050	0.050	0.10	< 0.050	0.050	0.10	< 0.050	0.050	0.10	< 0.050		050	0.10
Total Radium	pCi/L	3.727	5	5	3.29		1.75	1.75	1.31	U	1.59	1.59	0.836 ∪	1.35	1.35	0.252 U	1.52	1.52	1.64 U	1.71	1.71	0.981 U		.10	1.10
Additional VSWMR Constituents				-												₩			!			ļ —			
Copper	μg/L	25.3		1,300*	8.7		4.3	5.0	< 4.3		4.3	5.0	< 4.3	4.3	5.0	< 4.3	4.3	5.0	8.4	4.3	5.0	< 4.3	4	1.3	5.0
Nickel	μg/L	11.3		11.3	7.1		3.5	5.0	10.0		3.5	5.0	19.8	3.5	5.0	15.1	3.5	5.0	7.0	3.5	5.0	< 3.5	3	3.5	5.0
Silver	μg/L	QL (5)		5 (QL)	< 2.5		2.5	5.0	< 2.5		2.5	5.0	< 2.5	2.5	5.0	< 2.5	2.5	5.0	< 2.5	2.5	5.0	< 2.5	2	2.5	5.0
Tin	μg/L	11.4		11.4	< 0.24		0.24	0.50	< 0.24		0.24	0.50	< 0.24	0.24	0.50	< 0.24	0.24	0.50	< 0.24	0.24	0.50	< 0.24	0.	.24	0.50
Vanadium	μg/L	QL (5)		5 (QL)	< 3.9		3.9	5.0	< 3.9		3.9	5.0	< 3.9	3.9	5.0	< 3.9	3.9	5.0	< 3.9	3.9	5.0	< 3.9	3	3.9	5.0
Zinc	μg/L	QL (50)		50 (QL)	< 9.5		9.5	10.0	19.8		9.5	10.0	12.3	9.5	10.0	< 9.5	9.5	10.0	< 9.5	9.5	10.0	< 9.5	9	0.5	10.0
Speciation of Chromium																									'
Hexavalent Chromium	μg/L	QL (10)			< 5.0		5.0	5.0	< 5.0		5.0	5.0	< 5.0	5.0	5.0	14.0 J	5.0	5.0	< 5.0	5.0	5.0	< 5.0	5	5.0	5.0
Former VPDES Constituents													, ,			1				1	1	r - r			
Hardness	mg/L				32.8		0.131	0.662	35.9		0.131	0.662	89.6	0.131	0.662	87.8	0.131	0.662	33.6	0.131	0.662	< 0.131	0.1		0.662
Iron	μg/L				74.3		20.9	50.0	3230		628	1500	6090	209	500	31600	1050	2500	92.9	20.9	50.0	< 20.9		0.9	50.0
Manganese	μg/L				202		9.5	10.0	209		14.2	15.0	181	4.7	5.0	303	4.7	5.0	198	9.5	10.0	< 0.47		.47	0.50
Phenolics, Total ¹	μg/L				50.0	J	12.0	12.0	29.0	J+	12.0	12.0	35.0 J-	+ 12.0	12.0	120 J+	12.0	12.0	99.0 J	12.0	12.0	97.0		2.0	12.0
Potassium	μg/L				6310		180	1000	2640		270	1500	3790	89.9	500	4040	89.9	500	6080	180	1000	< 9.0		0.0	50.0
Sodium	μg/L				8570		982	5000	15900		1470	7500	32200	2450	12500	20900	2450	12500	8130	982	5000	< 49.1		9.1	250
Total Organic Carbon	mg/L				< 0.50		0.50	1.0	0.74	J	0.50	1.0	1.5	0.50	1.0	3.0	0.50	1.0	< 0.50	0.50	1.0	< 0.50	0.	.50	1.0
Field Parameters	1 6:						0.1	<u> </u>	1	- 1		T		1	T .		1 0.	<u> </u>	, , , , , , , , , , , , , , , , , , , 	1	ı	т т			
Conductivity	μS/cm				292.7		0.1	0.1	206.1		0.1	0.1	392.8	0.1	0.1	793	0.1	0.1							
Depth to Water**	ft btoc				15.38		0.01	0.01	24.70		0.01	0.01	22.01	0.01	0.01	12.75	0.01	0.01							
Dissolved Oxygen	mg/L				3.20		0.01	0.01	3.64		0.01	0.01	1.81	0.01	0.01	1.76	0.01	0.01							
Groundwater Elevation**	ft msl				18.70		0.01	0.01	-1.07		0.01	0.01	-0.88	0.01	0.01	2.87	0.01	0.01							
Oxidation Reduction Potential	millivolts				175.2		0.1	0.1	141.1		0.1	0.1	62.6	0.1	0.1	-8.4	0.1	0.1							
Temperature	C				15.7		0.01	0.01	16.7		0.01	0.01	16.1	0.01	0.01	16.5	0.01	0.01							-
Turbidity	NTU				9.41		0.1	0.1	10.2		0.1	0.1	8.8	0.1	0.1	23.99	0.1	0.1							

Notes:

MDL = Method Detection Limit RL = Reporting Limit mg/L = Milligram per liter μg/L = Microgram per liter pCi/L = picoCurie per liter

μS/cm = MicroSiemen per centimeter ft btoc = below top of casing

SU = Standard Units

ft msl = feet above mean sea level C = Degrees Celsius

NTU = Nephelometric Turbidity Unit

MDC = Minimum Detection Concentration

CCR = Coal Combustion Residuals

QL = Laboratory quantitation limit (value shown in parentheses is a recent QL and is subject to change)

GPS/GWPS = Groundwater Protection Standards

VSWMR = Virginia Solid Waste Management Regulations VPDES = Virginia Pollutant Discharge Elimination System

Bold font = Detected constituent

* - EPA Action Level

** - Water levels gauged on August 31, 2020

¹Due to field duplicate imprecision, following qualification guidance, the parent and duplicate samples for ABC-1602 are qualified as estimated (J); this non-directionally biased qualifier supercedes the directionally biased qualifier (J+).

Qualifiers: J = Estimated Result

J+ = Potential Bias High

U = Not detected above the Minimum Detection Concentration

UJ = Estimated Non-Detect

= Concentration greater than site-specific background

= Concentration greater than Federal GWPS, Virginia GPS, and site-specific background

= Concentration greater than Virginia GPS and site-specific background

Table 3 Summary of Second Semi-Annual Modified Assessment Monitoring Program Verification Sampling Event Data (October 2020) Possum Point Power Station, Ponds ABC Permit No. 617

						Downgra	adient Well		Field QC				
				Sample ID:		ABO	C-1608		Field Blank				
				Sample Date:		5/2020		10/15/2020					
Parameter Name	Units	Site-Specific Background	Federal GWPS	Virginia GPS	Result	Qualifier	MDL	RL	Result	Qualifier	MDL	RL	
CCR Appendix IV Constituents													
Cobalt	μg/L	24.9	24.9	24.9	25.4		0.50	1.0	< 0.050		0.050	0.10	
Field Parameters	•									•	,		
Conductivity	μS/cm				388.8		0.1	0.1	-		-		
Depth to Water*	ft btoc				21.95		0.01	0.01					
Dissolved Oxygen	mg/L				1.06		0.01	0.01					
Groundwater Elevation	ft msl				-0.82		0.01	0.01					
Oxidation Reduction Potential	millivolts				94.5		0.1	0.1	-		-		
рН	SU	3.45-6.23			5.68		0.01	0.01					
Temperature	С				15.1		0.01	0.01					
Turbidity	NTU				9.84		0.1	0.1					

Notes:

MDL = Method Detection Limit

RL = Reporting Limit

mg/L = Milligram per liter

μg/L = Microgram per liter

μS/cm = MicroSiemen per centimeter

SU = Standard Units

C = Degrees Celsius

NTU = Nephelometric Turbidity Unit

ft btoc = feet below top of casing

ft msl = feet above mean sea level

CCR = Coal Combustion Residuals

VPDES = Virginia Pollutant Discharge Elimination System

GPS/GWPS = Groundwater Protection Standards

* - Water level gauged on October 15, 2020

Bold font = Detected constituent

= Concentration greater than site-specific background

= Concentration greater than Federal GWPS, Virginia GPS, and site-specific background

= Concentration greater than Virginia GPS and site-specific background

APPENDIX A DEQ ARSC-01 FORM

Annual Report QA/QC Submission Checklist (DEQ Form ARSC-01)

INCLUDED IN FINAL REPORT?	YES		NO
Signature of a qualified groundwater professional	Х		
Solid waste facility permit number & facility name	Х		
Name of current owner/operator & type of facility	Х		
Dates LF began operations and was deemed closed (if applicable)	Х		
Date of last waste receipt (if applicable) [2.b]	Х		
Identified if site is lined or unlined [2.b]	Х		
Identified waste disposal method (trench fill/area fill/etc.) [2.b]	Х		
Total site acreage, and acreage used for waste disposal [2.b]	Х		
Adjoining land use described including any aquifer users [2.c]	Х	., -	
Topographic map included as Figure 1 [2.a]	Х	., -	
Figure 1 shows facility location, includes a bar scale, and north arrow	Х		
Discuss the type, name & age of the geologic unit(s) on site [2.d]	Х		
Description of general site topography [2.d]	Х		
Name of nearest permanent water body, perennial stream, etc. [2.d]	Х		
Description of the uppermost aquifer [2.d]	Х		
Description of the aquifer type (confined vs unconfined) [2.d]	Х		
Date facility entered detection or phase I monitoring [2.b]	Х		
Date facility entered assessment or phase II monitoring [2.b]	Х		
Identified if the facility monitors groundwater under a variance	Х		
Identified the dates of any groundwater variance approvals	N/A		
Approval date for wetlands demonstration (if applicable)	N/A		
Identified all upgradient and downgradient monitoring wells [2.e]	Х		
Identified if all monitoring wells were sampled during the year [2.e]	Х		
Identified reasons for failure to sample (if applicable) [2.e]	N/A		
Identified if any monitoring wells have been abandoned [2.e]	Х		
Identified if any wells require replacement [2.e]	Х		
Included network performance certification statement [2.e]	Х		
Identified groundwater sampling dates during past year [2.f]	Х		
Included site plan drawing as Figure 2 [2.h]	Х		
Figure 2 contains current topographic contours	Х		
Figure 2 contains facility and waste management unit boundaries	Х		
Figure 2 includes all monitoring wells	Х		
Figure 2 includes potentiometric surface contours	Х		
Figure 2 includes groundwater flow direction arrows	Х		
Figure 2 includes all surface water bodies	Х		

Annual Report Submission Checklist, DEQ Form ARSC-01 (11/01 – Revised 07/11)

Golder Associates Inc. Page 1

Annual Report QA/QC Submission Checklist (DEQ Form ARSC-01)

INCLUDED IN FINAL REPORT?	YES	NO
Figure 2 includes all structures on site, a bar scale, and north arrow	Х	
Listing of groundwater elevation readings in past year [2.h]	Х	
Table of historical groundwater elevation data as <i>Appendix B</i>	Х	
Calculated rate of groundwater flow (distance/year) [2.h]	Х	
Flow rate calculations included as Appendix C	Х	
Identified the name of the analytical laboratory [2.h]	Х	
Identified whether lab was DCLS certified	Х	
Identified type of analytical methods used [2.h]	Х	
Identified those constituents found above the LOD and LOQ	Х	
Identified if verification sampling was used during any event	Х	
Identified statistical methods used to analyze groundwater data as Section 7.0	X ⁽¹⁾	
Identified any SSI's noted during prior year of monitoring	Х	
Table of prior detected constituent concentrations in each well [2.g] as Appendix F	Х	
Field data sheet copies included as Appendix D	Х	
Laboratory results & certificates of analysis as CDROM in <i>Appendix E</i>	Х	
Included historical summary of laboratory results in <i>Appendix F</i>	Х	_
Full list of References	Х	
Copy of this QA/QC checklist	Х	

Notes:

- (1) Statistical methods used to analyze groundwater data for the Facility are summarized in Section 7.0 and presented in the *Ash Pond ABC Facility Background Determination Report* that was submitted to the DEQ on August 15, 2019.
- (2) N/A = Not Applicable

Golder Associates Inc. Page 2

APPENDIX B SUMMARY OF HISTORICAL CCR AND VSWMR STATIC WATER LEVEL DATA

Appendix B Summary of Historical CCR and VSWMR Static Water Level Data Possum Point Power Station, Ponds ABC Permit No. 617

Well Identification	Top of Casing Elevation (feet AMSL)	Measurement Date	Depth to Water (feet below top of casing)	Groundwater Elevation (feet AMSL)		
ABC-1602	(Teet AWSL) 34.08	11/02/2016	16.51	17.57		
ADC-1002	34.00	12/13/2016	17.35	16.73		
		01/25/2017	15.26	18.82		
		03/06/2017	16.20	17.88		
		04/19/2017	14.65	19.43		
		05/30/2017	13.13	20.95		
		07/10/2017	15.44	18.64		
		08/21/2017	16.76	17.32		
		06/27/2018	12.80	21.28		
		09/19/2018	14.08	20.00		
		12/13/2018	14.31	19.77		
		03/11/2019	13.04	21.04		
		08/26/2019	16.82	17.26		
		02/19/2020	12.53	21.55		
		08/31/2020	15.38	18.70		
ABC-1607	23.90	11/02/2016	23.27	0.63		
		12/13/2016	23.61	0.29		
		01/25/2017	22.46	1.44		
		03/06/2017	23.97	-0.07		
	23.63	04/19/2017	24.16	-0.53		
		05/30/2017	22.50	1.13		
		07/10/2017	23.21	0.42		
		08/21/2017	24.12	-0.49		
		06/27/2018	22.21	1.42		
		09/19/2018	23.05	0.58		
		12/12/2018	23.40	0.23		
		03/11/2019	22.80	0.83		
		08/26/2019	22.49	1.14		
		02/19/2020	23.44	0.19		
		08/31/2020	24.70	-1.07		
ABC-1608	21.13	11/02/2016	19.22	1.91		
/\DO-1000	21.10	12/13/2016	20.72	0.41		
		01/25/2017	20.86	0.27		
		03/06/2017	21.36	-0.23		
		04/19/2017	21.28	-0.15		
		05/30/2017	20.94	0.19		
		07/10/2017	21.15	-0.02		
		08/21/2017	21.12	0.01		
		06/27/2018	20.46	0.67		
		09/19/2018	21.52	-0.39		
		12/12/2018	22.16	-1.03		
		03/11/2019	21.10	0.03		
		08/26/2019	22.09	-0.96		
		02/19/2020	21.96	-0.83		
		08/31/2020	22.01	-0.88		
		10/15/2020	21.95	-0.82		
	15.5	44/0-1	10			
ABC-1614	15.62	11/02/2016	12.68	2.94		
		12/12/2016	12.73	2.89		
		01/25/2017	12.50	3.12		
		03/06/2017	13.10	2.52		
		04/19/2017	12.61	3.01 3.63		
		05/30/2017 07/10/2017	11.99 12.39	3.63		
		07/10/2017	12.39 12.40	3.23		
		06/27/2018	12.40	2.88		
		09/19/2018	12.74	2.88		
		12/12/2018	12.82			
		03/11/2019	12.96	2.64 3.31		
		03/11/2019	12.31	2.22		
	1	00/20/2019	13.40	۷.۷۷		
		02/10/2020	12 72	2 00		
		02/19/2020 08/31/2020	12.72 12.75	2.90 2.87		

VSWMR = Virginia Solid Waste Management Regulations CCR = Coal Combustion Residuals AMSL = Above Mean Sea Level Notes:

APPENDIX C GROUNDWATER FLOW RATE CALCULATIONS

Appendix C.1

Groundwater Flow Rate Calculations Possum Point Power Station, Ponds ABC Solid Waste Permit #617

First Semi-Annual Groundwater Monitoring Event (February 2020)

The average hydraulic gradient for the Unit along the ideal flow line beneath the Unit was calculated using the following equation:

$$i = \frac{h_L}{I_L}$$

Where: i = hydraulic gradient (unitless)

 h_L = head loss (elevation difference in feet) L = length (horizontal distance in feet)

The groundwater flow rate was calculated using the following formula:

$$V = \frac{ki}{\theta}$$

Where: V = Groundwater Velocity (cm/s)

k = hydraulic conductivity (cm/s)i = hydraulic gradient (unitless)θ = assumed porosity (unitless)

Area	Hydraulic Conductivity	Contour lines	Flow Length (feet)	Average Gradient (i)	Assumed Porosity (Ø)	Estimated G Velo	
	(k, cm/s)	(feet amsl)	(100.)	(-)	. c. cc, (2)	(cm/s)	(feet/year)
Unit	2.01E-04	20-1	729	2.61E-02	0.20	2.62E-05	27.1

Notes:

cm/s = centimeter per second amsl = above mean sea level

 θ = estimated value based on properties of the lithologies comprising the uppermost aquifer

Appendix C.2

Groundwater Flow Rate Calculations Possum Point Power Station, Ponds ABC Solid Waste Permit #617

Second Semi-Annual Groundwater Monitoring Event (August-September 2020)

The average hydraulic gradient for the Unit along the ideal flow line beneath the Unit was calculated using the following equation:

$$i = \frac{h_L}{I_L}$$

Where: i = hydraulic gradient (unitless)

 h_L = head loss (elevation difference in feet) L = length (horizontal distance in feet)

The groundwater flow rate was calculated using the following formula:

$$V = \frac{ki}{\theta}$$

Where: V = Groundwater Velocity (cm/s)

k = hydraulic conductivity (cm/s)i = hydraulic gradient (unitless)θ = assumed porosity (unitless)

Area	Hydraulic Conductivity	Contour lines (feet amsl)	Flow Length	Average Gradient (i)	Assumed Porosity (Ø)	Estimated G Velo	
	(k, cm/s)	()	(feet)	(,)	. 5.55 y (2)	(cm/s)	(feet/year)
Unit	2.01E-04	20-1	772	2.46E-02	0.20	2.47E-05	25.6

<u>Notes</u>

cm/s = centimeter per second amsl = above mean sea level

 θ = estimated value based on properties of the lithologies comprising the uppermost aquifer

APPENDIX D FIELD DATA SHEETS

APPENDIX D.1 FIELD DATA SHEETS FIRST SEMI-ANNUAL GROUNDWATER MONITORING EVENT (FEBRUARY 2020)

Date:	2-19-2020

WELL GAUGING LOG

Project Name: Possum Point Power Station - Pond ARC Project No./Task No.: 20139775, 220A.

Sampler(s): C. Joyner, M. Antal

Equipment: Water Level Indicator

	Personnel		DTW	DTB		Well Co	ondition Summ	ary	
Well ID	(initials)	Time	(feet)	(feet)	Protective	Well	Label	Lock	Pad
	(iiiitiais)		(ieet)	(leet)	Casing	Casing			Condition
ARC-1612	MA	0834	12.53		IV OK□ Damaged	OK Damaged	N OK □ Inadequate	IV Yes □ No	DV OK ☐ Damaged
ABC-1607 ABC-1607	MA	1030	23.44		N OK Damaged	D Damaged	OK Inadequate	vZ Yes □ No	☑ OK □ Damaged
HBC-1007	11(11				Damaged OK	Dalliaged OK	Ø OK	Yes	Ø OK
AR- 1608	CJ	1221	21.96		□ Damaged	□ Damaged	□ Inadequate	□ No	□ Damaged
ABC-1614	MA	1137	12.72		☑ OK□ Damaged	Ů OK □ Damaged	IV OK □ Inadequate	© Yes □ No	OK Damaged
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	•				□ OK □ Damaged	□ OK □ Damaged	□ OK □ Inadequate	□ Yes	□ OK □ Damaged
	· ·				□ OK □ Damaged	□ OK □ Damaged	□ OK □ Inadequate	☐ Yes ☐ No	□ OK □ Damaged
				- 177	□ OK □ Damaged	□ OK □ Damaged	□ OK □ Inadequate	☐ Yes ☐ No	□ OK □ Damaged
		Kii		12	□ OK □ Damaged	□ OK □ Damaged	□ OK □ Inadequate	□ Yes	□ OK □ Damaged
					□ OK □ Damaged	□ OK □ Damaged	□ OK □ Inadequate	□ Yes	□ OK □ Damaged
					□ OK □ Damaged	□ OK □ Damaged	□ OK □ Inadequate	☐ Yes ☐ No	□ OK □ Damaged
				-	□ OK □ Damaged	□ OK □ Damaged	□ OK □ Inadequate	☐ Yes ☐ No	□ OK □ Damaged
					□ OK □ Damaged	□ OK □ Damaged	□ OK □ Inadequate	□ Yes	□ OK □ Damaged
					□ OK □ Damaged	□ OK □ Damaged	□ OK □ Inadequate	□ Yes	□ OK □ Damaged
				-	□ OK □ Damaged	□ OK □ Damaged	□ OK □ Inadequate	□ Yes	□ OK □ Damaged
				-	□ OK □ Damaged	□ OK □ Damaged	□ OK □ Inadequate	□ Yes	□ OK □ Damaged
					□ OK □ Damaged	□ OK □ Damaged	□ OK □ Inadequate	□ Yes	□ OK □ Damaged
					□ OK □ Damaged	□ OK □ Damaged	□ OK □ Inadequate	☐ Yes ☐ No	□ OK □ Damaged

				l	OK Damaged	_	OK Damaged	ł .	OK Inadequate	Yes No	l .	OK Damaged
Observ	ations/Notes	3:										
Signatur	e: <i>Utti</i>	Jan	w		4		Date:)-14-2	 20		
- 2Δ/ΩC 5	Signature: 9	1-1	7 -		-				ladam			

Date: 2/19/2020 Veather: Cloudy 1405

Event:								
Nell Diameter: 2.0 Inches Initial Depth to Water: 12.53 feet								
Nell Diameter: 2.0 Inches Initial Depth to Water: 12.53 feet								
Equipment Used: W.L. Indicator								
Non-dedicated BP Compressor Non-dedicated BP MP-15 Controller Box MP-15 Controlle								
Non-declicated BP Compressor Non-declicated BP MP-15 Controller Box MP-15 Control								
Time (5 minute int.) (S.U.) (us/cm) ^{oc} (NTU) (myU.) (rec) (mV) (feet) (mL/min) (stabilization +/-0.1 +/-3% if >10. +/-10% +/-10% +/-10% +/-10 mV <0.3 feet <0.00								
Time ph sp. Cond. Turbidity Oxygen Temp. OHP (my) (feet) (mL/min)								
(S minute int.) (S.U.) (uS/cm)°C (NTU) (mg/L) (°C) (mV) (feet) (mL/min) Stabilization +/-0.1 +/-3% if >10, 4/-10% +/-10% +/-10°C +/-10 mV < -0.3 feet <-500 O 8 +/								
O84								
0846								
085								
0856								
0856								
Purge Cycle (End): 1015 sec @ 20 psi Flow Rate (ml/min End): ~300 Purge Volume (gallons) prior to stabilization monitoring (3/8" I.D. Tube: Vol=Depth to Pump x 0.006 gal/tt): ~0.16 Purge Volume (Gallons): ~5.0 Purge Water Management: onsite containment Purge Observations (color, odor, turbidity, sheen): Clear grap Sample Rurge hime: 0836 MS/MSD sampled at ABC-1602 DTP= 26,45								
0906 4.62 (65.2 2.3 2.69 14.3 374.9 12.88 300 0908								
Purge Cycle (End): 105sec @ 20 psi Flow Rate (ml/min End): ~300 Purge volume (gallons) prior to stabilization monitoring (3/8" I.D. Tube: Vol=Depth to Pump x 0.006 gal/ft): ~0,16 Total Purge Volume (Gallons): ~5,0 Purge Water Management: onsite containment Purge Observations (color, odor, turbidity, sheen): Clear grap sample Ruge time: 0836 MS/MSD sampled at ABC-1602 DTP= 26,45								
Purge Cycle (End): 105 Sec. @ 20 psi Flow Rate (ml/min End): ~300 Purge volume (gallons) prior to stabilization monitoring (3/8" I.D. Tube: Vol=Depth to Pump x 0.006 gal/ft): ~0.16 Total Purge Volume (Gallons): ~5.0 Purge Water Management: onsite containment Purge Observations (color, odor, turbidity, sheen): Chear grab sample Ruge hime: 0836 MS/MSD sampled at ABC-1602 DTP= 26,45 1								
Purge Cycle (End): 105 sec © 20 psi Flow Rate (ml/min End): ~300 Purge volume (gallons) prior to stabilization monitoring (3/8" I.D. Tube: Vol=Depth to Pump x 0.006 gal/ft): ~0,16 Total Purge Volume (Gallons): ~5,0 Purge Water Management: 60 site containment Purge Observations (color, odor, turbidity, sheen): Clear grab sample Purge hime: 0836 MS/MSD sampled at ABC-1602 DTP = 26,45								
Purge volume (gallons) prior to stabilization monitoring (3/8" I.D. Tube: Vol=Depth to Pump x 0.006 gal/ft): —O.16 Total Purge Volume (Gallons): — 5.0 — Purge Water Management: onsite containment Purge Observations (color, odor, turbidity, sheen): Clear grab sample Purge I'me: 0836 — MS/MSD sampled at ABC-1602 — DTP = 26,45								
Purge volume (gallons) prior to stabilization monitoring (3/8" I.D. Tube: Vol=Depth to Pump x 0.006 gal/ft): —O.16 Total Purge Volume (Gallons): — 5.0 — Purge Water Management: onsite containment Purge Observations (color, odor, turbidity, sheen): Clear grab sample Purge I'me: 0836 — MS/MSD sampled at ABC-1602 — DTP = 26,45								
Purge volume (gallons) prior to stabilization monitoring (3/8" I.D. Tube: Vol=Depth to Pump x 0.006 gal/ft): —O.16 Total Purge Volume (Gallons): — 5.0 — Purge Water Management: onsite containment Purge Observations (color, odor, turbidity, sheen): Clear grab sample Purge I'me: 0836 — MS/MSD sampled at ABC-1602 — DTP = 26,45								
Purge volume (gallons) prior to stabilization monitoring (3/8" I.D. Tube: Vol=Depth to Pump x 0.006 gal/ft): —O.16 Total Purge Volume (Gallons): — 5.0 — Purge Water Management: onsite containment Purge Observations (color, odor, turbidity, sheen): Clear grab sample Purge I'me: 0836 — MS/MSD sampled at ABC-1602 — DTP = 26,45								
Purge volume (gallons) prior to stabilization monitoring (3/8" I.D. Tube: Vol=Depth to Pump x 0.006 gal/ft): —O.16 Total Purge Volume (Gallons): — 5.0 — Purge Water Management: onsite containment Purge Observations (color, odor, turbidity, sheen): Clear grab sample Purge I'me: 0836 — MS/MSD sampled at ABC-1602 — DTP = 26,45								
Purge volume (gallons) prior to stabilization monitoring (3/8" I.D. Tube: Vol=Depth to Pump x 0.006 gal/ft): —O.16 Total Purge Volume (Gallons): — 5.0 — Purge Water Management: onsite containment Purge Observations (color, odor, turbidity, sheen): Clear grab sample Purge I'me: 0836 — MS/MSD sampled at ABC-1602 — DTP = 26,45								
Purge volume (gallons) prior to stabilization monitoring (3/8" I.D. Tube: Vol=Depth to Pump x 0.006 gal/ft): —O.16 Total Purge Volume (Gallons): — 5.0 — Purge Water Management: onsite containment Purge Observations (color, odor, turbidity, sheen): Clear grab sample Purge I'me: 0836 — MS/MSD sampled at ABC-1602 — DTP = 26,45								
Purge volume (gallons) prior to stabilization monitoring (3/8" I.D. Tube: Vol=Depth to Pump x 0.006 gal/ft): —O.16 Total Purge Volume (Gallons): — 5.0 — Purge Water Management: onsite containment Purge Observations (color, odor, turbidity, sheen): Clear grab sample Purge I'me: 0836 — MS/MSD sampled at ABC-1602 — DTP = 26,45								
Purge volume (gallons) prior to stabilization monitoring (3/8" I.D. Tube: Vol=Depth to Pump x 0.006 gal/ft): —O.16 Total Purge Volume (Gallons): — 5.0 — Purge Water Management: onsite containment Purge Observations (color, odor, turbidity, sheen): Clear grab sample Purge I'me: 0836 — MS/MSD sampled at ABC-1602 — DTP = 26,45								
Purge volume (gallons) prior to stabilization monitoring (3/8" I.D. Tube: Vol=Depth to Pump x 0.006 gal/ft): —O.16 Total Purge Volume (Gallons): — 5.0 — Purge Water Management: onsite containment Purge Observations (color, odor, turbidity, sheen): Clear grab sample Purge I'me: 0836 — MS/MSD sampled at ABC-1602 — DTP = 26,45								
Purge volume (gallons) prior to stabilization monitoring (3/8" I.D. Tube: Vol=Depth to Pump x 0.006 gal/ft): —O.16 Total Purge Volume (Gallons): — 5.0 — Purge Water Management: onsite containment Purge Observations (color, odor, turbidity, sheen): Clear grab sample Purge I'me: 0836 — MS/MSD sampled at ABC-1602 — DTP = 26,45								
Purge Volume (Gallons): ~ 5.0 Purge Water Management: onsite containment Purge Observations (color, odor, turbidity, sheen): Clear grab sample Purge time: 0836 MS/MSD sampled at ABC-1602 DTP= 26.45								
Purge Observations (color, odor, turbidity, sheen): Clear grab sample Purge time: 0836 MS/MSD sampled at ABC-1602 DTP= 26.45'								
Purge time: 0836 MS/MSD sampled at ABC-1602 DTP= 26.45'								
Sample Time: 0908 Field Filtered (0.45um): ☐ Yes ☑ No								
□ VSWMP Table 3.1 Column A VOCs □ VSWMP Table 3.1 Column A Metals								
Sample Parameters/Analyte(s): VSWMR Table 3.1 Column B VSWMR Table 3.1 Column B								
,								
Other: 601016020 metals, Hg, Chloride, fluoride, sylfate,								
Other Observations / Equipment Operation Problems: TDS, hardness, phenolics, radium 226/228,								
total radium, TOC hex chrome								
Sampler Signature: 1 Date: 2/19/2020 Page of								
QA/QC Signature: Who Com Date: 2-19-20								

	G	0	L	D	Ε	R
--	---	---	---	---	---	---

Date: 2/19/2020

Project Name:	Project Name: Possum Point P.S. Project No./Task No.: 20139775,220A.									
Event:	ISAZOZO GW-PONDABC			Sampler(s)	:	M. An	M. Antal			
Well ID:	ABC-1607 Field			d Calibration Completed:			on 2/19/2020			
Well Diameter:	2.0	inches		Initial Dept	n to Water:	23,	44	feet		
Depth to Bottom:			feet	Water Colu	ımn Thicknes	s: ——		feet		
Equipment Used:	WL Indicat	tor	Turbidity Met	er	☐ Air Tank		☑ Dedicated Bla	adder Pump		
			☐ Peristaltic Pur	mp	☐ Compresso	or	☐ Non-dedicate	d BP		
	☐ In-Situ ☐ MP-10 Controller Box ☑ MP-15 Controller Box ☐							<u>-</u>		
Time	рН	Sp. Cond.	Turbidity	Dissolved Oxygen	Temp.	ORP	DTW	Flow Rate		
(5 minute int.)	(S.U.)	(uS/cm) ^{oC}	(NTU)	(mg/L)	(°C)	(mV)	(feet)	(mL/min)		
Stabilization	+/- 0.1	+/- 3%	if >10, +/- 10%	+/- 10%	+/- 1°C	+/- 10 mV	<0.3 feet	<500		
1037	5.05	173,5	85.6	3.74	14.9	174.7	24,60	400		
1040	5.06	171.2	23.1	3.30	15.0	177.4	26.17	400		
1043	5.09	171.2	10.6	2.74	15.0	173.8	26.59	400		
1046	5,09	171.6	8.1	2,46	15.0	173,1	26.75	400		
(048 -	T :-		- ~	-SAMI		160 7		1100		
1109	5.15	170.4	5.8	4,24	14.7	169.5	26.21	400		
Purge Cycle (End	1): 10155	sec e	20	psi	Flow Rate (r	ml/min End):	~ 400			
Purge volume (ga			nonitoring (3/8" I	.· I.D. Tube: V	ol=Depth to P	ump x 0.006	gal/ft):	~0.18		
Total Purge Volu							. Containm			
Purge Observation			een): / leas				Company	911		
0		Ď		11/	Semple					
Sample Time: 1032 DTP= 29.25										
Sample Time										
Sample Parameters/Analyte(s): USWMR Table 3.1 Column A VOCs VSWMR Table 3.1 Column A Metals										
□ VSWMR Table 3.1 Column B										
Other: 6010/6020 metals, 14 chloride, fluoride										
Other Observation	ne / Equipme		_	Hate, TI	x landa	/)/	nlics, rad	21/22		
131.				icione, II	singian	cs y the	10115/1401	MIN ZEEE		
TOTAL VACIL	m, TOC,	hex Chron			. 1. 1.			, 1		
Sampler Signatu	re: /	1005		Date:	2/19/2	020	. Page	of		
QA/QC Signature	e: 11	r Ga	egn.	Date:	2-19-2	020				

	G	0	L	D	Ε	R
--	---	---	---	---	---	---

Date: 2-19-2020
Weather: 160, 1, 505

Project Name:	Possur	1 Point 1	2.5.	Project No.	./Task No.:	2613	9775.2	20A.1	
Event:	Project Name: Possum Point P.S. Project No./Task No.: 26139775,220A. Event: SAZO CUR/VSWAN ABC Pond Sampler(s): (.JoyNr)								
Well ID:		1608	Fie	ld Calibration	n Completed:	2-14-20	20 @ 08	300	
Well Diameter:	2,0				h to Water:	21,91		feet	
Depth to Bottom:			feet	Water Colu	umn Thicknes		_	feet	
Equipment Used:	DESCRIPTION OF THE PERSON OF T	or	- ☐ Turbidity Met	er	☐ Air Tank		Dedicated Bl	adder Pump	
			☐ Peristaltic Pur	mp	☐ Compresso	or	☐ Non-dedicate	ed BP	
	☐ In-Situ		☐ MP-10 Contro	ller Box	MP-15 Cor	ntroller Box		<u> </u>	
Time	рН	Sp. Cond.	Turbidity	Dissolved Oxygen	Temp.	ORP	DTW	Flow Rate	
(5 minute int.)	(S.U.)	(uS/cm)°C	(NTU)	(mg/L)	(°C)	(mV)	(feet)	(mL/min)	
Stabilization	+/- 0.1	+/- 3%	if >10, +/- 10%	+/- 10%	+/- 1°C	+/- 10 mV	<0.3 feet	<500	
1226	5.92	364.9	63,47	2.57	13.6	102.4	22.97	200	
1731	5,86	374.6	27.55	2.11	13.7	70.2	22,98	208	
1236	5.89	377.6	10.35	1.70	13.8	63.3	72.99	200	
1241	5.89	378,4	7.23	1.77	13.8	61.0	23,10	200	
1243	4= 250= 2 6/505		- SAMY	LE .					
1300	5.95	379.4	3-13	1.46	13.7	56-1	23.05	200	
						To a later of the			
2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1									
					Mark Total	ART DE		0.000	
56 To 100	SELECTION OF	Ample of	20. (44.00.47)			25 Care 20 - 2 y		3,293	
Marin manager variable		ESS I S VIA				ARS NOT HERE			
	6 11								
			X						
Purge Cycle (End	d): 24 sec /	bsec @	25	psi	Flow Rate (r	ml/min End):	200)	
Purge volume (ga	allons) prior to	stabilization r	monitoring (3/8"	I.D. Tube: V	ol=Depth to F	oump x 0.006	gal/ft):	no.16	
Total Purge Volu	me (Gallons):	~1.5		Purge Wate	er Manageme	nt: On-site	e contain	mnt	
Purge Observation	ons (color, od	or, turbidity, sh	neen): clear or				- X W		
purcetime	to the state of the same of th		v v v v v v v v v v v v v v v v v v v						
Sample Time:		43	ar e		Field Filtere	d (0.45um):	☐ Yes	Ì∕ No	
Sample Time.	10-		VOWAND Table	- ,,				·	
Sample Paramet	ers/Analyte(s):	VSWMR Table	3.1 Column	A VOCS	☐ A2MINIE	R Table 3.1 Colu	ımn A ivietais	
	☐ VSWMR Table 3.1 Column B								
		2	Other: 6010/6	UZU Metals,	Chlocity 5.	Hates Fluoria	4, TOS, Pho	1:05, Radium 226 -22	
Other Observation	one / Equipme	nt Operation F	Problems:	diven, phono	ilius, TOL,	Hg, hex	chrome	lics, Radium 226 -22	
Other Observation	nis / ⊑quipine	an Operation i	TODICITIS.	2 8		. • /			
	1	1	e u		- /				
Sampler Signatu	re: lately	n Jays		Date:	2-19-20	20	Page	of \	
QA/QC Signatur	e: Kil	dis		Date:	2/19/20	20	_		

Project Name: Possum Point P.S. Project No./Task No.: 20139775,2204.1									
Event:	ISA2020	GW-Por	d ABC	Sampler(s)		M.Antal			
Well ID:		-1614			Completed:	0800	m 2/9/20	20	
Well Diameter:	2.0	inches		Initial Deptl	n to Water:	12:	72	feet	
Depth to Bottom:			feet	Water Colu	mn Thicknes	s:		feet	
Equipment Used:	WL Indicat	or	☐ Turbidity Met	er	☐ Air Tank		☑ Dedicated Bla	adder Pump	
	VSI POO	3519K101420	Peristaltic Pur	np	Compresso		☐ Non-dedicate	d BP	
	☐ In-Situ		☐ MP-10 Contro	ller Box	MP-15 Cor	troller Box			
Time	рН	Sp. Cond.	Turbidity	Dissolved Oxygen	Temp.	ORP	DTW	Flow Rate	
(5 minute int.)	(S.U.)	(uS/cm)°C	(NTU)	(mg/L)	(°C)	(mV)	(feet)	(mL/min)	
Stabilization	+/- 0.1	+/- 3%	if >10, +/- 10%	+/- 10%	+/- 1°C	+/- 10 mV	<0.3 feet	<500	
[144	6.27	433,7	28,4	6.77	14.2	28.3	15.61	450	
1147	6.18	449.0	30.9	4.17	14.2	-2.2	16.35	450	
1150	6.19	446.6	39.2	3.30	14.1	-10.8	16,00	200	
115 5	6.15	432.4	43.7	2.5	14.3	-13.2	16.48	200	
1200	6.15	422.0	42.8	1.76	14.2	-15.4	15.90	200	
1205	6.14	412.3	31.9	1.17	14.2	-15.3	15,64	200	
1210	6.15	406.9	17.2	1.81	14.3	-15.4	15,41	200	
1215	6.15	404.2	13.1	101	14.2	-151	15.35	200	
1220	6.15	400,4	8.2	[0]	14.2	-13.9	15.31	200	
1222 -				SAMPL					
1320	6.17	377.6	12.8	3.64	13.8	-18.7	14.99	200	
		<u> </u>							
	22/2		20	<u> </u>	FI D-1- /		200		
Purge Cycle (En		sec @	30	_psi 	,	ml/min End):		15012	
Purge volume (g			monitoring (3/8"					~0.13	
Total Purge Volu	ıme (Gallons):	~ 4.5	4	1.000, 501		nt: ONSITE	e containm	ent	
Purge Observati	11-0			grab			41		
Purge time	2: 1139	DTP=	21.251	11505	uitch to E	minute	readings		
Sample Time:	1277								
USWMR Table 3.1 Column A VOCs VSWMR Table 3.1 Column A Metals									
Sample Parameters/Analyte(s):									
USWMR Table 3.1 Column B									
	other: 6010/6020 metals, Hg, Chloride, Fluoride, Sulfate								
Other Observation	Other Observations / Equipment Operation Problems: TPS Nardness, Phenolics, radium 226/228,								
total rad	ium, TO	C, hex d		,		1			
Sampler Signatu	ire: 12	1/20		Date:	2/19/2	070	Page	of	
OA/OC Signatur	0 de 3 de 3								

\$	G O	LD	ER
----	-----	----	----

Date: 219/200 Weather: Cloudy, 405

Project Name:										
Event:	15A2020 GW-Pond ABC			Sampler(s)	Sampler(s):			Antal		
Well ID:	Duplicat	e-Pond A	BC Fie	ld Calibration	Completed:	0800	on 2/19/20	20		
Well Diameter:				Initial Dept	h to Water:			feet		
Depth to Bottom:			feet	Water Colu	ımn Thicknes	s: —		feet		
Equipment Used:	WL Indicat	tor	☐ Turbidity Met	er	☐ Air Tank		Dedicated Bla	adder Pump		
	VYSI (no OS	<u>5 19 K101420</u>	☐ Peristaltic Pur	mp	☐ Compresso		☐ Non-dedicate	d BP		
	☐ In-Situ		☐ MP-10 Contro	oller Box	MP-15 Con	troller Box				
Time	рН	Sp. Cond.	Turbidity	Dissolved Oxygen	Temp.	ORP	DTW	Flow Rate		
(5 minute int.)	(S.U.)	(uS/cm) ^{oC}	(NTU)	(mg/L)	(°C)	(mV)	(feet)	(mL/min)		
Stabilization	+/- 0.1	+/- 3%	if >10, +/- 10%	+/- 10%	+/- 1°C	+/- 10 mV	<0.3 feet	<500		
1300 -				-SAMPL	E					
		,								
Purge Cycle (End	I):	_ @	~	psi	Flow Rate (n	nl/min End):				
Purge volume (ga	allons) prior to	stabilization m	nonitoring (3/8"	l.D. Tube: Vo	ol=Depth to P	ump x 0.006	gal/ft):			
Total Purge Volui	me (Gallons):			Purge Wate	r Managemer	nt: onsit	e contains	nent		
Purge Observation	ons (color, od	or, turbidity, sh	een): Clear	-						
			og for Sam			/// // /	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
Sample Time:	1300	- Carpine)	reger	Field Filtered	d (0.45um):	☐ Yes	₩ No		
·		, <u> </u>	VSWMR Table	3.1 Column		,	Table 3.1 Colu	mn A Metals		
Sample Paramete	ers/Analyte(s);	VSWMR Table							
		rv/	,				01	0.1		
			Other: 6010/					y sultate,		
Other Observatio				hardne	ss, phen	olics, r	29ium 226/	228,		
total radiu	m, TOC,	hex Chro	me							
Sampler Signatur	e:A	1 000		Date:	2/19/20	20	Page	of		
QA/QC Signature	QA/QC Signature: Lan Green Date: 2-19-200									

Date: 2/19/2020
Weather: Sun 40.5

Project Name: Possum Point P.S. Project No./Task No.: 20139775, 2204, j									
Event:	ISA20206W-Pond ABC			Sampler(s)	:	M	M. Antal		
						0800 on 2/19/2020			
Well Diameter:		inches			h to Water:			feet	
Depth to Bottom:	_		feet	Water Colu	ımn Thicknes	s:		feet	
Equipment Used:	☐ WL Indicat	tor	☐ Turbidity Mete	er	☐ Air Tank		☐ Dedicated Bla	adder Pump	
	☐ YSI		☐ Peristaltic Pum	np	☐ Compresso	r	☐ Non-dedicate	ed BP	
	☐ In-Situ		☐ MP-10 Control	ler Box	☐ MP-15 Con	troller Box			
Time	рН	Sp. Cond.	Turbidity	Dissolved Oxygen	Temp.	ORP	DTW	Flow Rate	
(5 minute int.)	(S.U.)	(uS/cm) ^{oC}	(NTU)	(mg/L)	(°C)	(mV)	(feet)	(mL/min)	
Stabilization	+/- 0.1	+/- 3%	if >10, +/- 10%	+/- 10%	+/- 1°C	+/- 10 mV	<0.3 feet	<500	
1000 —				SAMPLI	Ż ———				
						-			
					ĺ				
						<u> </u>			
B 0l. /Fra	\				Flaw Data (a	-1/: [1].			
Purge Cycle (End		<u> </u>		psi	Flow Rate (n		1//0		
Purge volume (ga			•		•		-		
Total Purge Volum					_ '		2 Containn	rent	
Purge Observation				•	ample to	iken ne	ar ABC-11	602	
with lab	oratory	provided	DI wate	2				+/	
Sample Time: 1000 Field Filtered (0.45um): Yes No									
Sample Parameters/Analyte(s): USWMR Table 3.1 Column A VOCs VSWMR Table 3.1 Column A Metals									
			VSWMR Table						
		\square	Other: 6010/6	020met	als, Hg, (chloride	, fluoride	sulfate	
Other Observatio	ns / Equipme					plis, a	odium 27	6/228,	
totalvadiu	m, TOCI	hexchro		,	/ [
Sampler Signatur	e: 15	12-		Date:	2/19/20	20	Page	of	
QA/QC Signature	2 1/2 200								

APPENDIX D.2 FIELD DATA SHEETS SECOND SEMI-ANNUAL GROUNDWATER MONITORING EVENT (AUGUST-SEPTEMBER 2020)

Date: 8/31/2020

WELL GAUGING LOG

Project Name	e: Possum Point - 2SA2020 ABC Compliance	Project No./Task No.: 20139775.220A
Sampler(s):_	M-Antal	
Equipment:_	Water Level Indicator	

	Personnel	1	DTW	DTB (feet)	Well Condition Summary						
Well ID	(initials)	Time	DTW (feet)		Protective Casing	Well Casing	Label	Lock	Pad Condition		
ABC-1602	M	1209	15.38		V OK Damaged	√OK Damaged	✓OK Inadequate	√ Yes No	OK Damaged		
ABC-1607	MA	1146	24.70	1	✓ OK Damaged	OK Damaged	OK Inadequate	√Yes No	√OK Damaged		
ABC-1608	MA	1142	22.01	-	✓ OK Damaged	✓ OK Damaged	OK Inadequate	Yes No	V OK Damaged		
ABC-1614	MA	1137	12.75	1	V OK Damaged	✓ OK Damaged	VOK Inadequate	√Yes No	✓OK Damaged		
					OK Damaged	OK Damaged	OK Inadequate	Yes No	OK Damaged		
					OK Damaged	OK Damaged	OK Inadequate	Yes No	OK Damaged		
					OK Damaged	OK Damaged	OK Inadequate	Yes No	OK Damaged		
					OK Damaged	OK Damaged	OK Inadequate	Yes No	OK Damage		
					OK Damaged	OK Damaged	OK Inadequate	Yes No	OK Damage		
					OK Damaged	OK Damaged	OK Inadequate	Yes No	OK Damage		
					OK Damaged	OK Damaged	OK Inadequate	Yes No	OK Damage		
					OK Damaged	OK Damaged	OK Inadequate	Yes No	OK Damage		
					OK Damaged	OK Damaged	OK Inadequate	Yes No	OK Damage		
					OK Damaged	OK Damaged	OK Inadequate	Yes No	OK Damage		
					OK Damaged	OK Damaged	OK Inadequate	Yes No	OK Damage		
					OK Damaged	OK Damaged	OK Inadequate	Yes No	OK Damage		
		7.0			OK Damaged	OK Damaged	OK Inadequate	Yes No	OK Damage		

Observations/Notes:	
Signature: As QA/QC Signature: Am gr	Date: 8/31/2020 Date: 8-31-20 20 Page of

1		MICR	OPURGE SA	AMPLING	LOG	Date:	9/2/202	0
-						Weather:	cloudy	705
GOLD		D LD	2	La de Cher	227 1 2 1 2 2 2 3 3			
roject Name:		n Point P.S			./Task No.:	20139775	,20A.	
event:		OGW-AD	3C fond	Sampler(s):	M. Antal	7. 6	
Vell ID:	ABC-11	002	_ Fie	eld Calibratio	n Completed:		9/2/2020	
Vell Diameter:	2.0	inches		Initial Dept	h to Water:	15.02		feet
epth to Bottom:	31.	70	_feet	Water Coli	umn Thicknes	s: 16.68		feet
quipment Used:	WL India	cator	☐ Turbidity Me	eter	Air Tank		Dedicated B	ladder Pump
	V YSI TO I	755 18404692	Peristaltic Pu	ımp	Compress	sor	☐ Non-dedicat	ted BP
	☐ In-Situ _		MP-10 Contr	oller Box	MP-15 Co	ontroller Box		
Time	pH	Sp. Cond.	Turbidity	Dissolved Oxygen	Temp.	ORP	DTW	Flow Ra
(5 minute int.)	(S.U.)	(uS/cm) ^{oC}	(NTU)	(mg/L)	(°C)	(mV)	(feet)	(mL/mir
Stabilization	+/- 0.1	+/- 3%	if >10, +/- 10%	+/- 10%	+/- 1°C	+/- 10 mV	<0.3 feet	<500
1020	4.53	286.7	9.80	3.41	15.7	148.2	15.16	400
1023	4.48	289.5	8.79	3.51	15.7	158.5	15.21	400
1026	4.46	291.5	8.54	3.17	15.6	167.9	15.20	400
1029	4.44	292.7	9.41	3.20	15,7	175.2	15.24	400
1031					SAMPLE			
(105	4.43	307.2	3.59	2.75	6.0	213.6	15.20	400
								1
	-							
	tole		2 "				17	
urge Cycle (End			20	psi	Flow Rate (r		~ 40	
urge volume (ga otal Purge Volur		4 4	monitoring (3/8" I			oump x 0.006 gal/ft):(67=20.
						I O DIE COY	indiment	
Purge tim		ior, turbidity, sh	neen): Clear	grab	Sample 26.50	1		
	1031			V //	7.73 3.43 7.7	A - 7 T T T T T T T T T T T T T T T T T T	Yes	No No
ample Time:	1001	-	,		Field Filtere	d (0.45um): Hexavalent Chro		LE 140

Additional VSWMR: Cu, Ni, Ag, Sn, V, Zn Former VPDES: Hardness, Na, K, TOC, Fe, Mn, Phenolics Other Observations / Equipment Operation Problems: Date: Sampler Signature: Date: QA/QC Signature: 9-2-2020

Sample Parameters/Analyte(s):

Late Control	

Date: 9-2-2020

Project Name:	Poss	um Point	P.S.	Project No.	/Task No.:	20134775				
Event:	25A 2020 CR ABC-1607 Field			Sampler(s)	:	C-Joyn				
Well ID:	ABC-1607 Field				n Completed:	9-7-2020 C	20745	0745		
Well Diameter:	2	inches	•	Initial Deptl	h to Water:	73.3	feet			
Depth to Bottom:	7	inches 54.59	feet	,	ımn Thicknes	s: 11.2°	11.28 feet			
Equipment Used:	₩L Indica	ator	Turbidity Me		Air Tank	***************************************	Dedicated B	-		
_ (X YSI Zlo	DSS 160 1043.	 70☐ Peristaltic Ρι		Compress	sor	Non-dedicat	·		
	In-Situ		MP-10 Contr	oller Box	`∭ MP-15 Co	ntroller Box	1 petes	str 50 2790687		
Time	рН	Sp. Cond.	Turbidity	Dissolved	Temp.	ORP	DTW	Flow Rate		
(5 minute int.)	(S.U.)	(uS/cm)° ^C	(NTU)	Oxygen (mg/L)	(°C)	(mV)	(feet)	(mL/min)		
Stabilization	+/- 0.1	+/- 3%	if >10, +/- 10%	+/- 10%	+/- 1°C	+/- 10 mV	<0.3 feet	<500		
0842	5,34	214,0	65.4	4,34	12.3	153.5	24.12	400		
0845	5.30	209.6	23.8	3.66	16.9	150.5	24.38	400		
0943	5,48	207.8	14,9	3.82	16.7	145.6	24-40	400		
0851	5.43	206.1	10.2	3.64	16.7	141.1	24.51	400		
0853					AMP26					
3925	5.49	183,8	6.9	3.61	17-6	136.5	ZS-20	400		
	· ·									
			4							
***************************************			-							
Purge Cycle (End	i): 24/	/6 e	3 B	psi	Flow Rate (r	ml/min End):	4	00		
Purge volume (ga	allons) prior to	stabilization m	nonitoring (3/8" I	.D. Tube: Vo	ol=Depth to F	oump x 0.006 gal/ft):		20.17		
Total Purge Volur	me (Gallons):	\sim	•	Purge Water	r Managemer	nt: onsite con	tainmen	<i>t</i>		
Purge Observatio	ons (color, ode	or, turbidity, she	een): (((Cv	crab	5 comple	_				
nurce fine a				7	7					
Sample Time:	D):	953			Field Filtere	d (0.45um):	☐ Yes	No No		
•			CCR Appendix	III & IV Cons		∭ Hexavalent Chro	nmium			
Sample Paramete	ers/Analyte(s)	,. (,—	Jinum			
			Additional VSV		-					
		مخيا	Former VPDES	_		Fe, Mn, Phenolics				
Other Observation MS/MSD	ns / Equipme らるみ ρ	/ .		pT=29	1.21					
Sampler Signatur	e: M	-92		Date:	9-2-2	929	Page) of (
QA/QC Signature	- 2 -	May On		Date:	9-3-2		_	***************************************		
a, vao orginature		(D)		Date.						

			>)	
G	0	L	D	Ε	R

Date: 9-2-2020Weather: 54×805

Project Name:	P055	un Roini	t P.S.	Project No.	./Task No.:	20139	775		
Event:	PUSSYN ROINT P.S. 25A2220 CCR/USWMR/HO			پرچ(sámpler(s):	C. Jos.	Josner		
Well ID:	ABC-1	608		Id Calibration Completed: 9-1-2010			@ 074	·5	
Well Diameter:	2	inches	•		h to Water:	21.9		feet	
Depth to Bottom:	3			Water Column Thickness:		: 10.70		– feet	
Equipment Used:			- ☐ Turbidity Me	eter	Air Tank		Dedicated BI	adder Pump	
	X YSI 👭		Peristaltic Pu	ımp	Compress	or	Non-dedicate	ed BP	
	In-Situ		MP-10 Contr	oller Box	MP-15 Co	ntroller Box	apc +	e57,502790	
Time	рН	Sp. Cond.	Turbidity	Dissolved	Temp.	ORP	DTW	Flow Rate	
(5 minute int.)	(S.U.)	(uS/cm)° ^C	(NTU)	Oxygen (mg/L)	(°C)	(mV)	(feet)	(mL/min)	
Stabilization	+/- 0.1	+/- 3%	if >10, +/- 10%	+/- 10%	+/- 1°C	+/- 10 mV	<0.3 feet	<500	
1002	6.37	390.3	9.8	3.56	17.1	65.4	22. 20	300	
1005	6.08	360.8	12-8	2.28	16.4	58,8	22.05	300	
1008	6.13	391.5	12.6	2.02	16.2	60.6	22.02	300	
1011	6,09	392-8	8.3	1-81	16.1	62-6	28. O	300	
1013				-5A	MPLE				
1033	397.2	357.2	5.6	3.68	17.5	52-0	2832	300	
	6.2415								
						44///			
							1.184444		

					•				

Burgo Cyolo (Enc	1): 2H	/6 @	20		Flow Rate (n	ol/min End).	38		
Purge Cycle (End		/ "		psi D. Tuba V	•	•		~0.75	
						ump x 0.006 gal/ft):		0.13	
Total Purge Volui						t: Onsite co	1991amer		
Purge Observatio			een):2 /ecr	5165	59mp1	e			
orige tim	V 1000	.)							
Sample Time:		013		•	Field Filtered	d (0.45um):	☐ Yes	No No	
Sample Paramete	ers/Analvte(s): 🗵	CCR Appendix	III & IV Cons	stituents	街 Hexavalent Chro	omium		
			Additional VSV	VMR: Cu. Ni.	, Ag, Sn, V. Z	n			
					=	e, Mn, Phenolics			
					- 0	_,,			
Other Observatio	ns / Equipme	nt Operation P	roblems:	DTP=	(6,57)				
Sampler Signatur	re: [M]	24		Date:	9-2-	2020	Page	(of)	
QA/QC Signature	000	Andre		•	9-2-	2.02.0	_		
www signature	. ///	HOW WELL		Date:	· ·		-		
		1/ /							

S
GOLDER

Date: 9/2/2020
Weather: Cloudy, 705

Project Name:	Possur	Point P.	5.	Project No	/Task No.:	20139775,220A.1			
Event:	2000001			The second secon			M. Antal		
Well ID:	ABC-11		Field Calibration Com					20	
Well Diameter:	2.0	inches	-		h to Water:	12.54	10.00	feet	
Depth to Bottom:	28.	A STATE OF THE PARTY OF THE PAR	feet	Water Column Thickness		100 01		feet	
Equipment Used:	-/		☐ Turbidity Me		Air Tank	15.01	Dedicated BI		
-4-6-6	VYSIGO DE 18404672 - Peristaltic Pu				Compress	sor	☐ Non-dedicate		
	☐ In-Situ _	_	MP-10 Contr	oller Box	MP-15 Co	ntroller Box			
Time	pH	Sp. Cond.	Turbidity	Dissolved	Temp.	ORP	DTW	Flow Rate	
(5 minute int.)	(S.U.)	(uS/cm)°C	(NTU)	Oxygen (mg/L)	(°C)	(mV)	(feet)	7.00	
Stabilization	+/- 0.1	+/- 3%	if >10, +/- 10%	+/- 10%	+/- 1°C	+/- 10 mV	<0.3 feet	(mL/min) <500	
0848	5.93	806	17.66	5.07	15.9	25.8	15.90	400	
0851	5.91	830	17.23	3.94	15.9	8,8	16.49	400	
0854	5.87	836	17.44	2.96	15.7	0.1	17.22	400	
0857	5.88	833	4422	2.53	15.7	-3.6	17.60	400	
0900	5.87	833	73.90	2.16	16.2	-6.5	17.22	400	
0903	5.89	835	74.22	2.02	15.7	-9.3	17.45	400	
0908	5.87	804	25.83	1.58	16.4	-9.4	16.87	200	
0913	5.86	801	24.77	1.78	16.6	-9.0	16.23	200	
0918	5.86	793	23.99	1.76	16.5	-8.4	15.98	200	
0920 -					AMPLE -				
0945	5.95	764	13.40	1.68	16.5	-12.7	15.73	200	
			14						
	27/3	CAC							
Purge Cycle (End	271	SPE MA @	30	psi	Flow Rate (r	ml/min End):	~ 400)	
					The second section of the	ump x 0.006 gal/ft)			
Total Purge Volun			mornioning (or o			nt: ensite con		1 000	
Purge Observation			neen) Clear			iii ortistie cor	(Cimple)		
Purge time		or, raiblaity, or	icony. Clark	title 6	2-21 75	0903-4	switch to 5 min	randia	
. ,	nann			V/1	-21,00	100	Yes	No No	
Sample Time:	0120	No.	,		Field Filtered	,		IV IVO	
Sample Paramete	rs/Analyte(s)):	CCR Appendix	III & IV Cons	stituents	W Hexavalent Ch	romium		
		V	Additional VSV	VMR: Cu, Ni	Ag, Sn, V, Z	'n			
		V	Former VPDES	: Hardness,	Na, K, TOC,	Fe, Mn, Phenolics			
Othar Ohaamiatias	e / Equipmo	nt Operation E	Problems:						
	is / Equipme	in Operation P	Toblems.						
Other Observation									
Other Observation	11	1/1		400	alsh	(DA)			
Sampler Signature	e: 1/L	10	3	Date:	9/2/20	020	Page	of	

Date: 9-7-7020Weather: 1000

GOLD	ER o	- /	2. 1 00			•		·
Project Name:	1055	sum f	DIAT P.S.	Project No.	/Task No.:	2013977	<u>5</u>	
Event:	25A202	OCCR/VS	WMR/HexCI	Sampler(s)	:	C. Joyns		
Well ID:	ABC-F	reld Bla	nk Fie	eld Calibration	Completed:	2013977 C. Joyas G-2-2020	C 094	5
				Initial Dept			w.	_feet
Depth to Bottom:	<u> </u>		_feet	Water Colu	ımn Thicknes	s: ~		_ _feet
Equipment Used:			Turbidity Me	eter	Air Tank		Dedicated B	- Bladder Pump
	YSI		Peristaltic Ρι	ımp	Compress	sor	Non-dedicat	ed BP
	In-Situ		MP-10 Contr	roller Box	☐ MP-15 Co	ntroller Box		***************************************
Time	рН	Sp. Cond.	Turbidity	Dissolved Oxygen	Temp.	ORP	DTW	Flow Rate
(5 minute int.)	(S.U.)	(uS/cm)°C	(NTU)	(mg/L)	(°C)	(mV)	(feet)	(mL/min)
Stabilization	+/- 0.1	+/- 3%	if >10, +/- 10%	+/- 10%	+/- 1°C	+/- 10 mV	<0.3 feet	<500
0945				SAM,	PCE			
								1
			-					
		<u> </u>						
		<u> </u>						
	<u> </u>	<u> </u>		<u> </u>	<u> </u>		<u> </u>	
Purge Cycle (End	i <u>):</u>		Description .	_psi	Flow Rate (r	nl/min End):		
Purge volume (ga	allons) prior to	o stabilization r	monitoring (3/8"	I.D. Tube: Vo	ol=Depth to P	ump x 0.006 gal/ft):		
Total Purge Volui	ne (Gallons):	-		Purge Wate	r Managemer	nt:	_	
Purge Observation	ons (color, od	or, turbidity, sh	neen): Clec	- 61 ac	58 m	ple take	an reg	or ABC-1
Using la	h Pro	vided	PINO		· · · · · · · · · · · · · · · · · · ·			
	nai	4 c	T 100	· U1		1.(0, 45	☐ Yes	No
Sample Time:		()		-	Field Filtered	,	_	NO NO
Sample Paramete	ers/Analyte(s): 📮	CCR Appendix	III & IV Cons	stituents	Hexavalent Chro	omium	
			Additional VSV	WMR: Cu, Ni,	Ag, Sn, V, Z	'n		
		$\stackrel{\frown}{\triangleright}$				Fe, Mn, Phenolics		
				,	9.9.5	,,		
Other Observatio	ns / Equipme	ent Operation P	roblems:					
Sampler Signatur	e: U	M		Date:	9-2	-2020	Page	/ of)
	104 ()			-	A _ 2	-212 ~	- ' ugo	/
QA/QC Signature	: 111. pa	uner -		Date:	4-2-	-2020	-	
	W.	iI .						

MICROPURGE SAMPLING LOG GOLDER Possum Point P.S. Project Name: Project No./Task No.: Event: Sampler(s): 9/2/2020 Field Calibration Completed: Well ID: Well Diameter: inches Initial Depth to Water: feet Depth to Bottom: Water Column Thickness: feet feet Equipment Used: WL Indicator Air Tank ☐ Turbidity Meter Dedicated Bladder Pump VSI 6055 18L104692 Peristaltic Pump Compressor Non-dedicated BP MP-15 Controller Box MP-10 Controller Box In-Situ Dissolved Sp. Cond. Turbidity ORP Time pH Temp. DTW Flow Rate Oxygen (5 minute int.) (S.U.) (uS/cm)°C (NTU) (mg/L) (mV) (°C) (feet) (mL/min) Stabilization +/- 0.1 +/- 3% if >10, +/- 10% +/- 10% +/- 10 mV +/- 1°C <0.3 feet <500 1.045 5AMPLE @ psi Purge Cycle (End): Flow Rate (ml/min End): Purge volume (gallons) prior to stabilization monitoring (3/8" I.D. Tube: Vol=Depth to Pump x 0.006 gal/ft): Purge Water Management: Onsite containment Total Purge Volume (Gallons): Purge Observations (color, odor, turbidity, sheen): Clear area sample taken at ARC-1602

Sampled ABC-Duplicate	at ABC-1602 - See ABC-160	2 Sampling log for	details.	
Sample Time: 1045		Field Filtered (0.45um):	Yes	₩ No
Sample Parameters/Analyte(s):	CCR Appendix III & IV Cons Additional VSWMR: Cu, Ni, Former VPDES: Hardness,	Ag, Sn, V, Zn		
Other Observations / Equipment	Operation Problems:			
Sampler Signature:	103 Date:	9/2/2020	Page	
QA/QC Signature: /www	An Date:	9-3-2020		

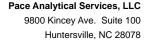
Date:

QA/QC Signature: [MM

APPENDIX D.3 FIELD DATA SHEETS SECOND SEMI-ANNUAL VERIFICATION GROUNDWATER MONITORING EVENT (OCTOBER 2020)

	LDEF	MICRO	OPURGE S	AMPLING	LOG	Date:	10/15	12020
	LDE	•					<u>\$u</u>	
Project Name:	Pos	sum pom	4 PS	Project No	/Task No.:		2013977 20139<i>95</i>1	
Event:	25A200	CRTUSHN	er venticat	©∕Sampler(s)	:		O. Stecle	
Well ID:	ABC.	-1608	. Fie	eld Calibratio	n Completed:	(0) (5/2020 (_
Well Diameter:	2.0	inches		Initial Dept	h to Water:	2	1.95	feet
Depth to Bottom:	3	2.48	feet	Water Colu	ımn Thicknes	s: /	0.73	feet
Equipment Used:			Turbidity Me		Air Tank		🔏 Dedicated Bl	adder Pump
	X YSI Pro))SS19F1C490	-{ 🗌 Peristaltic Pu	ımp	Compress	or	Non-dedicate	ed BP
	In-Situ		MP-10 Contr	roller Box	X MP-15 Co	ntroller Box		
Time	рН	Sp. Cond.	Turbidity	Dissolved Oxygen	Temp.	ORP	DTW	Flow Rate
(5 minute int.)	(S.U.)	(uS/cm)°C	(NTU)	(mg/L)	(°C)	(mV)	(feet)	(mL/min)
Stabilization	+/- 0.1	+/- 3%	if >10, +/- 10%	+/- 10%	+/- 1°C	+/- 10 mV	<0.3 feet	<500
(100	5,44	382.5	33.74	236	15.6	127.3	22.45	300
1103	5,44	387.5	15,97	1.30	12.5	102.7	22.80	300
1104	5.47	388.4	13,44	1.20	12.1	98.8	22.85	300
1109	5,48	3888	9,84	1.04	15 (94,5	22.91	300
1112				MPLE				
1115	5.84	393.3	8,77	1:84	15.2	82.5	22.93	300
Purge Cycle (End): 24/6	seconds @	20	psi	Flow Rate (r	nl/min End):	300	
Purge volume (ga	llons) prior to	stabilization m	onitoring (3/8" I.	- .D. Tube: Vo	l=Depth to Pu	mp x 0.006 g		~6 (15
Total Purge Volun					=	-	contrunmen	
Purge Observatio				v and	sample			
orgetin	e: 105	8		J	,			
Sample Time:		1112			Field Filtered	d (0.45um):	∑ Yes	□ No
			VSW/MR Table	3.1 Column	Δ V/O/Ce	☐ \/\$\\/M₽	Table 3.1 Colu	mn A Motols

Sample Parameters/Analyte(s):	VOVVIVIT Table	3. I Column	AVOCS	U VOVVIVIR TAI	ble 3. i Colum	n A ivietais
		3.1 Column	В			
	Other:	Cobe	alt (h	tal+disso	(red)	
Other Observations / Equipment Operation	on Problems:	DTP	=26.39	1		
Sampler Signature:	V	Date:	10/15	5/2020	Page	of
QA/QC Signature: M. Janh		Date:	10/16/	2020		


4						
	C	0	1	D	E	D
	0	0	_		-	-

Date: 10/15/2020
Weather: Sun, 1005

Project Name:	Project Name: Possum Powit PS			Project No./Task No.:		20	20139775			
Event: 2 SAZO CCR+VSWMR Venification										
		ric + Field Calibration Completed:								
Well Diameter:		inches	Cobalt	Initial Dept	h to Water:	_		feet		
Depth to Bottom:			feet					- feet		
Equipment Used					Air Tank		Dedicated B			
_qaipo.ii. 000a					Compress		Non-dedicated BP			
	In-Situ				☐ MP-15 Co					
		1-2-2		Dissolved		THE CHIEF BOX				
Time	pH	Sp. Cond.	Turbidity	Oxygen	Temp.	ORP	DTW	Flow Rate		
(5 minute int.)	(S.U.)	(uS/cm) ^{eC}	(NTU)	(mg/L)	(°C)	(mV)	(feet)	(mL/min)		
Stabilization	+/- 0.1	+/- 3%	if >10, +/- 10%	+/- 10%	+/- 1°C	+/- 10 mV	<0.3 feet	<500		
0935	0-		- SAN	IPLE	-					
					-					
			1							
Purge Cycle (End	i): -	seconds @	_	psi	Flow Rate (n	nl/min End):	_	_		
Purge volume (ga	7									
Total Purge Volu			_		r Managemen		5			
Purge Observation			Zauxe				1. 1. 1	S = 7 4/2		
4			-	4 4	lear gr	ab sav	uple tak	en witi		
Chowaton	1 Suppli	red DI w	user. Jar	uple ta	ken hed	W ED	-1612			
Sample Time:					Field Filtered	d (0.45um):	Yes	⊠ No		
Sample Baramet	are/Analyte/a	. 🗆	VSWMR Table	3.1 Column	A VOCs	□ VSWMF	R Table 3.1 Colu	ımn A Metals		
Sample Paramete	ers/Arialyte(s,	,								
			VSWMR Table			1 .				
		X	Other:	Arsi	eniction	all, Ce	obalt (to	tall		
Other Observatio	ns / Equipme	nt Operation Pr	roblems:	-						
	Equipino	opolation F	opionio.							
		00			_					
Sampler Signatur	e: /	(la)		Date:	16115	12020	Page	_ (of (
04/00 8:	mA	ander		5.4	10 11 1	44 -				
QA/QC Signature	111/1	my 1		Date:	10-16-2	020	41			

APPENDIX E LABORATORY ANALYTICAL RESULTS

APPENDIX E.1 LABORATORY ANALYTICAL RESULTS FIRST SEMI-ANNUAL GROUNDWATER MONITORING EVENT (FEBRUARY 2020)

(704)875-9092

April 10, 2020

Mike Williams Golder Associates 2108 W Laburnum Ave Suite 200 Richmond, VA 23227

RE: Project: PP - Pond ABC (A)-Revised Report

Pace Project No.: 92466164

Dear Mike Williams:

Enclosed are the analytical results for sample(s) received by the laboratory on February 19, 2020. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

- Pace Analytical Services Asheville
- Pace Analytical Services Ormond Beach
- Pace Analytical Services Greensburg

This revision was issued on 4/10/20 to remove magnesium from sample ABC-1602.

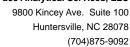
If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Nicole Gasiorowski

nicole.gasiorowski@pacelabs.com

Micolo Massorouske


(704)875-9092

Project Manager

Enclosures

cc: Craig LaCosse, Golder Associates Inc. Rachel Powell, Golder Associates Amanda Reynolds, Golder Associates Martha Smith, Golder Associates Inc.

CERTIFICATIONS

Project: PP - Pond ABC (A)-Revised Report

Pace Project No.: 92466164

Pace Analytical Services Pennsylvania

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

ANAB DOD-ELAP Rad Accreditation #: L2417

Alabama Certification #: 41590 Arizona Certification #: AZ0734

Arkansas Certification

California Certification #: 04222CA Colorado Certification #: PA01547 Connecticut Certification #: PH-0694

Delaware Certification EPA Region 4 DW Rad

Florida/TNI Certification #: E87683 Georgia Certification #: C040 Florida: Cert E871149 SEKS WET

Guam Certification Hawaii Certification Idaho Certification Illinois Certification Indiana Certification Iowa Certification #: 391

Kansas/TNI Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221 KY WW Permit #: KY0000221

Louisiana DHH/TNI Certification #: LA180012 Louisiana DEQ/TNI Certification #: 4086

Maine Certification #: 2017020 Maryland Certification #: 308

Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991 Missouri Certification #: 235

Montana Certification #: Cert0082
Nebraska Certification #: NE-OS-29-14
Nevada Certification #: PA014572018-1
New Hampshire/TNI Certification #: 297617
New Jersey/TNI Certification #: PA051
New Mexico Certification #: PA01457
New York/TNI Certification #: 10888
North Carolina Certification #: 42706

Ohio EPA Rad Approval: #41249 Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282

South Dakota Certification
Tennessee Certification #: 02867

North Dakota Certification #: R-190

Texas/TNI Certification #: T104704188-17-3
Utah/TNI Certification #: PA014572017-9
USDA Soil Permit #: P330-17-00091
Vermont Dept. of Health: ID# VT-0282
Virgin Island/PADEP Certification
Virginia/VELAP Certification #: 9526
Washington Certification #: C868
West Virginia DEP Certification #: 143
West Virginia DHHR Certification #: 9964C

Wisconsin Approve List for Rad Wyoming Certification #: 8TMS-L

Pace Analytical Services Ormond Beach

8 East Tower Circle, Ormond Beach, FL 32174

Alaska DEC- CS/UST/LUST Alabama Certification #: 41320 Arizona Certification# AZ0819

Colorado Certification: FL NELAC Reciprocity

Connecticut Certification #: PH-0216

Delaware Certification: FL NELAC Reciprocity

Florida Certification #: E83079 Georgia Certification #: 955

Guam Certification: FL NELAC Reciprocity Hawaii Certification: FL NELAC Reciprocity

Illinois Certification #: 200068

Indiana Certification: FL NELAC Reciprocity

Kansas Certification #: E-10383 Kentucky Certification #: 90050

Louisiana Certification #: FL NELAC Reciprocity Louisiana Environmental Certificate #: 05007

Maryland Certification: #346 Michigan Certification #: 9911

Mississippi Certification: FL NELAC Reciprocity

Missouri Certification #: 236

Montana Certification #: Cert 0074 Nebraska Certification: NE-OS-28-14 New Hampshire Certification #: 2958 New Jersey Certification #: FL022 New York Certification #: 11608

North Carolina Environmental Certificate #: 667

North Carolina Certification #: 12710
North Dakota Certification #: R-216
Oklahoma Certification #: D9947
Pennsylvania Certification #: 68-00547
Puerto Rico Certification #: FL01264
South Carolina Certification: #96042001
Tennessee Certification #: TN02974

US Virgin Islands Certification: FL NELAC Reciprocity

Virginia Environmental Certification #: 460165

Texas Certification: FL NELAC Reciprocity

West Virginia Certification #: 9962C Wisconsin Certification #: 399079670

Wyoming (EPA Region 8): FL NELAC Reciprocity

REPORT OF LABORATORY ANALYSIS

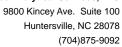
This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Pace Analytical www.pacelabs.com

9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

CERTIFICATIONS

Project: PP - Pond ABC (A)-Revised Report


Pace Project No.: 92466164

Pace Analytical Services Asheville

2225 Riverside Drive, Asheville, NC 28804 Florida/NELAP Certification #: E87648 Massachusetts Certification #: M-NC030

North Carolina Drinking Water Certification #: 37712

North Carolina Wastewater Certification #: 40 South Carolina Certification #: 99030001 Virginia/VELAP Certification #: 460222

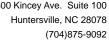
SAMPLE SUMMARY

Project: PP - Pond ABC (A)-Revised Report

Pace Project No.: 92466164

Lab ID	Sample ID	Matrix	Date Collected	Date Received
92466164001	ABC-1602	Water	02/19/20 09:08	02/19/20 15:20
92466164002	ABC-1607	Water	02/19/20 10:48	02/19/20 15:20
92466164003	ABC-1608	Water	02/19/20 12:43	02/19/20 15:20
92466164004	ABC-1614	Water	02/19/20 12:22	02/19/20 15:20
92466164005	ABC-Duplicate	Water	02/19/20 13:00	02/19/20 15:20
92466164006	ABC-Field Blank	Water	02/19/20 10:00	02/19/20 15:20

(704)875-9092



SAMPLE ANALYTE COUNT

Project: PP - Pond ABC (A)-Revised Report

Pace Project No.: 92466164

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
92466164001	ABC-1602	EPA 6010D	DS, RDT	16	PASI-A
		EPA 6020B	JOR	9	PASI-A
		EPA 7470A	soo	1	PASI-A
		EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
		SM 2540C-2011	CJL	1	PASI-A
		EPA 9056A	BRJ	3	PASI-A
		EPA 9060A	ECH	5	PASI-A
		EPA 9066	KLT	1	PASI-O
2466164002	ABC-1607	EPA 6010D	DS, RDT	16	PASI-A
		EPA 6020B	BG2, JOR	9	PASI-A
		EPA 7470A	soo	1	PASI-A
		EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
		SM 2540C-2011	CJL	1	PASI-A
		EPA 9056A	BRJ	3	PASI-A
		EPA 9060A	ECH	5	PASI-A
		EPA 9066	KLT	1	PASI-O
2466164003	ABC-1608	EPA 6010D	DS, RDT	16	PASI-A
		EPA 6020B	BG2, JOR	9	PASI-A
		EPA 7470A	SOO	1	PASI-A
		EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
		SM 2540C-2011	CJL	1	PASI-A
		EPA 9056A	BRJ	3	PASI-A
		EPA 9060A	ECH	5	PASI-A
		EPA 9066	KLT	1	PASI-O
2466164004	ABC-1614	EPA 6010D	DS, RDT	16	PASI-A
		EPA 6020B	JOR	9	PASI-A
		EPA 7470A	soo	1	PASI-A
		EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
		SM 2540C-2011	CJL	1	PASI-A

SAMPLE ANALYTE COUNT

Project: PP - Pond ABC (A)-Revised Report

Pace Project No.: 92466164

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
		EPA 9056A	BRJ	3	PASI-A
		EPA 9060A	ECH	5	PASI-A
		EPA 9066	KLT	1	PASI-O
92466164005	ABC-Duplicate	EPA 6010D	DS, RDT	16	PASI-A
		EPA 6020B	JOR	9	PASI-A
		EPA 7470A	SOO	1	PASI-A
		EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
		SM 2540C-2011	CJL	1	PASI-A
		EPA 9056A	BRJ	3	PASI-A
		EPA 9060A	ECH	5	PASI-A
		EPA 9066	KLT	1	PASI-O
92466164006	ABC-Field Blank	EPA 6010D	DS, RDT	16	PASI-A
		EPA 6020B	JOR	9	PASI-A
		EPA 7470A	SOO	1	PASI-A
		EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
		SM 2540C-2011	MJP	1	PASI-A
		EPA 9056A	BRJ	3	PASI-A
		EPA 9060A	ECH	5	PASI-A
		EPA 9066	KLT	1	PASI-O

PASI-A = Pace Analytical Services - Asheville PASI-O = Pace Analytical Services - Ormond Beach PASI-PA = Pace Analytical Services - Greensburg

(704)875-9092

SUMMARY OF DETECTION

Project: PP - Pond ABC (A)-Revised Report

Pace Project No.: 92466164

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifier
2466164001	ABC-1602					
EPA 6010D	Barium	67.9	ug/L	5.0	03/03/20 19:18	
PA 6010D	Beryllium	0.68J	ug/L	1.0	03/03/20 19:18	
PA 6010D	Calcium	7.1	mg/L	0.10	03/03/20 19:18	
PA 6010D	Chromium	1.3J	ug/L	5.0	03/03/20 19:18	
EPA 6010D	Copper	7.7	ug/L	5.0	03/03/20 19:18	
EPA 6010D	Nickel	7.8	ug/L	5.0	03/03/20 19:18	
EPA 6010D	Hardness, Total(SM 2340B)	36300	ug/L	662	03/03/20 19:18	
PA 6010D	Zinc	4.0J	ug/L	10.0	03/03/20 19:18	
PA 6020B	Cobalt	15.0	ug/L	0.10	03/05/20 05:07	
PA 6020B	Iron	55.6	ug/L	50.0	03/05/20 05:07	
PA 6020B	Lead	0.12	ug/L	0.10	03/05/20 05:07	B BC
PA 6020B	Lithium	11.6	ug/L	2.5	03/05/20 05:07	5,50
PA 6020B	Manganese	200	ug/L	0.50	03/05/20 05:07	
PA 6020B	Potassium	6450	ug/L	50.0	03/05/20 05:07	M1
PA 6020B	Sodium	8240	ug/L ug/L	250	03/05/20 05:07	M1
	Radium-226	1.91 ±	-	230	02/27/20 07:53	IVI I
PA 9315	Radium-226	0.635	pCi/L		02/21/20 07:53	
		(0.617) C:76% T:NA				
:PA 9320	Radium-228	0.884 ±	pCi/L		03/06/20 14:57	
1 A 3320	Naulum-220	0.500	poi/L		03/00/20 14.37	
		(0.915)				
		C:77%				
		T:78%				
otal Radium Calculation	Total Radium	2.79 ± 1.14 (1.53)	pCi/L		03/09/20 10:17	
M 2540C-2011	Total Dissolved Solids	` 131	mg/L	25.0	02/24/20 16:54	
PA 9056A	Chloride	2.9	mg/L	1.0	02/25/20 07:35	
PA 9056A	Sulfate	56.7	mg/L	1.0	02/25/20 07:35	M1
PA 9066	Phenolics, Total Recoverable	0.0064J	mg/L	0.010	03/05/20 17:29	M1
2466164002	ABC-1607		g . =			
PA 6010D	Barium	50.6	ug/L	5.0	03/03/20 19:36	
			•			
PA 6010D	Boron Calcium	0.19 7.1	mg/L	0.050 0.10	03/03/20 19:36 03/03/20 19:36	
PA 6010D			mg/L			
PA 6010D	Nickel	10.7	ug/L	5.0	03/03/20 19:36	
PA 6010D	Hardness, Total(SM 2340B)	33100	ug/L	662	03/03/20 19:36	
PA 6010D	Zinc	21.3	ug/L	10.0	03/03/20 19:36	
PA 6020B	Cobalt	8.7	ug/L		03/07/20 02:01	
PA 6020B	Iron	1740	ug/L		03/07/20 02:01	5.50
PA 6020B	Lead	0.088J	ug/L	0.10		B,BC
PA 6020B	Lithium	3.9	ug/L	2.5	03/07/20 02:01	
PA 6020B	Manganese	181	ug/L	0.50	03/07/20 02:01	
PA 6020B	Potassium	2060	ug/L	50.0	03/07/20 02:01	
PA 6020B	Sodium	14000	ug/L	5000	03/09/20 12:42	
PA 6020B	Tin	0.091J	ug/L	0.50	03/07/20 02:01	
PA 9315	Radium-226	0.726 ± 0.356	pCi/L		02/27/20 07:53	
		(0.448)				
		C:90% T:NA				

(704)875-9092

SUMMARY OF DETECTION

Project: PP - Pond ABC (A)-Revised Report

Pace Project No.: 92466164

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
2466164002	ABC-1607					
EPA 9320	Radium-228	1.03 ± 0.544 (0.964) C:75% T:76%	pCi/L		03/06/20 14:57	
otal Radium Calculation	Total Radium	1.76 ± 0.900 (1.41)	pCi/L		03/09/20 10:17	
M 2540C-2011	Total Dissolved Solids	123	mg/L	25.0	02/24/20 16:54	
PA 9056A	Chloride	18.7	mg/L	1.0	02/25/20 09:18	
PA 9056A	Fluoride	0.063J	mg/L	0.10	02/25/20 09:18	
PA 9056A	Sulfate	33.5	mg/L	1.0		
PA 9060A	Total Organic Carbon	0.71J	mg/L	1.0	02/25/20 18:30	
PA 9060A	Total Organic Carbon	0.63J	mg/L	1.0	02/25/20 18:30	
PA 9060A	Total Organic Carbon	0.62J	mg/L	1.0	02/25/20 18:30	
PA 9060A	Total Organic Carbon	0.57J	mg/L	1.0	02/25/20 18:30	
PA 9060A	Mean Total Organic Carbon	0.63J	mg/L	1.0	02/25/20 18:30	
466164003	ABC-1608					
PA 6010D	Arsenic	5.8J	ug/L	10.0	03/05/20 00:38	
PA 6010D	Barium	64.2	ug/L	5.0	03/03/20 19:39	
PA 6010D	Boron	0.22	mg/L	0.050	03/03/20 19:39	
PA 6010D	Calcium	20.6	mg/L	0.10	03/03/20 19:39	
PA 6010D	Molybdenum	2.0J	ug/L	5.0	03/03/20 19:39	
PA 6010D	Nickel	18.0	ug/L	5.0	03/03/20 19:39	
PA 6010D	Hardness, Total(SM 2340B)	90400	ug/L	662		
PA 6010D	Zinc	9.6J	ug/L	10.0	03/03/20 19:39	
PA 6020B	Cobalt	23.5	ug/L	0.10	03/07/20 02:06	
PA 6020B	Iron	5660	ug/L	50.0		
PA 6020B	Lead	0.071J	ug/L	0.10	03/07/20 02:06	B,BC
PA 6020B	Lithium	13.6	ug/L	2.5	03/07/20 02:06	5,50
PA 6020B	Manganese	164	ug/L	0.50	03/07/20 02:06	
PA 6020B	Potassium	3840	ug/L	50.0	03/07/20 02:06	
PA 6020B	Sodium	33400	ug/L	5000	03/09/20 12:46	
PA 9315	Radium-226	0.983 ± 0.442 (0.608) C:92% T:NA	pCi/L		02/27/20 07:53	
PA 9320	Radium-228	1.02 ± 0.560 (1.01) C:73% T:73%	pCi/L		03/06/20 14:57	
otal Radium Calculation	Total Radium	2.00 ± 1.00 (1.62)	pCi/L		03/09/20 10:17	
M 2540C-2011	Total Dissolved Solids	241	mg/L	25.0	02/24/20 16:54	
PA 9056A	Chloride	53.2	mg/L	1.0	02/25/20 09:33	
PA 9056A	Fluoride	0.068J	mg/L	0.10	02/25/20 09:33	
PA 9056A	Sulfate	28.1	mg/L	1.0	02/25/20 09:33	
PA 9060A	Total Organic Carbon	1.2	mg/L	1.0	02/25/20 18:47	
PA 9060A	Total Organic Carbon	1.3	mg/L	1.0	02/25/20 18:47	

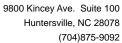
SUMMARY OF DETECTION

Project: PP - Pond ABC (A)-Revised Report

Pace Project No.: 92466164

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
2466164003	ABC-1608					
EPA 9060A	Total Organic Carbon	1.3	mg/L	1.0	02/25/20 18:47	
EPA 9060A	Total Organic Carbon	1.2	mg/L	1.0	02/25/20 18:47	
PA 9060A	Mean Total Organic Carbon	1.2	mg/L	1.0	02/25/20 18:47	
2466164004	ABC-1614					
PA 6010D	Arsenic	44.4	ug/L	10.0	03/05/20 00:41	
PA 6010D	Barium	175	ug/L	5.0	03/03/20 19:42	
PA 6010D	Boron	0.20	mg/L	0.050	03/03/20 19:42	
PA 6010D	Calcium	24.0	mg/L	0.10	03/03/20 19:42	
PA 6010D	Nickel	14.8	ug/L	5.0	03/03/20 19:42	
PA 6010D	Hardness, Total(SM 2340B)	97000	ug/L	662	03/03/20 19:42	
PA 6010D	Vanadium	1.4J	ug/L	5.0	03/03/20 19:42	
PA 6020B	Cobalt	19.9	ug/L	0.10	03/07/20 02:10	
PA 6020B	Iron	28300	ug/L	50.0	03/07/20 02:10	
PA 6020B	Lead	0.18	ug/L	0.10	03/07/20 02:10	B,BC
PA 6020B	Lithium	15.7	ug/L	2.5	03/07/20 02:10	
PA 6020B	Manganese	312	ug/L	0.50	03/07/20 02:10	
PA 6020B	Potassium	4240	ug/L	50.0	03/07/20 02:10	
PA 6020B	Sodium	22100	ug/L	5000	03/11/20 15:07	
PA 9315	Radium-226	1.22 ±	pCi/L		02/27/20 07:54	
		0.446				
		(0.399)				
DV 0330	Radium-228	C:90% T:NA 0.299 ±	nCi/I		03/06/20 14:57	
PA 9320	Radium-226	0.468	pCi/L		03/06/20 14.37	
		(1.01)				
		C:73%				
		T:77%				
otal Radium Calculation	Total Radium	1.52 ±	pCi/L		03/09/20 10:17	
		0.914 (1.41)				
M 2540C-2011	Total Dissolved Solids	242	mg/L	25.0	02/24/20 16:54	
PA 9056A	Chloride	15.0	mg/L	1.0		
PA 9056A	Fluoride	0.057J	mg/L		02/25/20 09:48	
PA 9056A	Sulfate	39.3	mg/L	1.0		
PA 9060A	Total Organic Carbon	2.7	mg/L	1.0	02/25/20 09:48	
PA 9060A	Total Organic Carbon	2.7	mg/L	1.0		
PA 9060A	Total Organic Carbon	2.9	mg/L		02/25/20 19:04	
PA 9060A	Total Organic Carbon	2.8	•		02/25/20 19:04	
	•		mg/L		02/25/20 19:04	
EPA 9060A EPA 9066	Mean Total Organic Carbon	2.8	mg/L		02/25/20 19:04 03/05/20 17:40	
	Phenolics, Total Recoverable	0.012	mg/L	0.010	03/03/20 17:40	
2466164005	ABC-Duplicate				00/07/07	
PA 6010D	Arsenic	43.7	ug/L	10.0		
PA 6010D	Barium	167	ug/L	5.0	03/03/20 19:45	
PA 6010D	Boron	0.19	mg/L	0.050		
PA 6010D	Calcium	23.4	mg/L	0.10		
PA 6010D	Molybdenum	0.99J	ug/L	5.0	03/03/20 19:45	
PA 6010D	Nickel	14.5	ug/L	5.0	03/03/20 19:45	
PA 6010D	Hardness, Total(SM 2340B)	94200	ug/L	662	03/03/20 19:45	

(704)875-9092



SUMMARY OF DETECTION

Project: PP - Pond ABC (A)-Revised Report

Pace Project No.: 92466164

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
92466164005	ABC-Duplicate					
EPA 6010D	Vanadium	1.3J	ug/L	5.0	03/03/20 19:45	
EPA 6020B	Cobalt	19.8	ug/L	0.10	03/07/20 02:15	
EPA 6020B	Iron	28300	ug/L	50.0	03/07/20 02:15	
EPA 6020B	Lead	0.13	ug/L	0.10	03/07/20 02:15	B,BC
EPA 6020B	Lithium	16.5	ug/L	2.5	03/07/20 02:15	
EPA 6020B	Manganese	312	ug/L	0.50	03/07/20 02:15	
EPA 6020B	Potassium	4360	ug/L	50.0	03/07/20 02:15	
EPA 6020B	Sodium	22000	ug/L	5000	03/11/20 15:11	
EPA 9315	Radium-226	0.696 ± 0.332 (0.373) C:93% T:NA	pCi/L		02/27/20 07:54	
EPA 9320	Radium-228	0.375 ± 0.403 (0.839) C:74% T:81%	pCi/L		03/06/20 14:57	
Total Radium Calculation	Total Radium	1.07 ± 0.735 (1.21)	pCi/L		03/09/20 10:17	
SM 2540C-2011	Total Dissolved Solids	246	mg/L	25.0	02/24/20 16:54	
EPA 9056A	Chloride	15.0	mg/L	1.0	02/25/20 10:03	
EPA 9056A	Fluoride	0.064J	mg/L	0.10	02/25/20 10:03	
EPA 9056A	Sulfate	39.8	mg/L	1.0	02/25/20 10:03	
EPA 9060A	Total Organic Carbon	2.4	mg/L	1.0	02/25/20 19:58	
EPA 9060A	Total Organic Carbon	2.4	mg/L	1.0	02/25/20 19:58	
EPA 9060A	Total Organic Carbon	2.6	mg/L	1.0	02/25/20 19:58	
EPA 9060A	Total Organic Carbon	2.5	mg/L	1.0	02/25/20 19:58	
EPA 9060A	Mean Total Organic Carbon	2.5	mg/L	1.0	02/25/20 19:58	
2466164006	ABC-Field Blank					
EPA 6020B	Manganese	0.46J	ug/L	0.50	03/07/20 02:19	В
EPA 6020B	Sodium	41.0J	ug/L	250	03/07/20 02:19	В
EPA 9315	Radium-226	0.359 ± 0.269 (0.449) C:93% T:NA	pCi/L		02/27/20 07:54	
EPA 9320	Radium-228	-0.109 ± 0.383 (0.923) C:76%	pCi/L		03/06/20 14:57	
Total Radium Calculation	Total Radium	T:72% 0.359 ± 0.652 (1.37)	pCi/L		03/09/20 10:17	

Project: PP - Pond ABC (A)-Revised Report

Pace Project No.: 92466164

Date: 04/10/2020 03:25 PM

Sample: ABC-1602	Lab ID:	92466164001	Collected	: 02/19/20	09:08	Received: 02/	19/20 15:20 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical	Method: EPA 6	010D Prepa	aration Met	hod: EF	PA 3010A			
	Pace Ana	lytical Services	- Asheville						
Antimony	ND	ug/L	5.0	3.0	1	02/28/20 00:55	03/03/20 19:18	7440-36-0	
Arsenic	ND	ug/L	10.0	4.7	1	02/28/20 00:55	03/05/20 00:10		
Barium	67.9	ug/L	5.0	1.0	1	02/28/20 00:55	03/03/20 19:18		
Beryllium	0.68J	ug/L	1.0	0.20	1	02/28/20 00:55	03/03/20 19:18		
Boron	ND	mg/L	0.050	0.0066	1		03/03/20 19:18	7440-42-8	
Cadmium	ND	ug/L	1.0	0.40	1		03/03/20 19:18		
Calcium	7.1	mg/L	0.10	0.024	1	02/28/20 00:55	03/03/20 19:18		
Chromium	1.3J	ug/L	5.0	1.0	1	02/28/20 00:55	03/03/20 19:18	7440-47-3	
Copper	7.7	ug/L	5.0	2.1	1	02/28/20 00:55	03/03/20 19:18	7440-50-8	
Molybdenum	ND	ug/L	5.0	0.90	1		03/03/20 19:18		
Nickel	7.8	ug/L	5.0	0.90	1	02/28/20 00:55	03/03/20 19:18	7440-02-0	
Selenium	ND	ug/L	10.0	4.7	1	02/28/20 00:55	03/03/20 19:18	7782-49-2	
Silver	ND	ug/L	5.0	2.5	1	02/28/20 00:55	03/03/20 19:18	7440-22-4	
Hardness, Total(SM 2340B)	36300	ug/L	662	131	1	02/28/20 00:55	03/03/20 19:18		
Vanadium	ND	ug/L	5.0	1.3	1	02/28/20 00:55	03/03/20 19:18	7440-62-2	
Zinc	4.0J	ug/L	10.0	3.9	1	02/28/20 00:55	03/03/20 19:18	7440-66-6	
6020 MET ICPMS		Method: EPA 6 lytical Services		ration Metl	nod: EF	PA 3010A			
Cobalt	15.0	ug/L	0.10	0.050	1	02/28/20 01:57	03/05/20 05:07	7440-48-4	
Iron	55.6	ug/L	50.0	7.5	1	02/28/20 01:57	03/05/20 05:07	7439-89-6	
Lead	0.12	ug/L	0.10	0.050	1	02/28/20 01:57			B,BC
Lithium	11.6	ug/L	2.5	0.42	1	02/28/20 01:57			, -
Manganese	200	ug/L	0.50	0.14	1	02/28/20 01:57			
Potassium	6450	ug/L	50.0	6.2	1	02/28/20 01:57			M1
Sodium	8240	ug/L	250	14.3	1	02/28/20 01:57			M1
Thallium	ND	ug/L	0.10	0.060	1	02/28/20 01:57			
Tin	ND	ug/L	0.50	0.090	1	02/28/20 01:57	03/05/20 05:07	7440-31-5	
7470 Mercury		Method: EPA 7 lytical Services		ration Meth	nod: EP	A 7470A			
Mercury	ND	ug/L	0.20	0.10	1	02/26/20 14:37	02/28/20 11:41	7439-97-6	
2540C Total Dissolved Solids		Method: SM 25 lytical Services							
Total Dissolved Solids	131	mg/L	25.0	25.0	1		02/24/20 16:54		
9056 IC anions 28 Days	•	Method: EPA 9 lytical Services							
Chloride	2.9	mg/L	1.0	0.60	1		02/25/20 07:35	16887-00-6	
CHICHUE	2.3	mg/L	1.0	0.00			02/20/20 07.33	10001-00-0	
Fluoride	ND	mg/L	0.10	0.050	1		02/25/20 07:35	16084-48-9	M1,R1

Project: PP - Pond ABC (A)-Revised Report

Pace Project No.: 92466164

Date: 04/10/2020 03:25 PM

Sample: ABC-1602	Lab ID:	92466164001	Collecte	d: 02/19/20	09:08	Received: 02/	/19/20 15:20 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Total Organic Carbon, Asheville	Analytical	Method: EPA 9	060A						
	Pace Anal	ytical Services	- Asheville						
Total Organic Carbon	ND	mg/L	1.0	0.50	1		02/25/20 13:57	7440-44-0	
Total Organic Carbon	ND	mg/L	1.0	0.50	1		02/25/20 13:57	7440-44-0	
Total Organic Carbon	ND	mg/L	1.0	0.50	1		02/25/20 13:57	7440-44-0	
Total Organic Carbon	ND	mg/L	1.0	0.50	1		02/25/20 13:57	7440-44-0	
Mean Total Organic Carbon	ND	mg/L	1.0	0.50	1		02/25/20 13:57	7440-44-0	
9066 Phenolics, Total	Analytical	Method: EPA 9	066 Prepa	ration Metho	od: EPA	9066			
	Pace Anal	ytical Services	- Ormond E	Beach					
Phenolics, Total Recoverable	0.0064J	mg/L	0.010	0.0050	1	03/04/20 11:15	03/05/20 17:29	64743-03-9	M1



Project: PP - Pond ABC (A)-Revised Report

Pace Project No.: 92466164

Date: 04/10/2020 03:25 PM

Sample: ABC-1607	Lab ID:	92466164002	Collected	: 02/19/20	10:48	Received: 02/	19/20 15:20 Ma	trix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
6010 MET ICP	Analytical	Method: EPA 6	010D Prepa	ration Meth	nod: EF	PA 3010A			
	Pace Ana	lytical Services	- Asheville						
Antimony	ND	ug/L	5.0	3.0	1	02/28/20 00:55	03/03/20 19:36	7440-36-0	
Arsenic	ND	ug/L	10.0	4.7	1	02/28/20 00:55	03/05/20 00:35		
Barium	50.6	ug/L	5.0	1.0	1	02/28/20 00:55	03/03/20 19:36	7440-39-3	
Beryllium	ND	ug/L	1.0	0.20	1	02/28/20 00:55	03/03/20 19:36	7440-41-7	
Boron	0.19	mg/L	0.050	0.0066	1	02/28/20 00:55	03/03/20 19:36	7440-42-8	
Cadmium	ND	ug/L	1.0	0.40	1		03/03/20 19:36		
Calcium	7.1	mg/L	0.10	0.024	1	02/28/20 00:55	03/03/20 19:36	7440-70-2	
Chromium	ND	ug/L	5.0	1.0	1	02/28/20 00:55	03/03/20 19:36	7440-47-3	
Copper	ND	ug/L	5.0	2.1	1	02/28/20 00:55	03/03/20 19:36	7440-50-8	
Molybdenum	ND	ug/L	5.0	0.90	1	02/28/20 00:55	03/03/20 19:36	7439-98-7	
Nickel	10.7	ug/L	5.0	0.90	1	02/28/20 00:55	03/03/20 19:36	7440-02-0	
Selenium	ND	ug/L	10.0	4.7	1	02/28/20 00:55	03/03/20 19:36	7782-49-2	
Silver	ND	ug/L	5.0	2.5	1	02/28/20 00:55	03/03/20 19:36	7440-22-4	
Hardness, Total(SM 2340B)	33100	ug/L	662	131	1	02/28/20 00:55	03/03/20 19:36		
Vanadium	ND	ug/L	5.0	1.3	1	02/28/20 00:55	03/03/20 19:36	7440-62-2	
Zinc	21.3	ug/L	10.0	3.9	1	02/28/20 00:55	03/03/20 19:36	7440-66-6	
6020 MET ICPMS		Method: EPA 6 lytical Services		ration Meth	nod: EP	A 3010A			
Cobalt	8.7	ug/L	0.10	0.050	1	02/28/20 01:57	03/07/20 02:01	7440-48-4	
Iron	1740	ug/L	50.0	7.5	1	02/28/20 01:57			
Lead	0.088J	ug/L	0.10	0.050	1	02/28/20 01:57	03/07/20 02:01	7439-92-1	B,BC
Lithium	3.9	ug/L	2.5	0.42	1	02/28/20 01:57	03/07/20 02:01	7439-93-2	
Manganese	181	ug/L	0.50	0.14	1	02/28/20 01:57	03/07/20 02:01	7439-96-5	
Potassium	2060	ug/L	50.0	6.2	1	02/28/20 01:57	03/07/20 02:01	7440-09-7	
Sodium	14000	ug/L	5000	285	20	02/28/20 01:57			
Thallium	ND	ug/L	0.10	0.060	1	02/28/20 01:57	03/07/20 02:01	7440-28-0	
Tin	0.091J	ug/L	0.50	0.090	1	02/28/20 01:57	03/07/20 02:01	7440-31-5	
7470 Mercury	-	Method: EPA 7		ration Meth	od: EP	A 7470A			
Mercury	ND	ug/L	0.20	0.10	1	02/26/20 14:37	02/28/20 12:25	7439-97-6	
·	ND Analytical	ug/L Method: SM 25 lytical Services	40C-2011	0.10	1	02/26/20 14:37	02/28/20 12:25	7439-97-6	
2540C Total Dissolved Solids	ND Analytical	Method: SM 25	40C-2011	0.10 25.0	1	02/26/20 14:37	02/28/20 12:25 02/24/20 16:54	7439-97-6	
2540C Total Dissolved Solids Total Dissolved Solids	ND Analytical Pace Ana 123 Analytical	Method: SM 25 lytical Services	40C-2011 - Asheville 25.0 056A			02/26/20 14:37		7439-97-6	
2540C Total Dissolved Solids Total Dissolved Solids 9056 IC anions 28 Days	ND Analytical Pace Ana 123 Analytical Pace Ana	Method: SM 25 lytical Services mg/L Method: EPA 9 lytical Services	40C-2011 - Asheville 25.0 056A - Asheville	25.0	1	02/26/20 14:37	02/24/20 16:54		
Mercury 2540C Total Dissolved Solids Total Dissolved Solids 9056 IC anions 28 Days Chloride Fluoride	ND Analytical Pace Ana 123 Analytical	Method: SM 25 lytical Services mg/L Method: EPA 9	40C-2011 - Asheville 25.0 056A			02/26/20 14:37		16887-00-6	

Project: PP - Pond ABC (A)-Revised Report

Pace Project No.: 92466164

Date: 04/10/2020 03:25 PM

Sample: ABC-1607	Lab ID:	92466164002	Collecte	d: 02/19/20	10:48	Received: 02/	/19/20 15:20 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Total Organic Carbon, Asheville	Analytical	Method: EPA 9	060A						
-	Pace Ana	lytical Services	- Asheville						
Total Organic Carbon	0.71J	mg/L	1.0	0.50	1		02/25/20 18:30	7440-44-0	
Total Organic Carbon	0.63J	mg/L	1.0	0.50	1		02/25/20 18:30	7440-44-0	
Total Organic Carbon	0.62J	mg/L	1.0	0.50	1		02/25/20 18:30	7440-44-0	
Total Organic Carbon	0.57J	mg/L	1.0	0.50	1		02/25/20 18:30	7440-44-0	
Mean Total Organic Carbon	0.63J	mg/L	1.0	0.50	1		02/25/20 18:30	7440-44-0	
9066 Phenolics, Total	Analytical	Method: EPA 9	066 Prepa	ration Metho	od: EPA	A 9066			
	Pace Ana	lytical Services	- Ormond E	Beach					
Phenolics, Total Recoverable	ND	mg/L	0.010	0.0050	1	03/04/20 11:15	03/05/20 17:39	64743-03-9	



Project: PP - Pond ABC (A)-Revised Report

Pace Project No.: 92466164

Date: 04/10/2020 03:25 PM

Sample: ABC-1608	Lab ID:	92466164003	Collected	: 02/19/20	12:43	Received: 02/	19/20 15:20 Ma	trix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
6010 MET ICP	Analytical	Method: EPA 6	010D Prepa	ration Meth	nod: EF	A 3010A			
	Pace Ana	lytical Services	- Asheville						
Antimony	ND	ug/L	5.0	3.0	1	02/28/20 00:55	03/03/20 19:39	7440-36-0	
Arsenic	5.8J	ug/L	10.0	4.7	1	02/28/20 00:55	03/05/20 00:38		
Barium	64.2	ug/L	5.0	1.0	1	02/28/20 00:55	03/03/20 19:39		
Beryllium	ND	ug/L	1.0	0.20	1	02/28/20 00:55	03/03/20 19:39		
Boron	0.22	mg/L	0.050	0.0066	1		03/03/20 19:39		
Cadmium	ND	ug/L	1.0	0.40	1		03/03/20 19:39		
Calcium	20.6	mg/L	0.10	0.024	1	02/28/20 00:55	03/03/20 19:39		
Chromium	ND	ug/L	5.0	1.0	1	02/28/20 00:55			
Copper	ND	ug/L	5.0	2.1	1	02/28/20 00:55	03/03/20 19:39		
Molybdenum	2.0J	ug/L	5.0	0.90	1		03/03/20 19:39		
Nickel	18.0	ug/L	5.0	0.90	1		03/03/20 19:39		
Selenium	ND	ug/L	10.0	4.7	1	02/28/20 00:55	03/03/20 19:39		
Silver	ND	ug/L	5.0	2.5	1	02/28/20 00:55	03/03/20 19:39		
Hardness, Total(SM 2340B)	90400	ug/L	662	131	1	02/28/20 00:55	03/03/20 19:39		
Vanadium	ND	ug/L	5.0	1.3	1		03/03/20 19:39	7440-62-2	
Zinc	9.6J	ug/L	10.0	3.9	1	02/28/20 00:55	03/03/20 19:39	7440-66-6	
6020 MET ICPMS	-	Method: EPA 6 lytical Services		ration Meth	nod: EF	A 3010A			
Cobalt	23.5	ug/L	0.10	0.050	1	02/28/20 01:57	03/07/20 02:06	7440-48-4	
Iron	5660	ug/L	50.0	7.5	1	02/28/20 01:57	03/07/20 02:06	7439-89-6	
Lead	0.071J	ug/L	0.10	0.050	1	02/28/20 01:57	03/07/20 02:06	7439-92-1	B,BC
Lithium	13.6	ug/L	2.5	0.42	1	02/28/20 01:57	03/07/20 02:06	7439-93-2	•
Manganese	164	ug/L	0.50	0.14	1	02/28/20 01:57	03/07/20 02:06	7439-96-5	
Potassium	3840	ug/L	50.0	6.2	1	02/28/20 01:57	03/07/20 02:06	7440-09-7	
Sodium	33400	ug/L	5000	285	20	02/28/20 01:57			
Thallium	ND	ug/L	0.10	0.060	1	02/28/20 01:57	03/07/20 02:06	7440-28-0	
Tin	ND	ug/L	0.50	0.090	1	02/28/20 01:57	03/07/20 02:06	7440-31-5	
7470 Mercury	-	Method: EPA 7		ration Meth	nod: EP	A 7470A			
		.,							
Mercury	ND	ug/L	0.20	0.10	1	02/26/20 14:37	02/28/20 12:27	7439-97-6	
ŕ	ND Analytical		0.20 40C-2011	0.10	1	02/26/20 14:37	02/28/20 12:27	7439-97-6	
2540C Total Dissolved Solids	ND Analytical	ug/L Method: SM 25	0.20 40C-2011	0.10 25.0	1	02/26/20 14:37	02/28/20 12:27 02/24/20 16:54	7439-97-6	
2540C Total Dissolved Solids Total Dissolved Solids	ND Analytical Pace Ana 241 Analytical	ug/L Method: SM 25 lytical Services	0.20 40C-2011 - Asheville 25.0			02/26/20 14:37		7439-97-6	
2540C Total Dissolved Solids Total Dissolved Solids 9056 IC anions 28 Days	ND Analytical Pace Ana 241 Analytical Pace Ana	ug/L Method: SM 25 lytical Services mg/L Method: EPA 9 lytical Services	0.20 40C-2011 - Asheville 25.0 056A - Asheville	25.0	1	02/26/20 14:37	02/24/20 16:54		
Mercury 2540C Total Dissolved Solids Total Dissolved Solids 9056 IC anions 28 Days Chloride Fluoride	ND Analytical Pace Ana 241 Analytical	ug/L Method: SM 25 lytical Services mg/L Method: EPA 9	0.20 40C-2011 - Asheville 25.0			02/26/20 14:37		16887-00-6	



Project: PP - Pond ABC (A)-Revised Report

Pace Project No.: 92466164

Date: 04/10/2020 03:25 PM

Sample: ABC-1608	Lab ID:	92466164003	Collecte	d: 02/19/20	12:43	Received: 02/	/19/20 15:20 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Total Organic Carbon, Asheville	Analytical	Method: EPA 9	060A						
	Pace Ana	lytical Services	- Asheville						
Total Organic Carbon	1.2	mg/L	1.0	0.50	1		02/25/20 18:47	7440-44-0	
Total Organic Carbon	1.3	mg/L	1.0	0.50	1		02/25/20 18:47	7440-44-0	
Total Organic Carbon	1.3	mg/L	1.0	0.50	1		02/25/20 18:47	7440-44-0	
Total Organic Carbon	1.2	mg/L	1.0	0.50	1		02/25/20 18:47	7440-44-0	
Mean Total Organic Carbon	1.2	mg/L	1.0	0.50	1		02/25/20 18:47	7440-44-0	
9066 Phenolics, Total	Analytical	Method: EPA 9	066 Prepa	ration Metho	od: EPA	9066			
	Pace Ana	lytical Services	- Ormond E	Beach					
Phenolics, Total Recoverable	ND	mg/L	0.010	0.0050	1	03/04/20 11:15	03/05/20 17:42	64743-03-9	

Project: PP - Pond ABC (A)-Revised Report

Pace Project No.: 92466164

Date: 04/10/2020 03:25 PM

Sample: ABC-1614	Lab ID:	92466164004	Collected	: 02/19/20	12:22	Received: 02/	19/20 15:20 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical	Method: EPA 6	010D Prepa	aration Metl	nod: EF	PA 3010A			
	Pace Ana	lytical Services	- Asheville						
Antimony	ND	ug/L	5.0	3.0	1	02/28/20 00:55	03/03/20 19:42	7440-36-0	
Arsenic	44.4	ug/L	10.0	4.7	1	02/28/20 00:55	03/05/20 00:41		
Barium	175	ug/L	5.0	1.0	1	02/28/20 00:55	03/03/20 19:42		
Beryllium	ND	ug/L	1.0	0.20	1		03/03/20 19:42		
Boron	0.20	mg/L	0.050	0.0066	1		03/03/20 19:42		
Cadmium	ND	ug/L	1.0	0.40	1		03/03/20 19:42		
Calcium	24.0	mg/L	0.10	0.024	1	02/28/20 00:55			
Chromium	ND	ug/L	5.0	1.0	1	02/28/20 00:55			
Copper	ND	ug/L	5.0	2.1	1	02/28/20 00:55	03/03/20 19:42		
Molybdenum	ND	ug/L	5.0	0.90	1		03/03/20 19:42		
Nickel	14.8	ug/L	5.0	0.90	1		03/03/20 19:42		
Selenium	ND	ug/L	10.0	4.7	1	02/28/20 00:55	03/03/20 19:42		
Silver	ND	ug/L	5.0	2.5	1	02/28/20 00:55			
Hardness, Total(SM 2340B)	97000	ug/L	662	131	1	02/28/20 00:55	03/03/20 19:42	7440 22 4	
Vanadium	1.4J	ug/L	5.0	1.3	1		03/03/20 19:42	7440-62-2	
Zinc	ND	ug/L	10.0	3.9	1		03/03/20 19:42		
Line	ND	ug/L	10.0	0.0	'	02/20/20 00.55	03/03/20 13.42	7440 00 0	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prepa	aration Meth	nod: EF	PA 3010A			
	Pace Ana	lytical Services	- Asheville						
Cobalt	19.9	ug/L	0.10	0.050	1	02/28/20 01:57	03/07/20 02:10	7440-48-4	
Iron	28300	ug/L	50.0	7.5	1	02/28/20 01:57			
Lead	0.18	ug/L	0.10	0.050	1	02/28/20 01:57			B,BC
Lithium	15.7	ug/L	2.5	0.030	1		03/07/20 02:10		D,DC
Manganese	312	ug/L	0.50	0.42	1	02/28/20 01:57			
Potassium	4240	ug/L	50.0	6.2	1		03/07/20 02:10		
Sodium	22100	ug/L	5000	285	20	02/28/20 01:57			
Thallium	ND	ug/L	0.10	0.060	1	02/28/20 01:57			
Tin	ND ND	ug/L	0.10	0.000	1	02/28/20 01:57			
1111	ND	ug/L	0.50	0.000	'	02/20/20 01.57	03/01/20 02.10	7440 31 3	
7470 Mercury	Analytical	Method: EPA 7	470A Prepa	ration Meth	nod: EP	A 7470A			
	Pace Ana	lytical Services	- Asheville						
Mercury	ND	ug/L	0.20	0.10	1	02/26/20 14:37	02/28/20 12:30	7439-97-6	
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C 2011						
2540C Total Dissolved Solids	-	lytical Services							
Total Dissolved Solids		•		25.0	4		02/24/20 46-54		
iolai dissoived 50110s	242	mg/L	25.0	25.0	1		02/24/20 16:54		
9056 IC anions 28 Days	•	Method: EPA 9 lytical Services							
Chloride	15.0	mg/L	1.0	0.60	1		02/25/20 09:48	16887-00-6	
Fluoride	0.057J	mg/L	0.10	0.050	1		02/25/20 09:48		
Sulfate	39.3	-	1.0	0.050	1		02/25/20 09:48		
Juliate	39.3	mg/L	1.0	0.50	1		02/23/20 09.40	14000-79-8	

Project: PP - Pond ABC (A)-Revised Report

Pace Project No.: 92466164

Date: 04/10/2020 03:25 PM

Sample: ABC-1614	Lab ID:	92466164004	Collecte	d: 02/19/20	12:22	Received: 02/	/19/20 15:20 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Total Organic Carbon, Asheville	Analytical	Method: EPA 9	060A			•	-	_	
-	Pace Ana	lytical Services	- Asheville						
Total Organic Carbon	2.7	mg/L	1.0	0.50	1		02/25/20 19:04	7440-44-0	
Total Organic Carbon	2.7	mg/L	1.0	0.50	1		02/25/20 19:04	7440-44-0	
Total Organic Carbon	2.9	mg/L	1.0	0.50	1		02/25/20 19:04	7440-44-0	
Total Organic Carbon	2.8	mg/L	1.0	0.50	1		02/25/20 19:04	7440-44-0	
Mean Total Organic Carbon	2.8	mg/L	1.0	0.50	1		02/25/20 19:04	7440-44-0	
9066 Phenolics, Total	Analytical	Method: EPA 9	066 Prepa	ration Metho	od: EPA	A 9066			
	Pace Ana	lytical Services	- Ormond E	Beach					
Phenolics, Total Recoverable	0.012	mg/L	0.010	0.0050	1	03/04/20 11:15	03/05/20 17:40	64743-03-9	

Project: PP - Pond ABC (A)-Revised Report

Pace Project No.: 92466164

Date: 04/10/2020 03:25 PM

Sample: ABC-Duplicate	Lab ID:	92466164005	Collected	: 02/19/20	13:00	Received: 02/	19/20 15:20 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
6010 MET ICP	Analytical	Method: EPA 6	010D Prepa	ration Meth	nod: EF	PA 3010A			
	Pace Ana	lytical Services	- Asheville						
Antimony	ND	ug/L	5.0	3.0	1	02/28/20 00:55	03/03/20 19:45	7440-36-0	
Arsenic	43.7	ug/L	10.0	4.7	1	02/28/20 00:55	03/05/20 00:44		
Barium	167	ug/L	5.0	1.0	1	02/28/20 00:55	03/03/20 19:45	7440-39-3	
Beryllium	ND	ug/L	1.0	0.20	1	02/28/20 00:55	03/03/20 19:45		
Boron	0.19	mg/L	0.050	0.0066	1		03/03/20 19:45		
Cadmium	ND	ug/L	1.0	0.40	1		03/03/20 19:45		
Calcium	23.4	mg/L	0.10	0.024	1	02/28/20 00:55	03/03/20 19:45		
Chromium	ND	ug/L	5.0	1.0	1	02/28/20 00:55			
Copper	ND	ug/L	5.0	2.1	1	02/28/20 00:55	03/03/20 19:45		
Molybdenum	0.99J	ug/L	5.0	0.90	1		03/03/20 19:45		
Nickel	14.5	ug/L	5.0	0.90	1		03/03/20 19:45		
Selenium	ND	ug/L	10.0	4.7	1	02/28/20 00:55	03/03/20 19:45		
Silver	ND	ug/L	5.0	2.5	1	02/28/20 00:55	03/03/20 19:45		
Hardness, Total(SM 2340B)	94200	ug/L	662	131	1	02/28/20 00:55	03/03/20 19:45		
Vanadium	1.3J	ug/L	5.0	1.3	1		03/03/20 19:45	7440-62-2	
Zinc	ND	ug/L	10.0	3.9	1	02/28/20 00:55	03/03/20 19:45	7440-66-6	
6020 MET ICPMS		Method: EPA 6 lytical Services		ration Meth	nod: EP	² A 3010A			
Cobalt	19.8	ug/L	0.10	0.050	1	02/28/20 01:57	03/07/20 02:15	7440-48-4	
Iron	28300	ug/L	50.0	7.5	1	02/28/20 01:57			
Lead	0.13	ug/L	0.10	0.050	1	02/28/20 01:57			B,BC
Lithium	16.5	ug/L	2.5	0.42	1		03/07/20 02:15		, -
Manganese	312	ug/L	0.50	0.14	1	02/28/20 01:57			
Potassium	4360	ug/L	50.0	6.2	1	02/28/20 01:57	03/07/20 02:15	7440-09-7	
Sodium	22000	ug/L	5000	285	20	02/28/20 01:57			
Thallium	ND	ug/L	0.10	0.060	1	02/28/20 01:57			
Tin	ND	ug/L	0.50	0.090	1	02/28/20 01:57	03/07/20 02:15	7440-31-5	
7470 Mercury		Method: EPA 7		ration Meth	od: EP	A 7470A			
Mercury	ND	ug/L	0.20	0.10	1	02/26/20 14:37	02/28/20 12:42	7439-97-6	
2540C Total Dissolved Solids	Analytical	Method: SM 25	40C-2011						
	Pace Ana	lytical Services	- Asheville						
Total Dissolved Solids	246	mg/L	25.0	25.0	1		02/24/20 16:54		
9056 IC anions 28 Days	•	Method: EPA 9 lytical Services							
Chloride	15.0	mg/L	1.0	0.60	1		02/25/20 10:03	16887-00-6	
Fluoride	0.064J	mg/L	0.10	0.050	1		02/25/20 10:03		
Sulfate	39.8	mg/L	1.0	0.50	1		02/25/20 10:03		

Project: PP - Pond ABC (A)-Revised Report

Pace Project No.: 92466164

Date: 04/10/2020 03:25 PM

Sample: ABC-Duplicate	Lab ID:	92466164005	Collecte	d: 02/19/20	13:00	Received: 02/	/19/20 15:20 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Total Organic Carbon, Asheville	Analytical	Method: EPA 9	060A						
	Pace Ana	lytical Services	- Asheville						
Total Organic Carbon	2.4	mg/L	1.0	0.50	1		02/25/20 19:58	7440-44-0	
Total Organic Carbon	2.4	mg/L	1.0	0.50	1		02/25/20 19:58	7440-44-0	
Total Organic Carbon	2.6	mg/L	1.0	0.50	1		02/25/20 19:58	7440-44-0	
Total Organic Carbon	2.5	mg/L	1.0	0.50	1		02/25/20 19:58	7440-44-0	
Mean Total Organic Carbon	2.5	mg/L	1.0	0.50	1		02/25/20 19:58	7440-44-0	
9066 Phenolics, Total	Analytical	Method: EPA 9	066 Prepa	ration Metho	od: EPA	9066			
	Pace Ana	lytical Services	- Ormond E	Beach					
Phenolics, Total Recoverable	ND	mg/L	0.010	0.0050	1	03/04/20 11:15	03/05/20 17:44	64743-03-9	

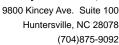


Project: PP - Pond ABC (A)-Revised Report

Pace Project No.: 92466164

Date: 04/10/2020 03:25 PM

Sample: ABC-Field Blank	Lab ID: 92	2466164006	Collected:	02/19/20	10:00	Received: 02/	19/20 15:20 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
6010 MET ICP	Analytical M	ethod: EPA 6	010D Prepa	ration Meth	nod: EF	PA 3010A			
	Pace Analyti	ical Services	- Asheville						
Antimony	ND	ug/L	5.0	3.0	1	02/28/20 00:55	03/03/20 19:48	7440-36-0	
Arsenic	ND	ug/L	10.0	4.7	1	02/28/20 00:55	03/05/20 00:47		
Barium	ND	ug/L	5.0	1.0	1	02/28/20 00:55	03/03/20 19:48		
Beryllium	ND	ug/L	1.0	0.20	1	02/28/20 00:55	03/03/20 19:48	7440-41-7	
Boron	ND	mg/L	0.050	0.0066	1	02/28/20 00:55	03/03/20 19:48	7440-42-8	
Cadmium	ND	ug/L	1.0	0.40	1		03/03/20 19:48		
Calcium	ND	mg/L	0.10	0.024	1		03/03/20 19:48		
Chromium	ND	ug/L	5.0	1.0	1	02/28/20 00:55	03/03/20 19:48	7440-47-3	
Copper	ND	ug/L	5.0	2.1	1	02/28/20 00:55	03/03/20 19:48		
Molybdenum	ND	ug/L	5.0	0.90	1		03/03/20 19:48	7439-98-7	
Nickel	ND	ug/L	5.0	0.90	1	02/28/20 00:55	03/03/20 19:48	7440-02-0	
Selenium	ND	ug/L	10.0	4.7	1	02/28/20 00:55			
Silver	ND	ug/L	5.0	2.5	1	02/28/20 00:55	03/03/20 19:48	7440-22-4	
Hardness, Total(SM 2340B)	ND	ug/L	662	131	1	02/28/20 00:55	03/03/20 19:48		
/anadium	ND	ug/L	5.0	1.3	1		03/03/20 19:48	7440-62-2	
Zinc	ND	ug/L	10.0	3.9	1	02/28/20 00:55			
6020 MET ICPMS	Analytical M	ethod: EPA 6	020B Prepa	ration Meth	nod: EP	A 3010A			
	•	ical Services	•						
Cobalt	ND	ug/L	0.10	0.050	1	02/28/20 01:57	03/07/20 02:19	7440-48-4	
ron	ND	ug/L	50.0	7.5	1		03/07/20 02:19		
₋ead	ND	ug/L	0.10	0.050	1		03/07/20 02:19		ВС
_ithium	ND ND	ug/L ug/L	2.5	0.030	1		03/07/20 02:19		ьс
Manganese	0.46J	ug/L ug/L	0.50	0.42	1		03/07/20 02:19		В
Potassium	0.403 ND	ug/L	50.0	6.2	1		03/07/20 02:19		Ь
Sodium	41.0J	ug/L ug/L	250	14.3	1		03/07/20 02:19		В
Fhallium	41.03 ND	ug/L ug/L	0.10	0.060	1		03/07/20 02:19		ь
rnamum Fin	ND ND	ug/L ug/L	0.10	0.000	1	02/28/20 01:57			
7470 Mercury	Analytical M	ethod: EPA 7	4704 Propo	ration Moth	od: ED	Λ 7470Λ			
1470 Mercury		ical Services		ration wict	10a. Li	ATTOA			
Mercury	ND	ug/L	0.20	0.10	1	02/26/20 14:37	02/28/20 12:44	7439-97-6	
2540C Total Dissolved Solids	Analytical M	ethod: SM 25	40C-2011						
		ical Services							
Total Dissolved Solids	ND	mg/L	25.0	25.0	1		02/26/20 12:55		
9056 IC anions 28 Days	•	ethod: EPA 9							
	Pace Analyti	ical Services	- Asheville						
Chloride	ND	mg/L	1.0	0.60	1		02/25/20 10:17	16887-00-6	
Fluoride	ND	mg/L	0.10	0.050	1		02/25/20 10:17		
Sulfate	ND	mg/L	1.0	0.50	1		02/25/20 10:17		



Project: PP - Pond ABC (A)-Revised Report

Pace Project No.: 92466164

Date: 04/10/2020 03:25 PM

Sample: ABC-Field Blank	Lab ID:	92466164006	Collecte	d: 02/19/20	10:00	Received: 02/	/19/20 15:20 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Total Organic Carbon, Asheville	Analytical	Method: EPA 9	060A						
,	Pace Ana	lytical Services	- Asheville						
Total Organic Carbon	ND	mg/L	1.0	0.50	1		02/25/20 20:15	7440-44-0	
Total Organic Carbon	ND	mg/L	1.0	0.50	1		02/25/20 20:15	7440-44-0	
Total Organic Carbon	ND	mg/L	1.0	0.50	1		02/25/20 20:15	7440-44-0	
Total Organic Carbon	ND	mg/L	1.0	0.50	1		02/25/20 20:15	7440-44-0	
Mean Total Organic Carbon	ND	mg/L	1.0	0.50	1		02/25/20 20:15	7440-44-0	
9066 Phenolics, Total	Analytical	Method: EPA 9	066 Prepa	ration Metho	od: EPA	A 9066			
	Pace Ana	lytical Services	- Ormond E	Beach					
Phenolics, Total Recoverable	ND	mg/L	0.010	0.0050	1	03/04/20 11:15	03/05/20 17:37	64743-03-9	

PP - Pond ABC (A)-Revised Report Project:

Pace Project No.: 92466164

Mercury

Date: 04/10/2020 03:25 PM

QC Batch: 527172 Analysis Method: EPA 7470A QC Batch Method: EPA 7470A Analysis Description: 7470 Mercury

> Laboratory: Pace Analytical Services - Asheville

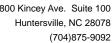
92466164001, 92466164002, 92466164003, 92466164004, 92466164005, 92466164006 Associated Lab Samples:

METHOD BLANK: Matrix: Water

Associated Lab Samples: 92466164001, 92466164002, 92466164003, 92466164004, 92466164005, 92466164006

Reporting Qualifiers Parameter Units Result Limit MDL Analyzed ND 0.20 0.10 02/28/20 11:36 ug/L

LABORATORY CONTROL SAMPLE: 2816678


Spike LCS LCS % Rec Conc. % Rec Limits Qualifiers Parameter Units Result Mercury 2.5 2.6 103 80-120 ug/L

Blank

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2816680 2816679

MSD MS 92466164001 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Conc. Conc. Result Result % Rec % Rec **RPD** RPD Qual Result Limits ND Mercury ug/L 2.5 2.5 2.6 2.7 106 108 75-125 2 25

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: PP - Pond ABC (A)-Revised Report

Pace Project No.: 92466164

Date: 04/10/2020 03:25 PM

QC Batch: 527587 Analysis Method: EPA 6010D
QC Batch Method: EPA 3010A Analysis Description: 6010 MET

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92466164001, 92466164002, 92466164003, 92466164004, 92466164005, 92466164006

METHOD BLANK: 2818849 Matrix: Water

Associated Lab Samples: 92466164001, 92466164002, 92466164003, 92466164004, 92466164005, 92466164006

		Blank	Reporting			0 115
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Antimony	ug/L	ND	5.0	3.0	03/03/20 19:12	
Arsenic	ug/L	ND	10.0	4.7	03/05/20 00:04	
Barium	ug/L	ND	5.0	1.0	03/03/20 19:12	
Beryllium	ug/L	ND	1.0	0.20	03/03/20 19:12	
Boron	mg/L	ND	0.050	0.0066	03/03/20 19:12	
Cadmium	ug/L	ND	1.0	0.40	03/03/20 19:12	
Calcium	mg/L	ND	0.10	0.024	03/03/20 19:12	
Chromium	ug/L	ND	5.0	1.0	03/03/20 19:12	
Copper	ug/L	ND	5.0	2.1	03/03/20 19:12	
Hardness, Total(SM 2340B)	ug/L	ND	662	131	03/03/20 19:12	
Molybdenum	ug/L	ND	5.0	0.90	03/03/20 19:12	
Nickel	ug/L	ND	5.0	0.90	03/03/20 19:12	
Selenium	ug/L	ND	10.0	4.7	03/03/20 19:12	
Silver	ug/L	ND	5.0	2.5	03/03/20 19:12	
Vanadium	ug/L	ND	5.0	1.3	03/03/20 19:12	
Zinc	ug/L	ND	10.0	3.9	03/03/20 19:12	

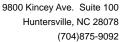
LABORATORY CONTROL SAMPLE:	2818850	Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	% Rec	Qualifiers
Antimony	ug/L	500	484	97	80-120	
Arsenic	ug/L	500	489	98	80-120	
arium	ug/L	500	474	95	80-120	
eryllium	ug/L	500	474	95	80-120	
oron	mg/L	0.5	0.48	96	80-120	
admium	ug/L	500	472	94	80-120	
alcium	mg/L	5	4.8	97	80-120	
nromium	ug/L	500	472	94	80-120	
opper	ug/L	500	481	96	80-120	
ardness, Total(SM 2340B)	ug/L	33100	31700	96	80-120	
olybdenum	ug/L	500	447	89	80-120	
ckel	ug/L	500	477	95	80-120	
elenium	ug/L	500	469	94	80-120	
ilver	ug/L	250	238	95	80-120	
anadium	ug/L	500	471	94	80-120	
inc	ug/L	500	463	93	80-120	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(704)875-9092

QUALITY CONTROL DATA

Project: PP - Pond ABC (A)-Revised Report


Pace Project No.: 92466164

Date: 04/10/2020 03:25 PM

MATRIX SPIKE & MATRIX SP	IKE DUPI	LICATE: 2818			2818852							
		00.400.40.400.4	MS	MSD		1400			0/ D			
		92466164001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	_
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Antimony	ug/L	ND	500	500	518	504	104	101	75-125	3	20	
Arsenic	ug/L	ND	500	500	520	512	104	102	75-125	2	20	
Barium	ug/L	67.9	500	500	560	551	98	97	75-125	1	20	
Beryllium	ug/L	0.68J	500	500	508	498	101	99	75-125	2	20	
Boron	mg/L	ND	0.5	0.5	0.52	0.51	102	100	75-125	2	20	
Cadmium	ug/L	ND	500	500	495	484	99	97	75-125	2	20	
Calcium	mg/L	7.1	5	5	11.9	11.9	96	97	75-125	0	20	
Chromium	ug/L	1.3J	500	500	487	478	97	95	75-125	2	20	
Copper	ug/L	7.7	500	500	507	498	100	98	75-125	2	20	
Hardness, Total(SM 2340B)	ug/L	36300	33100	33100	68900	68900	99	99	75-125	0		
Molybdenum	ug/L	ND	500	500	461	452	92	90	75-125	2	20	
Nickel	ug/L	7.8	500	500	500	489	98	96	75-125	2	20	
Selenium	ug/L	ND	500	500	522	519	104	104	75-125	1	20	
Silver	ug/L	ND	250	250	248	243	99	97	75-125	2	20	
Vanadium	ug/L	ND	500	500	493	483	99	97	75-125	2	20	
Zinc	ug/L	4.0J	500	500	488	480	97	95	75-125	2	20	

MATRIX SPIKE & MATRIX SP	IKE DUPLIC	CATE: 2818	853 MS	MSD	2818854							
	9	2466171002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Antimony	ug/L	ND	500	500	525	505	105	101	75-125	4	20	
Arsenic	ug/L	9.1J	500	500	493	476	97	93	75-125	3	20	
Barium	ug/L	33.4	500	500	531	514	100	96	75-125	3	20	
Beryllium	ug/L	ND	500	500	511	494	102	99	75-125	3	20	
Boron	mg/L	0.033J	0.5	0.5	0.55	0.53	103	100	75-125	3	20	
Cadmium	ug/L	ND	500	500	497	484	99	97	75-125	3	20	
Calcium	mg/L	11.2	5	5	15.9	15.4	94	83	75-125	4	20	
Chromium	ug/L	ND	500	500	499	483	100	97	75-125	3	20	
Copper	ug/L	ND	500	500	510	493	102	98	75-125	3	20	
Hardness, Total(SM 2340B)	ug/L	44100	33100	33100	76500	73800	98	90	75-125	4		
Molybdenum	ug/L	5.3	500	500	471	456	93	90	75-125	3	20	
Nickel	ug/L	1.8J	500	500	497	483	99	96	75-125	3	20	
Selenium	ug/L	ND	500	500	522	515	104	103	75-125	1	20	
Silver	ug/L	ND	250	250	253	244	101	98	75-125	3	20	
Vanadium	ug/L	ND	500	500	501	485	100	97	75-125	3	20	
Zinc	ug/L	ND	500	500	492	475	98	95	75-125	3	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: PP - Pond ABC (A)-Revised Report

Pace Project No.: 92466164

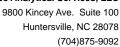
Date: 04/10/2020 03:25 PM

QC Batch: 527589 Analysis Method: EPA 6020B
QC Batch Method: EPA 3010A Analysis Description: 6020 MET

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92466164001, 92466164002, 92466164003, 92466164004, 92466164005, 92466164006

METHOD BLANK: 2818859 Matrix: Water

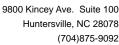

Associated Lab Samples: 92466164001, 92466164002, 92466164003, 92466164004, 92466164005, 92466164006

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Cobalt	ug/L	ND	0.10	0.050	03/05/20 04:59	
Iron	ug/L	ND	50.0	7.5	03/05/20 04:59	
Lead	ug/L	0.051J	0.10	0.050	03/05/20 04:59	BC
Lithium	ug/L	ND	2.5	0.42	03/05/20 04:59	
Manganese	ug/L	0.19J	0.50	0.14	03/05/20 04:59	
Potassium	ug/L	ND	50.0	6.2	03/05/20 04:59	
Sodium	ug/L	21.5J	250	14.3	03/05/20 04:59	
Thallium	ug/L	ND	0.10	0.060	03/05/20 04:59	
Tin	ug/L	ND	0.50	0.090	03/05/20 04:59	

LABORATORY CONTROL SAMPLE:	2818860					
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Cobalt	ug/L	10	9.9	99	80-120	
Iron	ug/L	625	608	97	80-120	
Lead	ug/L	50	53.5	107	80-120 E	3C
Lithium	ug/L	50	51.1	102	80-120	
Manganese	ug/L	50	49.0	98	80-120	
Potassium	ug/L	625	636	102	80-120	
Sodium	ug/L	625	627	100	80-120	
Thallium	ug/L	10	10.6	106	80-120	
Tin	ug/L	50	54.3	109	80-120	

MATRIX SPIKE & MATRIX	SPIKE DUPLI	ICATE: 2818			2818862							
Parameter	Units	92466164001 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Cobalt	ug/L	15.0	10	10	24.6	25.1	96	101	75-125	2	20	
Iron	ug/L	55.6	625	625	648	661	95	97	75-125	2	20	
Lead	ug/L	0.12	50	50	51.8	50.9	103	101	75-125	2	20	
Lithium	ug/L	11.6	50	50	61.5	53.8	100	84	75-125	13	20	
Manganese	ug/L	200	50	50	244	251	87	102	75-125	3	20	
Potassium	ug/L	6450	625	625	6830	6830	61	61	75-125	0	20	M1
Sodium	ug/L	8240	625	625	8650	9620	64	220	75-125	11	20	M1
Thallium	ug/L	ND	10	10	10.3	10.1	103	101	75-125	2	20	
Tin	ug/L	ND	50	50	52.0	51.2	104	102	75-125	2	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.


Project: PP - Pond ABC (A)-Revised Report

Pace Project No.: 92466164

Date: 04/10/2020 03:25 PM

MATRIX SPIKE & MATRIX	SPIKE DUPL	ICATE: 2818	863		2818864							
		00400474000	MS	MSD		1400		1405	0/ 5			
		92466171002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Cobalt	ug/L	0.34	10	10	10.6	10.3	102	99	75-125	3	20	
Iron	ug/L	1700	625	625	2340	2250	104	90	75-125	4	20	
Lead	ug/L	0.064J	50	50	52.6	51.5	105	103	75-125	2	20	
Lithium	ug/L	10.5	50	50	58.5	57.0	96	93	75-125	3	20	
Manganese	ug/L	179	50	50	233	224	108	90	75-125	4	20	
Potassium	ug/L	6820	625	625	7720	7360	143	86	75-125	5	20	M1
Sodium	ug/L	19300	625	625	19100	18800	-26	-80	75-125	2	20	M6
Thallium	ug/L	ND	10	10	10.4	10.1	104	101	75-125	3	20	
Tin	ug/L	ND	50	50	53.6	51.8	107	104	75-125	3	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: PP - Pond ABC (A)-Revised Report

Pace Project No.: 92466164

QC Batch: 526729 Analysis Method: SM 2540C-2011

QC Batch Method: SM 2540C-2011 Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92466164001, 92466164002, 92466164003, 92466164004, 92466164005

METHOD BLANK: 2814773 Matrix: Water

Associated Lab Samples: 92466164001, 92466164002, 92466164003, 92466164004, 92466164005

Blank Reporting

Parameter Units Result Limit MDL Analyzed Qualifiers

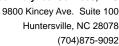
Total Dissolved Solids mg/L ND 25.0 25.0 02/24/20 16:52

LABORATORY CONTROL SAMPLE: 2814774

Spike LCS LCS % Rec
Parameter Units Conc. Result % Rec Limits Qualifiers

Total Dissolved Solids mg/L 250 248 99 90-110

SAMPLE DUPLICATE: 2814777


92465785006 Dup Max Parameter Units Result Result **RPD RPD** Qualifiers 83.0 **Total Dissolved Solids** mg/L 88.0 6 25

SAMPLE DUPLICATE: 2814778

Date: 04/10/2020 03:25 PM

92466164001 Dup Max RPD RPD Parameter Units Result Result Qualifiers Total Dissolved Solids 131 mg/L 144 9 25

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: PP - Pond ABC (A)-Revised Report

Pace Project No.: 92466164

QC Batch: 527200 Analysis Method: SM 2540C-2011

QC Batch Method: SM 2540C-2011 Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92466164006

METHOD BLANK: 2816796 Matrix: Water

Associated Lab Samples: 92466164006

Blank Reporting Parameter Units Result Limit MDL Analyzed Qualifiers

Total Dissolved Solids mg/L ND 25.0 25.0 02/26/20 12:55

LABORATORY CONTROL SAMPLE: 2816797

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units **Total Dissolved Solids** mg/L 250 248 99 90-110

SAMPLE DUPLICATE: 2816798

Date: 04/10/2020 03:25 PM

Parameter Units Parameter Units Dissolved Solids Parameter Units Dissolved Solids Dup Max Result RPD Qualifiers ND ND 25

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

QUALITY CONTROL DATA

Project: PP - Pond ABC (A)-Revised Report

LABORATORY CONTROL SAMPLE: 2014062

Date: 04/10/2020 03:25 PM

Pace Project No.: 92466164

QC Batch: 526599 Analysis Method: EPA 9056A

QC Batch Method: EPA 9056A Analysis Description: 9056 IC anions 28 Days

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92466164001, 92466164002, 92466164003, 92466164004, 92466164005, 92466164006

METHOD BLANK: 2814062 Matrix: Water

Associated Lab Samples: 92466164001, 92466164002, 92466164003, 92466164004, 92466164005, 92466164006

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	ND ND	1.0	0.60	02/25/20 05:06	
Fluoride	mg/L	ND	0.10	0.050	02/25/20 05:06	
Sulfate	mg/L	ND	1.0	0.50	02/25/20 05:06	

LABORATORY CONTROL SAMPLE.	2614063					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L	50	50.9	102	90-110	
Fluoride	mg/L	2.5	2.3	92	90-110	
Sulfate	mg/L	50	49.6	99	90-110	

MATRIX SPIKE & MATRIX SP	IKE DUPL	ICATE: 2814	064		2814065							
			MS	MSD								
		92466164001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	2.9	50	50	53.4	54.2	101	102	90-110	1	10	
Fluoride	mg/L	ND	2.5	2.5	2.0	2.4	81	95	90-110	16	10	M1,R1
Sulfate	mg/L	56.7	50	50	99.9	101	86	88	90-110	1	10	M1

MATRIX SPIKE & MATRIX SP	IKE DUPL	ICATE: 2814	066		2814067							
			MS	MSD								
		92466171002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	2.6	50	50	53.1	53.5	101	102	90-110	1	10	
Fluoride	mg/L	0.26	2.5	2.5	2.4	2.4	84	85	90-110	1	10	M1
Sulfate	mg/L	11.7	50	50	61.2	61.5	99	99	90-110	1	10	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: PP - Pond ABC (A)-Revised Report

Pace Project No.: 92466164

Date: 04/10/2020 03:25 PM

QC Batch: 526751 Analysis Method: EPA 9060A
QC Batch Method: EPA 9060A Analysis Description: 9060 TOC, AVL

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92466164001, 92466164002, 92466164003, 92466164004, 92466164005, 92466164006

METHOD BLANK: 2814895 Matrix: Water

Associated Lab Samples: 92466164001, 92466164002, 92466164003, 92466164004, 92466164005, 92466164006

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Mean Total Organic Carbon	 mg/L	ND	1.0	0.50	02/25/20 13:21	
Total Organic Carbon	mg/L	ND	1.0	0.50	02/25/20 13:21	
Total Organic Carbon	mg/L	ND	1.0	0.50	02/25/20 13:21	
Total Organic Carbon	mg/L	ND	1.0	0.50	02/25/20 13:21	
Total Organic Carbon	mg/L	ND	1.0	0.50	02/25/20 13:21	

2814896					
	Spike	LCS	LCS	% Rec	
Units	Conc.	Result	% Rec	Limits	Qualifiers
mg/L	25	25.2	101	75-125	
mg/L	25	25.1	100	75-125	
mg/L	25	25.6	103	75-125	
mg/L	25	24.3	97	75-125	
mg/L	25	25.9	103	75-125	
	Units mg/L mg/L mg/L mg/L	Spike Conc.	Units Spike Conc. LCS Result mg/L 25 25.2 25.2 mg/L 25 25.1 25.1 mg/L 25 25.6 25.6 mg/L 25 24.3	Units Spike Conc. LCS Result LCS % Rec mg/L mg/L 25 25.2 101 mg/L mg/L 25 25.1 100 mg/L mg/L 25 25.6 103 mg/L mg/L 25 24.3 97	Units Spike Conc. LCS Result LCS % Rec LCS Limits mg/L 25 25.2 101 75-125 mg/L 25 25.1 100 75-125 mg/L 25 25.6 103 75-125 mg/L 25 24.3 97 75-125

MATRIX SPIKE & MATRIX SP	IKE DUPLI	CATE: 2814	897		2814898							
			MS	MSD								
		92466164001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Mean Total Organic Carbon	mg/L	ND	25	25	25.1	25.1	99	99	75-125	0	25	
Total Organic Carbon	mg/L	ND	25	25	25.1	25.0	99	99	75-125	0	25	
Total Organic Carbon	mg/L	ND	25	25	25.2	25.2	100	100	75-125	0	25	
Total Organic Carbon	mg/L	ND	25	25	24.5	24.7	96	97	75-125	1	25	
Total Organic Carbon	mg/L	ND	25	25	25.5	25.4	101	101	75-125	0	25	

MATRIX SPIKE & MATRIX SP	PIKE DUPLIC	CATE: 2814	899 MS	MSD	2814900							
	9	2466171002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Mean Total Organic Carbon	mg/L	0.70J	25	25	24.9	25.0	97	97	75-125	0	25	
Total Organic Carbon	mg/L	0.67J	25	25	24.7	24.8	96	96	75-125	0	25	
Total Organic Carbon	mg/L	0.61J	25	25	25.2	25.2	98	98	75-125	0	25	
Total Organic Carbon	mg/L	0.86J	25	25	24.3	24.7	94	95	75-125	2	25	
Total Organic Carbon	mg/L	0.66J	25	25	25.4	25.3	99	99	75-125	0	25	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

QUALITY CONTROL DATA

Project: PP - Pond ABC (A)-Revised Report

Pace Project No.: 92466164

QC Batch: 614847 Analysis Method: EPA 9066

QC Batch Method: EPA 9066 Analysis Description: 9066 Total Phenolics

Laboratory: Pace Analytical Services - Ormond Beach

Associated Lab Samples: 92466164001, 92466164002, 92466164003, 92466164004, 92466164005, 92466164006

METHOD BLANK: 3340670 Matrix: Water

Associated Lab Samples: 92466164001, 92466164002, 92466164003, 92466164004, 92466164005, 92466164006

Blank Reporting
Parameter Units Result Limit MDL Analyzed Qualifiers

Phenolics, Total Recoverable mg/L ND 0.010 0.0050 03/05/20 17:21

LABORATORY CONTROL SAMPLE: 3340671

Spike LCS LCS % Rec Conc. % Rec Limits Parameter Units Result Qualifiers Phenolics, Total Recoverable 0.4 0.41 101 90-110 mg/L

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3340672 3340673

MSD MS 92466164001 Spike Spike MS MSD MS MSD % Rec Max Parameter Units RPD Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** Qual Phenolics, Total 20 M1 mg/L 0.0064J 0.4 0.4 0.31 0.31 76 75 80-120 Recoverable

. 10001010010

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3340674 3340675 MS MSD 92466186001 Spike MS MSD MS MSD Spike % Rec Max % Rec RPD Parameter Units Result Conc. Conc. Result Result % Rec Limits **RPD** Qual Phenolics, Total ND 0.36 94 20 mg/L 0.4 0.4 0.38 91 80-120 3

Recoverable

Date: 04/10/2020 03:25 PM

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: PP - Pond ABC (A)-Revised Report

Pace Project No.: 92466164

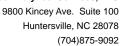
Sample: ABC-1602 PWS:	Lab ID: 9246 Site ID:	6164001 Collected: 02/19/20 09:08 Sample Type:	Received:	02/19/20 15:20	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				,
Radium-226	EPA 9315	1.91 ± 0.635 (0.617) C:76% T:NA	pCi/L	02/27/20 07:5	3 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.884 ± 0.500 (0.915) C:77% T:78%	pCi/L	03/06/20 14:5	7 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	2.79 ± 1.14 (1.53)	pCi/L	03/09/20 10:1	7 7440-14-4	

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: PP - Pond ABC (A)-Revised Report

Pace Project No.: 92466164

Sample: ABC-1607 PWS:	Lab ID: 9246 Site ID:	6164002 Collected: 02/19/20 10:48 Sample Type:	Received:	02/19/20 15:20	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.726 ± 0.356 (0.448) C:90% T:NA	pCi/L	02/27/20 07:53	3 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	1.03 ± 0.544 (0.964) C:75% T:76%	pCi/L	03/06/20 14:57	7 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	1.76 ± 0.900 (1.41)	pCi/L	03/09/20 10:17	7 7440-14-4	



ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: PP - Pond ABC (A)-Revised Report

Pace Project No.: 92466164

Sample: ABC-1608 PWS:	Lab ID: 92466164003 Collected: 02/19/20 12:43 Site ID: Sample Type:		Received:	: 02/19/20 15:20	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.983 ± 0.442 (0.608) C:92% T:NA	pCi/L	02/27/20 07:5	3 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	1.02 ± 0.560 (1.01) C:73% T:73%	pCi/L	03/06/20 14:5	7 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	2.00 ± 1.00 (1.62)	pCi/L	03/09/20 10:1	7 7440-14-4	

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: PP - Pond ABC (A)-Revised Report

Pace Project No.: 92466164

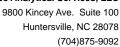
Sample: ABC-1614 PWS:	Lab ID: 924661 Site ID:	64004 Collected: 02/19/20 12:22 Sample Type:	Received:	02/19/20 15:20	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Se	ervices - Greensburg				
Radium-226	EPA 9315	1.22 ± 0.446 (0.399) C:90% T:NA	pCi/L	02/27/20 07:54	4 13982-63-3	
	Pace Analytical So	ervices - Greensburg				
Radium-228	EPA 9320	0.299 ± 0.468 (1.01) C:73% T:77%	pCi/L	03/06/20 14:57	7 15262-20-1	
	Pace Analytical Se	ervices - Greensburg				
Total Radium	Total Radium Calculation	1.52 ± 0.914 (1.41)	pCi/L	03/09/20 10:17	7 7440-14-4	

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: PP - Pond ABC (A)-Revised Report

Pace Project No.: 92466164

Sample: ABC-Duplicate PWS:	Lab ID: 9246 Site ID:	6164005 Collected: 02/19/20 13:00 Sample Type:	Received:	02/19/20 15:20	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.696 ± 0.332 (0.373) C:93% T:NA	pCi/L	02/27/20 07:5	4 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.375 ± 0.403 (0.839) C:74% T:81%	pCi/L	03/06/20 14:5	7 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	1.07 ± 0.735 (1.21)	pCi/L	03/09/20 10:1	7 7440-14-4	



ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: PP - Pond ABC (A)-Revised Report

Pace Project No.: 92466164

Sample: ABC-Field Blank PWS:	Lab ID: 92466 Site ID:	6164006 Collected: 02/19/20 10:00 Sample Type:	Received:	02/19/20 15:20	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.359 ± 0.269 (0.449) C:93% T:NA	pCi/L	02/27/20 07:54	4 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	-0.109 ± 0.383 (0.923) C:76% T:72%	pCi/L	03/06/20 14:57	7 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	$0.359 \pm 0.652 (1.37)$	pCi/L	03/09/20 10:17	7 7440-14-4	

QUALITY CONTROL - RADIOCHEMISTRY

Project: PP - Pond ABC (A)-Revised Report

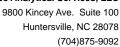
Pace Project No.: 92466164

QC Batch: 385163 Analysis Method: EPA 9320

QC Batch Method: EPA 9320 Analysis Description: 9320 Radium 228

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 92466164001, 92466164002, 92466164003, 92466164004, 92466164005, 92466164006


METHOD BLANK: 1866200 Matrix: Water

Associated Lab Samples: 92466164001, 92466164002, 92466164003, 92466164004, 92466164005, 92466164006

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-228
 0.266 ± 0.358 (0.764) C:73% T:84%
 pCi/L
 03/06/20 14:58

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL - RADIOCHEMISTRY

Project: PP - Pond ABC (A)-Revised Report

Pace Project No.: 92466164

QC Batch: 385164 Analysis Method: EPA 9315

QC Batch Method: EPA 9315 Analysis Description: 9315 Total Radium

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 92466164001, 92466164002, 92466164003, 92466164004, 92466164005, 92466164006

METHOD BLANK: 1866202 Matrix: Water

Associated Lab Samples: 92466164001, 92466164002, 92466164003, 92466164004, 92466164005, 92466164006

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-226
 0.526 ± 0.287 (0.348) C:97% T:NA
 pCi/L
 02/27/20 07:52

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(704)875-9092

QUALIFIERS

Project: PP - Pond ABC (A)-Revised Report

Pace Project No.: 92466164

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Act - Activity

Unc - Uncertainty: SDWA = 1.96 sigma count uncertainty, all other matrices = Expanded Uncertainty (95% confidence interval).

Gamma Spec = Expanded Uncertainty (95.4% Confidence Interval)

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

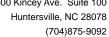
Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 04/10/2020 03:25 PM

B Analyte was detected in the	e associated method blank.


BC The same analyte was detected in an associated blank at a concentration above 1/2 the reporting limit but below the

laboratory reporting limit.

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

M6 Matrix spike and Matrix spike duplicate recovery not evaluated against control limits due to sample dilution.

R1 RPD value was outside control limits.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: PP - Pond ABC (A)-Revised Report

Pace Project No.: 92466164

Date: 04/10/2020 03:25 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
92466164001	ABC-1602	EPA 3010A	527587	EPA 6010D	527610
92466164002	ABC-1607	EPA 3010A	527587	EPA 6010D	527610
2466164003	ABC-1608	EPA 3010A	527587	EPA 6010D	527610
2466164004	ABC-1614	EPA 3010A	527587	EPA 6010D	527610
2466164005	ABC-Duplicate	EPA 3010A	527587	EPA 6010D	527610
2466164006	ABC-Field Blank	EPA 3010A	527587	EPA 6010D	527610
2466164001	ABC-1602	EPA 3010A	527589	EPA 6020B	527614
2466164002	ABC-1607	EPA 3010A	527589	EPA 6020B	527614
2466164003	ABC-1608	EPA 3010A	527589	EPA 6020B	527614
2466164004	ABC-1614	EPA 3010A	527589	EPA 6020B	527614
2466164005	ABC-Duplicate	EPA 3010A	527589	EPA 6020B	527614
2466164006	ABC-Field Blank	EPA 3010A	527589	EPA 6020B	527614
2466164001	ABC-1602	EPA 7470A	527172	EPA 7470A	527241
2466164002	ABC-1607	EPA 7470A	527172	EPA 7470A	527241
2466164003	ABC-1608	EPA 7470A	527172	EPA 7470A	527241
2466164004	ABC-1614	EPA 7470A	527172	EPA 7470A	527241
2466164005	ABC-Duplicate	EPA 7470A	527172	EPA 7470A	527241
2466164006	ABC-Field Blank	EPA 7470A	527172	EPA 7470A	527241
2466164001	ABC-1602	EPA 9315	385164		
2466164002	ABC-1607	EPA 9315	385164		
2466164003	ABC-1608	EPA 9315	385164		
2466164004	ABC-1614	EPA 9315	385164		
2466164005	ABC-Duplicate	EPA 9315	385164		
2466164006	ABC-Field Blank	EPA 9315	385164		
2466164001	ABC-1602	EPA 9320	385163		
2466164002	ABC-1607	EPA 9320	385163		
2466164003	ABC-1608	EPA 9320	385163		
2466164004	ABC-1614	EPA 9320	385163		
2466164005	ABC-Duplicate	EPA 9320	385163		
2466164006	ABC-Field Blank	EPA 9320	385163		
2466164001	ABC-1602	Total Radium Calculation	387019		
2466164002	ABC-1607	Total Radium Calculation	387019		
2466164003	ABC-1608	Total Radium Calculation	387019		
2466164004	ABC-1614	Total Radium Calculation	387019		
2466164005	ABC-Duplicate	Total Radium Calculation	387019		
2466164006	ABC-Field Blank	Total Radium Calculation	387019		
2466164001	ABC-1602	SM 2540C-2011	526729		
2466164002	ABC-1607	SM 2540C-2011	526729		
2466164003	ABC-1608	SM 2540C-2011	526729		
2466164004	ABC-1614	SM 2540C-2011	526729		
2466164005	ABC-Duplicate	SM 2540C-2011	526729		
2466164006	ABC-Field Blank	SM 2540C-2011	527200		
2466164001	ABC-1602	EPA 9056A	526599		
2466164002	ABC-1607	EPA 9056A	526599		
2466164003	ABC-1608	EPA 9056A	526599		

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: PP - Pond ABC (A)-Revised Report

Pace Project No.: 92466164

Date: 04/10/2020 03:25 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
92466164004	ABC-1614	EPA 9056A	526599		
92466164005	ABC-Duplicate	EPA 9056A	526599		
92466164006	ABC-Field Blank	EPA 9056A	526599		
92466164001	ABC-1602	EPA 9060A	526751		
92466164002	ABC-1607	EPA 9060A	526751		
92466164003	ABC-1608	EPA 9060A	526751		
92466164004	ABC-1614	EPA 9060A	526751		
92466164005	ABC-Duplicate	EPA 9060A	526751		
92466164006	ABC-Field Blank	EPA 9060A	526751		
92466164001	ABC-1602	EPA 9066	614847	EPA 9066	615260
92466164002	ABC-1607	EPA 9066	614847	EPA 9066	615260
92466164003	ABC-1608	EPA 9066	614847	EPA 9066	615260
92466164004	ABC-1614	EPA 9066	614847	EPA 9066	615260
92466164005	ABC-Duplicate	EPA 9066	614847	EPA 9066	615260
92466164006	ABC-Field Blank	EPA 9066	614847	EPA 9066	615260

Pace Analytical*

Document Name: Sample Condition Upon Receipt(SCUR)

Document No.: F-CAR-CS-033-Rev.06 Document Revised: February 7, 2018

Page 1 of 2

Issuing Authority: Pace Carolinas Quality Office

poratory receiving samples: Asheville Eden	Greenwood 🗌	н	untersville 🖳	Raleigh [Mechanics ville_
Client Name: Upon Receipt	- 5 74.54	168	Project #: W	0#:9246	66164
rier: Ped Ex UPS	S USPS Other:		lient 92	 	
ody Seal Present? Yes No Se	als Intact? Yes		Date	e/initials Person Examining	Contents: 42-2/
ng Material: Bubble Wrap	Bubble Bags	ne 🗆 (Other	Biological Tissu	e Frozen?
mometer: PIR Gun ID: 92T060			Blue None	□Yes □No □	
er Temp (°C): 0.7,2,3, Correction Facter Temp Corrected (°C): 0.17,23,4,7 A Regulated Soil (N/A, water sample)			☐Samp has beg		5°C nples on ice, cooling process
amples orlginate in a quarantine zone within the Ui Yes No	nited States: CA, NY, or !	SC (check ma		s originate from a foreign so awaii and Puerto Rico)? []Y	es No
Chain of Custody Present?	D(D		-	Comments/Discrepa	incy:
	☑Yes □No	□N/A	1.	-	
Samples Arrived within Hold Time?	☐Yes ☐No	□N/A	2.		
Short Hold Time Analysis (<72 hr.)?	□Yes ☑No	□N/A	3.		
Rush Turn Around Time Requested?	Yes No	□N/A	4.		
Sufficient Volume?	☐Yes ☐No	□N/A	5.		
Correct Containers Used? -Pace Containers Used?	ØYes □No ØYes □No	□n/a □n/a	6.		
Containers Intact?	ØYes □No	□N/A	7.		
Dissolved analysis: Samples Field Filtered?	☐Yes ☐No	□N/A	8.		
Sample Labels Match COC?	□Yes □No	□N/A	9.		
-Includes Date/Time/ID/Analysis Matrix:	WI				
leadspace in VOA Vials (>5-6mm)?	□Yes □No	□N/A	10.		
Trip Blank Present?	□Yes □No	☑N/A	11.		
Trip Blank Custody Seals Present?	□Yes □No	ĎN/A			
MMENTS/SAMPLE DISCREPANCY				Field Data R	equired? Yes No
- # #					HOUR HALL TO ALL
NT NOTIFICATION/RESOLUTION			Lot ID of split of	ontainers:	
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~					
son contacted:		Date/Ti	me:		
roject Manager SCURF Review:	VM12		20	2/21	100
oject manager scorr review:	1011(1)		Dat	e:	100

Document Name: Sample Condition Upon Receipt(SCUR)

Document No.: F-CAR-CS-033-Rev.06 Document Revised: February 7, 2018 Page 1 of 2

Issuing Authority: Pace Carolinas Quality Office

*Check mark top half of box if pH and/or dechlorination is verified and within the acceptance range for preservation samples.

Exceptions: VOA, Coliform, TOC, Oil and Grease, DRO/8015 (water) DOC, LLHg

**Bottom half of box is to list number of bottle

Project #

W0#:92466164

PM: NMG

Due Date: 03/12/20

CLIENT: 92-Golder

ltem#	BP4U-125 mL Plastic Unpreserved (N/A) (CI-)	BP3U-250 mL Plastic Unpreserved (N/A)	BP2U-500 mL Plastic Unpreserved (N/A)	BP1U-1 liter Plastic Unpreserved (N/A)	BP4S-125 mL Plastic H2SO4 (pH < 2) (CI-)	BP3N-250 mL plastic HNO3 (pH < 2)	BP4Z-12S mL Plastic ZN Acetate & NaOH (>9)	BP4C-125 mL Plastic NaOH (pH > 12) (Cl-)	WGFU-Wide-mouthed Glass jar Unpreserved	AG1U-1 liter Amber Unpreserved (N/A) (CI-)	AG1H- 1 liter Amber HCl (pH < 2)	AG3U-250 mL Amber Unpreserved (N/A) (CI-)	AG1S-1 liter Amber H2SO4 (pH < 2)	AG3S-250 mL Amber H2SO4 (pH < 2)	AG3A(DG3A)-250 mL Amber NH4Cl (N/A)(Cl-)	DG9H-40 mL VOA HCI (N/A)	VG9T-40 mL VOA Na25203 (N/A)	VG9U-40 mL VOA Unp (N/A)	DG9P-40 mL VOA H3PO4 (N/A)	VOAK (6 vials per kit)-5035 kit (N/A)	V/GK (3 vials per kit)-VPH/Gas kit (N/A)	SP5T-125 mL Sterile Plastic (N/A - lab)	SP2T-250 mL Sterile Plastic (N/A – lab)	Kads	BP3A-250 mL Plastic (NH2)2SO4 (9.3-9.7)	AGOU-100 mL Amber Unpreserved vials (N/A)	VSGU-20 mL Scintillation vials (N/A)	DG9U-40 mL Amber Unpreserved vials (N/A)
1	1	3	3		/	6	1				1		/	3					9					2				
2	1	1-	1		1	1	1	1					/	1					3					X	1	- 1		
3	1	1	1		1	2	1	/			1		/	X					3		1			2	1			
4	1	1	1		/	2	/	/			1		/	1					7		- 1			S	1			
5	/	1	1		/	2	/	/			1	9	/	1	1				3					2	1			
6	/	j	Ì		/	N	/	/			/		/	/					3				T	Ž.	1			
7	/	1			/	7	/	/							7)					7	1			
8	7				/	7	1	/			1														1			
9	1				/	/	/						1	1	7									1	1			
10	7				/	/	/				1			1	1								-	1	1			
11	1				/	1	/	1					1		1									1	1	+		
12	1				1	\neq	7				4		1	1	7		=						_	1	+			

	pH Adjustment Log for Preserved Samples											
Sample ID	Type of Preservative	pH upon receipt	Date preservation adjusted	Time preservation adjusted	Amount of Preservative added	Lot #						

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. Out of hold, Incorrect preservative, out of temp, incorrect containers.

CHAIN-OF-CUSTODY / Analytical Request Document
The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Preservatives Preservatives NaOH	WT 6 2[6]222 1222 — HZ 16 V V V WT 6 2[6]222 1300 — — - 10 V V V WT 6 2[6]222 1300 — — - 8 V V V WT 6 2[6]222 1000 — — - 8 V V V WT 6 2[6]222 1000 — — - 10 V V V WT 7 2 2[6]222 1000 — — - 10 V V V V WT 7 2 2[6]222 1000 — — - 10 V V V V WT 7 2 2[6]222 1000 — — - 10 V V V V WT 7 2 2[6]222 1000 — - 10 V V V V V V V V V V V V V V V V V V
Collect Information: Required Project Information: Project Inf	WI CZIGIZZ 722 — HZ 16 V V V X X X WI CZIGIZZ 0505 — — 10 V V V X X X X WI CZIGIZZ 0505 — — 8 V V V V X X X X X WI CZIGIZZ 0505 — — 10 V V V X X X X X X X X X X X X X X X X
Required Project Information: Required Project Information	WIT C 2[4]222 13CC — — HZ 115 V V V X X X WIT C 2[4]222 C C C S — — — 10 V V V V X X X X WIT C 2[4]222 C C C S — — — 8 V V V V V X X X X X WIT C 2[4]222 C C C S — — — 8 V V V V V X X X X X X X WIT C 2[4]222 C C C S — — — 10 V V V V X X X X X X X X X X X X X X X
Control Information:	DATE TIME ACCEPTED BY AFFILIATION ACCEPTED BY AFFILIATION ACCEPTED BY AFFILIATION ACCEPTED BY AFFILIATION
Colored Association Colored Association	DATE TIME ACCEPTED BY AFFILIATION ACCEPTED BY AFFILIATION
Content Information: Required Project Information: Report To: Mane Villams Record To: Mane Villams Record To: Mane Villams Record To: Mane Villams Record To: Mane Villams Record To: Mane Villams Record To: Mane Villams Record To: Mane Villams Record To: Mane Villams Record To: Mane Villams Record To: Mane Villams Record To: Reco	Califlan 1222 — H2 116 V V V V X X X X X X X X X X X X X X X
Condense Associations: Required Project Information: Required Project Information: Required Project Information: Required Project Information: Report To: Mike Williams Report Mike Williams Report To: Mike Williams Report To: Mike Williams Report To: Mike Williams Report To: Mike Williams Report To: Mike Williams Report To: Mike Williams Report To: Mike Williams Report To: Mike Williams Report To: Mike Williams Report To: Mike Williams Report To: Mike Williams Report Mike Willia	Califlan 1222 — H2 16 V V V X X X X X X X X X X X X X X X X
Class Indicate Common	Caliglas 1222 — H2 116 V V V V X X X X X X X X X X X X X X X
Colder Associates Project Information: Invoice Information:	Califlan 1222 — H2 116 V V V V X X X X X X X X X X X X X X X
Coldent Information: Required Project Information: Project Inf	C219122000 — — H210 VV V V X X X X X X X X X X X X X X X X
Colder Associaties Required Project Mnormation: Required	Califlag 1222 — H2 116 V V V X X X X X X X X X X X X X X X X
Collect Information: Required Project Information: Invoice Inf	Califlag 1222 — H2 16 VVV V X X X X X X X X X X X X X X X X
Collect Information: Required Project Information: Invoice Inf	2/19/2013co — — 10 V V V X X X
Collett Information: Required Project Information: Invoice Inf	There 722 - He to 1/1
Client Information: Required Project Information: Required Project Information: Reduced Proje	× × × ×
Client Information: Golder Associaties Golder Associaties Golder Associaties Golder Associaties Report To. Mike Williams Report To. Mike Williams Copy To. Analyses Test Purchase Order #. Possum Point - Pond ABC (A) Pace Project Manager: nicole gastorowski@pacel Project Name: Possum Point - Pond ABC (A) Pace Project Manager: nicole gastorowski@pacel Project Name: Possum Point - Pond ABC (A) Pace Project Manager: nicole gastorowski@pacel Pace Project Manager: nicole gastorowski@pacel Pace Project Manager: nicole gastorowski@pacel Pace Profile #. 7295-50 Pace Profile #. 7295-	2/9/201 1245 — — 158/10 VVV
Client Information: Required Project Information: Required Project Information: Required Project Information: Required Project Information: Report To. Mike Williams Attention: Account Acco	62/1048 15010 VVV V X X X
Client Information: Client Information: Required Project Information: Afternion: Accivants Required Project Information: Accivants Report To: Amcinculus Report To: Report To: Amcinculus Report To: Report To: Amcinculus Report To: Report To: Report To: Report To: Report To: Amcinculus Report To: Repo	219240908 MHO イグイ V × × ×
Client Information: Required Project Information: Invoice Information: Solider Associates Golder Associates Report To: Mike Williams Attention: Attention	SAMPLE TYPE (G=GRAB CONTROL OF CONTAINERS Unpreserved H2SO4 HNO3 HCI NaOH Na2S203 Methanol Other Charles Test 6010/6020 metals 7470 Mercury 9056 Anions (CI, F, SO4)
Client Information: Required Project Information: Inform	COLLECTED & Preservatives YN
Client Information: Golder Associates 2108 W. Laburrum Ave. Report To: Mike Williams Copy To: Archolic Required Foliation: Archivite Williams Richmond, VA 23227 Richmond, VA 23227 Richmond, VA 23227 Purchase Order #: Pace Quote: Pace Project Manager: nico	0:39775 Pace Profile #: 7285-50
Client Information: Required Project Information: Incompanies Information: Golder Associates Report To: Mike Williams Attention: Attention: Attention: Accounts 2108 W. Laburnum Ave. Copy To: Arcinology Egynology Address: Richmond, VA 23227 Copy To: Arcinology Address: Page Quote: Page Quote: Page Quote: Page Quote: Page Quote: Page Address: Page	Possum Point - Pond ABC (A) Pace Project Manager: nico
Client Information: Required Project Information: Invoice Information: Copy To: Americal Section Accounts Copy To: Americal Section Section Company Name: Section Company Name: Section Copy To: Americal Section Company Name: Section Copy To: Americal Section Company Name: Section Copy To: Americal Sect	
Client Information: Required Project Information: Required Project Information: Invoice Information: Report To: Mike Williams Attention: ACCULATES	Regrands Company Name:
Client Information: Required Project Information:	Attention: Accounts
Control	

		Analysis Detec	ts Report					
Client Name:				Date Issued	:			
Client Site ID:								
Submitted To:								
Laboratory Sample ID:	Client Sa	mple ID:						
Parameter	Samp ID	Reference Method	Sample Results	Qual	DL	LOQ	Dil. Factor	Units
There are no repo	ortable results for target analyt	es in this report.						

Note that this report is not the "Certificate of Analysis". This report only lists the target analytes that displayed concentrations that exceeded the detection limit specified for that analyte. For a complete listing of all analytes requested and the results of the analysis see the "Certificate of Analysis".

1941 Reymet Road ● Richmond, Virginia 23237 ● Tel: (804)-358-8295 Fax: (804)-358-8297

Certificate of Analysis

Final Report

Laboratory Order ID 20B0838

Date Received:

Project Number:

Purchase Order:

Date Issued:

Client Name: Golder Associates, Inc.

2108 W. Laburnum Ave. Suite 200

Richmond, VA 23227

Submitted To: Amanda Reynolds

Client Site I.D.: Possum Point Power Station

Enclosed are the results of analyses for samples received by the laboratory on 02/19/2020 15:52. If you have any questions concerning this report, please feel free to contact the laboratory.

Sincerely,

Ted Soyars

Technical Director

End Notes:

The test results listed in this report relate only to the samples submitted to the laboratory and as received by the Laboratory.

Unless otherwise noted, the test results for solid materials are calculated on a wet weight basis. Analyses for pH, dissolved oxygen, temperature, residual chlorine and sulfite that are performed in the laboratory do not meet NELAC requirements due to extremely short holding times. These analyses should be performed in the field. The results of field analyses performed by the Sampler included in the Certificate of Analysis are done so at the client's request and are not included in the laboratory's fields of certification nor have they been audited for adherence to a reference method or procedure.

The signature on the final report certifies that these results conform to all applicable NELAC standards unless otherwise specified. For a complete list of the Laboratory's NELAC certified parameters please contact customer service.

This report shall not be reproduced except in full without the expressed and written approval of an authorized representative of Air Water & Soil Laboratories, Inc.

February 19, 2020 15:52

February 26, 2020 11:28

20139775

2/26/2020 11:28:39AM

Date Issued:

Certificate of Analysis

Client Name: Golder Associates, Inc.

Client Site I.D.: Possum Point Power Station

Submitted To: Amanda Reynolds

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
ABC-1602	20B0838-01	Ground Water	02/19/2020 09:08	02/19/2020 15:52
ABC-1607	20B0838-02	Ground Water	02/19/2020 10:48	02/19/2020 15:52
ABC-1608	20B0838-03	Ground Water	02/19/2020 12:43	02/19/2020 15:52
ABC-1614	20B0838-04	Ground Water	02/19/2020 12:22	02/19/2020 15:52
ABC-Duplicate	20B0838-05	Ground Water	02/19/2020 13:00	02/19/2020 15:52
ABC-Field Blank	20B0838-06	Ground Water	02/19/2020 10:00	02/19/2020 15:52

2/26/2020 11:28:39AM

Date Issued:

Certificate of Analysis

Client Name: Golder Associates, Inc.

Client Site I.D.: Possum Point Power Station

Submitted To: Amanda Reynolds

Client Sample ID: ABC-1602 Laboratory Sample ID: 20B0838-01

Reference Sample Prep Analyzed Sample Samp ID CAS Method Date/Time Date/Time Results Qual DL LOQ DF Units Analyst **Parameter Wet Chemistry Analysis** 01 **BLOD** Chromium, Hexavalent 18540-29-9 SW7196A 02/20/2020 08:10 02/20/2020 09:56 0.005 1 mg/L MWL 0.005

2/26/2020 11:28:39AM

Date Issued:

Certificate of Analysis

Client Name: Golder Associates, Inc.

Client Site I.D.: Possum Point Power Station

Submitted To: Amanda Reynolds

Client Sample ID: ABC-1607 Laboratory Sample ID: 20B0838-02

Reference Sample Prep Analyzed Sample Samp ID CAS Method Date/Time Date/Time Results Qual DL LOQ DF Units Analyst **Parameter Wet Chemistry Analysis** 02 **BLOD** Chromium, Hexavalent 18540-29-9 SW7196A 02/20/2020 08:10 02/20/2020 09:56 0.005 1 mg/L MWL 0.005

2/26/2020 11:28:39AM

Date Issued:

Certificate of Analysis

Client Name: Golder Associates, Inc.

Client Site I.D.: Possum Point Power Station

Submitted To: Amanda Reynolds

Client Sample ID: ABC-1608 Laboratory Sample ID: 20B0838-03

Reference Sample Prep Analyzed Sample Samp ID CAS Method Date/Time Date/Time Results Qual DL LOQ DF Units Analyst **Parameter Wet Chemistry Analysis** 03 **BLOD** Chromium, Hexavalent 18540-29-9 SW7196A 02/20/2020 08:10 02/20/2020 09:56 0.005 1 mg/L MWL 0.005

2/26/2020 11:28:39AM

Date Issued:

Certificate of Analysis

Client Name: Golder Associates, Inc.

Client Site I.D.: Possum Point Power Station

Submitted To: Amanda Reynolds

Client Sample ID: ABC-1614 Laboratory Sample ID: 20B0838-04

Reference Sample Prep Analyzed Sample Samp ID CAS Method Date/Time Date/Time Results Qual DL LOQ DF Units Analyst **Parameter Wet Chemistry Analysis** 04 **BLOD** Chromium, Hexavalent 18540-29-9 SW7196A 02/20/2020 08:10 02/20/2020 09:56 0.005 1 mg/L MWL 0.005

2/26/2020 11:28:39AM

Date Issued:

Certificate of Analysis

Client Name: Golder Associates, Inc.

Client Site I.D.: Possum Point Power Station

Submitted To: Amanda Reynolds

Client Sample ID: ABC-Duplicate Laboratory Sample ID: 20B0838-05

Reference Sample Prep Analyzed Sample CAS Method Date/Time Date/Time Results Qual DL LOQ DF Units Analyst Samp ID **Parameter Wet Chemistry Analysis** 05 **BLOD** Chromium, Hexavalent 18540-29-9 SW7196A 02/20/2020 08:10 02/20/2020 09:56 0.005 1 mg/L MWL 0.005

2/26/2020 11:28:39AM

Date Issued:

Certificate of Analysis

Client Name: Golder Associates, Inc.

Client Site I.D.: Possum Point Power Station

Submitted To: Amanda Reynolds

Client Sample ID: ABC-Field Blank Laboratory Sample ID: 20B0838-06

Reference Sample Prep Analyzed Sample CAS Method Date/Time Date/Time Results Qual DL LOQ DF Units Analyst Samp ID **Parameter Wet Chemistry Analysis** 06 **BLOD** Chromium, Hexavalent 18540-29-9 SW7196A 02/20/2020 08:10 02/20/2020 09:56 0.005 1 mg/L MWL 0.005

Certificate of Analysis

Client Name: Golder Associates, Inc.

Client Site I.D.: Possum Point Power Station

Submitted To: Amanda Reynolds

Date Issued:

2/26/2020 11:28:39AM

Wet Chemistry Analysis - Quality Control

Air Water & Soil Laboratories, Inc.

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch BI	DB0602 - No Pre	p Wet Chem								
Blank (BDB0602-BLK1)				Prepared & Analy	zed: 02/20/2020					
Chromium, Hexavalent	ND	0.005	mg/L							
LCS (BDB0602-BS1)				Prepared & Analy	zed: 02/20/2020					
Chromium, Hexavalent	0.101	0.005	mg/L	0.100		101	80-120			
Matrix Spike (BDB0602-MS1)	Sourc	e: 20B0838-01		Prepared & Analy	zed: 02/20/2020					
Chromium, Hexavalent	0.111	0.005	mg/L	0.100	BLOD	111	80-120			
Matrix Spike Dup (BDB0602-MSD1)	Sourc	e: 20B0838-01		Prepared & Analy	zed: 02/20/2020					
Chromium, Hexavalent	0.111	0.005	mg/L	0.100	BLOD	111	80-120	0.00	20	

- Analytical Summary

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Wet Chemistry Ana	lysis		Preparation Method:	No Prep Wet Chem	
20B0838-01	100 mL / 100 mL	SW7196A	BDB0602	SDB0534	AB00092
20B0838-02	100 mL / 100 mL	SW7196A	BDB0602	SDB0534	AB00092
20B0838-03	100 mL / 100 mL	SW7196A	BDB0602	SDB0534	AB00092
20B0838-04	100 mL / 100 mL	SW7196A	BDB0602	SDB0534	AB00092
20B0838-05	100 mL / 100 mL	SW7196A	BDB0602	SDB0534	AB00092
20B0838-06	100 mL / 100 mL	SW7196A	BDB0602	SDB0534	AB00092

2/26/2020 11:28:39AM

Date Issued:

Certificate of Analysis

Client Name: Golder Associates, Inc.

Client Site I.D.: Possum Point Power Station

Submitted To: Amanda Reynolds

Certified Analyses included in this Report

Analyte Certifications

SW7196A in Non-Potable Water

Chromium, Hexavalent VELAP

Code	Description	Cert Number	Expires
MdDOE	Maryland DE Drinking Water	341	12/31/2020
NC	North Carolina DENR	495	12/31/2020
PADEP	NELAC-Pennsylvania #005	005	10/31/2020
VELAP Certificate #4337	NELAC-Virginia Certificate #10637	460021	06/14/2020
WVDEP	West Virginia DEP	350	11/30/2020

2/26/2020 11:28:39AM

Date Issued:

Certificate of Analysis

Client Name: Golder Associates, Inc.

Client Site I.D.: **Possum Point Power Station**

Amanda Reynolds Submitted To:

Qualifiers and Definitions

RPD Relative Percent Difference

Qual Qualifers

-RE Denotes sample was re-analyzed

LOD Limit of Detection

BLOD Below Limit of Detection

LOQ Limit of Quantitation


DF Dilution Factor

TIC Tentatively Identified Compounds are compounds that are identified by comparing the analyte mass spectral pattern with the NIST spectral

library. A TIC spectral match is reported when the pattern is at least 75% consistent with the published pattern. Compound concentrations

are estimated and are calculated using an internal standard response factor of 1.

PCBs, Total Total PCBs are defined as the sum of detected Aroclors 1016, 1221, 1232, 1248, 1254, 1260, 1262, and 1268.

CHAIN OF CUSTODY

LABORAT	ORIE	:5,1	NC.				O											FAGE_		
COMPANY NAME: Golder	A3.	300	iat	es	IN	VOICE TO	Ac	coun	ts f	ay	able		PROJEC	T NAM	1E/Quo	te #: [5	A2020	GW-	and A	BC
CONTACT: Amanda Rey	nol	ds	5			VOICE CO	-						SITE NA	ME: P	SSUM	Point	- Pow	er Ste	chàn	
ADDRESS: 2108 W. Labumu	24	we	77	200	IN'	VOICE AD	DRES	S:					PROJEC	T NUN	BER:	2013	977	5	· L	
PHONE #: (804) 358-790					IN'	VOICE PH	ONE#						P.O. #:							
FAX #: (804) 358-290				EMAIL: /	2004	nodsao	ioldes	com					Pretreati	nent P	rogram					
Is sample for compliance reporting		YE				ry State:				m a	chlorina	ated su	apply? Y	ES ((OV	PWS I	I.D. #:			
SAMPLER NAME (PRINT):	Ant	ali	lc.	Joyne	120	MPLER S	- / -	URE:	6	2	16.	ig.	Turn Are	ound T	ime:	Circle:	10	5 Days	or _	Day(s)
Matrix Codes: WW=Waste Water/Storm Wa	ter G	W=G	round	Water DW=	Drinking	Water S=Soil	Solids C	R=Organ	nic A=Air	WP	-Wipe OT	=Other_						CC	MMEN	TS
			(3)									ANA	ALYSIS / (P	RESEF	RVATIV	'E)		Preservativ C=Hydrochlo		AND THE PROPERTY OF
CLIENT SAMPLE I.D.	Grab	Composite	Field Filtered (Dissolved Metals)	Composite Start Date	Composite Start Time	Grab Date or Composite Stop Date	Grab Time or Composite Stop Time	Time Preserved	Matrix (See Codes)	Number of Containers	Hexaudient-Chromium (by 7196)	-						Acid Z=Zi Thiosu PLEASE NO INTERFERE		r=Sodium thanol RVATIVE(S), KS or PUMP
1) ABC-1602	V		Œ	-	-	2/19/2020	0908	0908	Gw	1	X							*all sa	mples	resened
2) ABC-1607	1			-	_	2/19/2020	1048	1048	GW	1	X	- 34					/1-23	onice	*	
3) ABC-1608	V		-		-	2/19/2000	1243	1243	GW	1	X			60.1				18.00		
4) ABC-1614	1			_	-	2/19/2020	1222	1202	GW	1	X					Tan Carlo	<i>i</i> –			
5) ABC-Duplicate	V			-	_	2/19/2020	1300	1300	GW	1	X									
6) ABC-Field Blank	V				_	2/19/2020	1000	1000	GW	1	X									
7)														4						
8)					-															
9)																				
10) RELINQUISHED: RELINQUISHED: RELINQUISHED RELINQUISHED	9/20 DAT	20 E /	TIME 140 TIME 'SC	RECEIV RECEIV	ED:	Worlder 21	2/	DATE / DATE / DATE / DATE /	2108 TIME	Leve				ed and in	nt PS-	Bill to	20B o Gold	0838 ler	ge 13 c	

2/26/2020 11:28:39AM

Date Issued:

Certificate of Analysis

Client Name: Golder Associates, Inc.

Client Site I.D.: Possum Point Power Station

Submitted To: Amanda Reynolds

Sample Conditions Checklist

Samples Received at:	1.30°C
How were samples received?	Courier
Were Custody Seals used? If so, were they received intact?	Yes
Are the custody papers filled out completely and correctly?	Yes
Do all bottle labels agree with custody papers?	Yes
Is the temperature blank or representative sample within acceptable limits or received on ice, and recently taken?	Yes
Are all samples within holding time for requested laboratory tests?	Yes
Is a sufficient amount of sample provided to perform the tests included?	Yes
Are all samples in appropriate containers for the analyses requested?	Yes
Were volatile organic containers received?	No
Are all volatile organic and TOX containers free of headspace?	NA
Is a trip blank provided for each VOC sample set? VOC sample sets include EPA8011, EPA504, EPA8260, EPA624, EPA8015 GRO, EPA8021, EPA524, and RSK-175.	NA
Are all samples received appropriately preserved? Note that metals containers do not require field preservation but lab preservation may delay analysis.	Yes

Work Order Comments

APPENDIX E.2 LABORATORY ANALYTICAL **RESULTS SECOND SEMI-ANNUAL GROUNDWATER MONITORING EVENT** (AUGUST-SEPTEMBER 2020)

October 13, 2020

Mike Williams Golder Associates 2108 W Laburnum Ave Suite 200 Richmond, VA 23227

RE: Project: PP 2SA20 (A)-Revised Report

Pace Project No.: 92493784

Dear Mike Williams:

Enclosed are the analytical results for sample(s) received by the laboratory on September 03, 2020. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

- Pace Analytical Gulf Coast
- Pace Analytical Services Asheville
- Pace Analytical Services Eden
- Pace Analytical Services Greensburg

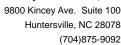
This revision was issued on 10/13/20 to update reporting units, per client request.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Nicole Gasiorowski

Micolo Yasiorovske


nicole.gasiorowski@pacelabs.com

(704)875-9092 Project Manager

Enclosures

cc: Craig LaCosse, Golder Associates Inc. Rachel Powell, Golder Associates Amanda Reynolds, Golder Associates Martha Smith, Golder Associates Inc.

CERTIFICATIONS

Project: PP 2SA20 (A)-Revised Report

Pace Project No.: 92493784

Pace Analytical Services Pennsylvania

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

ANAB DOD-ELAP Rad Accreditation #: L2417

Alabama Certification #: 41590 Arizona Certification #: AZ0734

Arkansas Certification

California Certification #: 04222CA Colorado Certification #: PA01547 Connecticut Certification #: PH-0694

Delaware Certification

EPA Region 4 DW Rad

Florida/TNI Certification #: E87683 Georgia Certification #: C040

Florida: Cert E871149 SEKS WET Guam Certification

Hawaii Certification Idaho Certification

Illinois Certification
Indiana Certification

Iowa Certification #: 391 Kansas/TNI Certification #: E-10358

Kentucky Certification #: KY90133 KY WW Permit #: KY0098221 KY WW Permit #: KY0000221

Louisiana DHH/TNI Certification #: LA180012 Louisiana DEQ/TNI Certification #: 4086

Maine Certification #: 2017020 Maryland Certification #: 308

Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991 Missouri Certification #: 235

Montana Certification #: Cert0082 Nebraska Certification #: NE-OS-29-14 Nevada Certification #: PA014572018-1

New Hampshire/TNI Certification #: 297617 New Jersey/TNI Certification #: PA051

New Mexico Certification #: PA01457 New York/TNI Certification #: 10888 North Carolina Certification #: 42706

North Dakota Certification #: R-190 Ohio EPA Rad Approval: #41249

Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282

South Dakota Certification

Tennessee Certification #: 02867 Texas/TNI Certification #: T104704188-17-3

Utah/TNI Certification #: PA014572017-9
USDA Soil Permit #: P330-17-00091
Vermont Dept. of Health: ID# VT-0282
Virgin Island/PADEP Certification
Virginia/VELAP Certification #: 9526
Washington Certification #: C868
West Virginia DEP Certification #: 143

West Virginia DHHR Certification #: 9964C

Wisconsin Approve List for Rad Wyoming Certification #: 8TMS-L

Pace Analytical Gulf Coast

7979 Innovation Park Drive, Baton Rouge, LA 70820

Arkansas Certification #: 88-0655 DoD ELAP Certification #: L18-597 Florida Certification #: E87854 Illinois Certification #: 004585 Kansas Certification #: E-10354 Louisiana/LELAP Certification #: 01955

North Carolina Certification #: 618

North Dakota Certification #: R-195

Oklahoma Certification #: 2019-101 South Carolina Certification #: 73006001 Texas Certification #: T104704178-19-11 USDA Soil Permit # P330-19-00209

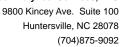
Virginia Certification #: 460215
Washington Certification #: C929

Pace Analytical Services Asheville

2225 Riverside Drive, Asheville, NC 28804 Florida/NELAP Certification #: E87648 Massachusetts Certification #: M-NC030

North Carolina Drinking Water Certification #: 37712

North Carolina Wastewater Certification #: 40 South Carolina Certification #: 99030001 Virginia/VELAP Certification #: 460222


Pace Analytical Services Eden

205 East Meadow Road Suite A, Eden, NC 27288 North Carolina Drinking Water Certification #: 37738 North Carolina Wastewater Certification #: 633

Virginia/VELAP Certification #: 460025

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

SAMPLE SUMMARY

Project: PP 2SA20 (A)-Revised Report

Pace Project No.: 92493784

Lab ID	Sample ID	Matrix	Date Collected	Date Received
92493784001	ABC-1602	Water	09/02/20 10:31	09/03/20 10:35
92493784002	ABC-1607	Water	09/02/20 08:53	09/03/20 10:35
92493784003	ABC-1608	Water	09/02/20 10:13	09/03/20 10:35
92493784004	ABC-1614	Water	09/02/20 09:20	09/03/20 10:35
92493784005	ABC-Duplicate	Water	09/02/20 10:45	09/03/20 10:35
92493784006	ABC-Field Blank	Water	09/02/20 09:45	09/03/20 10:35

(704)875-9092

SAMPLE ANALYTE COUNT

Project: PP 2SA20 (A)-Revised Report

Pace Project No.: 92493784

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
92493784001	ABC-1602	SM 2540C-2011	SOB	1	PASI-E
		EPA 6010D	SH1	16	PASI-A
		EPA 6020B	JOR	9	PASI-A
		EPA 7470A	SOO	1	PASI-A
		EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
		EPA 9056A	BRJ	3	PASI-A
		EPA 9060A	MDW	5	PASI-A
		EPA 9066	MOS	1	GCLA
92493784002	ABC-1607	SM 2540C-2011	SOB	1	PASI-E
		EPA 6010D	SH1	16	PASI-A
		EPA 6020B	JOR	9	PASI-A
		EPA 7470A	SOO	1	PASI-A
		EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
		EPA 9056A	BRJ	3	PASI-A
		EPA 9060A	MDW	5	PASI-A
		EPA 9066	MOS	1	GCLA
92493784003	ABC-1608	SM 2540C-2011	SOB	1	PASI-E
		EPA 6010D	SH1	16	PASI-A
		EPA 6020B	JOR	9	PASI-A
		EPA 7470A	SOO	1	PASI-A
		EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
		EPA 9056A	BRJ	3	PASI-A
		EPA 9060A	MDW	5	PASI-A
		EPA 9066	MOS	1	GCLA
92493784004	ABC-1614	SM 2540C-2011	SOB	1	PASI-E
		EPA 6010D	SH1	16	PASI-A
		EPA 6020B	JOR	9	PASI-A
		EPA 7470A	soo	1	PASI-A
		EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA

SAMPLE ANALYTE COUNT

Project: PP 2SA20 (A)-Revised Report

Pace Project No.: 92493784

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
		EPA 9056A	BRJ	3	PASI-A
		EPA 9060A	MDW	5	PASI-A
		EPA 9066	MOS	1	GCLA
92493784005	ABC-Duplicate	SM 2540C-2011	SOB	1	PASI-E
		EPA 6010D	SH1	16	PASI-A
		EPA 6020B	JOR	9	PASI-A
		EPA 7470A	SOO	1	PASI-A
		EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
		EPA 9056A	BRJ	3	PASI-A
		EPA 9060A	MDW	5	PASI-A
		EPA 9066	MOS	1	GCLA
92493784006	ABC-Field Blank	SM 2540C-2011	SOB	1	PASI-E
		EPA 6010D	SH1	16	PASI-A
		EPA 6020B	JOR	9	PASI-A
		EPA 7470A	soo	1	PASI-A
		EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
		EPA 9056A	BRJ	3	PASI-A
		EPA 9060A	MDW	5	PASI-A
		EPA 9066	MOS	1	GCLA

GCLA = Pace Analytical Gulf Coast

PASI-A = Pace Analytical Services - Asheville

PASI-E = Pace Analytical Services - Eden

PASI-PA = Pace Analytical Services - Greensburg

(704)875-9092

SUMMARY OF DETECTION

Project: PP 2SA20 (A)-Revised Report

Pace Project No.: 92493784

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
92493784001	ABC-1602					
SM 2540C-2011	Total Dissolved Solids	131	mg/L	25.0	09/08/20 10:47	
EPA 6010D	Barium	65.9	ug/L	5.0	09/10/20 05:11	
EPA 6010D	Calcium	6480	ug/L	100	09/10/20 05:11	
EPA 6010D	Copper	8.7	ug/L	5.0	09/10/20 05:11	
EPA 6010D	Nickel	7.1	ug/L	5.0	09/10/20 05:11	
EPA 6010D	Hardness, Total(SM 2340B)	32800	ug/L	662	09/10/20 05:11	
EPA 6020B	Cobalt	11.5	ug/L	0.10	09/10/20 12:48	
EPA 6020B	Iron	74.3	ug/L	50.0	09/10/20 12:48	
EPA 6020B	Lead	0.089J	ug/L	0.10	09/10/20 12:48	
EPA 6020B	Lithium	10.1	ug/L	2.5	09/10/20 12:48	
EPA 6020B	Manganese	202	ug/L	10.0	09/10/20 12:52	
EPA 6020B	Potassium	6310	ug/L	1000	09/10/20 12:52	
EPA 6020B	Sodium	8570	ug/L	5000	09/10/20 12:52	
EPA 9315	Radium-226	0.948 ± 0.401 (0.349)	pCi/L		09/23/20 06:11	
		C:75% T:NA				
EPA 9320	Radium-228	2.34 ±	pCi/L		09/25/20 11:48	
		0.898				
		(1.40)				
		C:53% T:70%				
otal Radium Calculation	Total Radium	3.29 ± 1.30 (1.75)	pCi/L		09/28/20 13:12	
EPA 9056A	Chloride	3.1	mg/L	1.0	09/05/20 13:27	
PA 9056A	Sulfate	50.8	mg/L	1.0	09/05/20 13:27	
EPA 9066	Phenolics, Total Recoverable	0.050	mg/L	0.012	09/13/20 06:06	
2493784002	ABC-1607					
SM 2540C-2011	Total Dissolved Solids	130	mg/L	25.0	09/08/20 10:47	
PA 6010D	Barium	51.7	ug/L	5.0	09/10/20 05:15	
EPA 6010D	Boron	225	ug/L	50.0	09/10/20 05:15	
EPA 6010D	Calcium	8380	ug/L	100	09/10/20 05:15	
EPA 6010D	Nickel	10.0	ug/L	5.0	09/10/20 05:15	
PA 6010D	Hardness, Total(SM 2340B)	35900	ug/L	662	09/10/20 05:15	
EPA 6010D	Zinc	19.8	ug/L	10.0	09/10/20 05:15	
EPA 6020B	Cobalt	8.2	ug/L	0.10	09/09/20 23:45	
EPA 6020B	Iron	3230	ug/L		09/10/20 12:56	M6
EPA 6020B	Lithium	3.1	ug/L		09/09/20 23:45	
EPA 6020B	Manganese	209	ug/L		09/10/20 12:56	M6
EPA 6020B	Potassium	2640	ug/L	1500		M6
EPA 6020B	Sodium	15900	ug/L	7500		M6
EPA 9315	Radium-226	0.260 ± 0.255	pCi/L	7,000	09/23/20 06:09	W.O
		(0.493) C:86% T:NA				
EPA 9320	Radium-228	1.05 ± 0.595 (1.10)	pCi/L		09/25/20 11:47	
		C:62% T:76%				

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

SUMMARY OF DETECTION

Project: PP 2SA20 (A)-Revised Report

Pace Project No.: 92493784

Lab Sample ID	Client Sample ID					
Method	Parameters —	Result	Units	Report Limit	Analyzed	Qualifiers
92493784002	ABC-1607					
Total Radium Calculation	Total Radium	1.31 ± 0.850 (1.59)	pCi/L		09/28/20 13:12	
EPA 9056A	Chloride	16.2	mg/L	1.0	09/05/20 13:42	
EPA 9056A	Sulfate	39.3	mg/L	1.0	09/05/20 13:42	
EPA 9060A	Total Organic Carbon	0.82J	mg/L	1.0	09/18/20 13:29	
EPA 9060A	Total Organic Carbon	0.69J	mg/L	1.0	09/18/20 13:29	
EPA 9060A	Total Organic Carbon	0.71J	mg/L	1.0	09/18/20 13:29	
PA 9060A	Total Organic Carbon	0.73J	mg/L	1.0	09/18/20 13:29	
PA 9060A	Mean Total Organic Carbon	0.74J	mg/L	1.0	09/18/20 13:29	
PA 9066	Phenolics, Total Recoverable	0.029	mg/L	0.012	09/14/20 13:50	
2493784003	ABC-1608					
SM 2540C-2011	Total Dissolved Solids	239	mg/L	25.0	09/08/20 10:47	
PA 6010D	Arsenic	5.7J	ug/L	10.0	09/10/20 05:34	
PA 6010D	Barium	67.3	ug/L	5.0	09/10/20 05:34	
PA 6010D	Boron	217	ug/L	50.0	09/10/20 05:34	
PA 6010D	Calcium	20600	ug/L	100	09/10/20 05:34	
PA 6010D	Nickel	19.8	ug/L	5.0	09/10/20 05:34	
PA 6010D	Hardness, Total(SM 2340B)	89600	ug/L	662	09/10/20 05:34	
PA 6010D	Zinc	12.3	ug/L	10.0	09/10/20 05:34	
PA 6020B	Cobalt	26.5	ug/L	1.0	09/10/20 13:00	
PA 6020B	Iron	6090	ug/L	500	09/10/20 13:00	
PA 6020B	Lithium	12.3	ug/L	2.5	09/10/20 00:27	
PA 6020B	Manganese	181	ug/L	5.0	09/10/20 13:00	
PA 6020B	Potassium	3790	ug/L	500	09/10/20 13:00	
PA 6020B	Sodium	32200	ug/L	12500	09/10/20 13:04	
PA 9315	Radium-226	0.230 ± 0.215 (0.386)	pCi/L		09/23/20 06:11	
PA 9320	Radium-228	C:86% T:NÁ 0.606 ±	pCi/L		09/25/20 11:48	
otal Padium Calculation	Total Radium	0.480 (0.964) C:65% T:89% 0.836 ±	5C://		00/29/20 42:42	
otal Radium Calculation	rotal Radium	0.695 (1.35)	pCi/L		09/28/20 13:12	
PA 9056A	Chloride	54.7	mg/L	1.0	09/05/20 14:27	
PA 9056A	Fluoride	0.079J	mg/L	0.10	09/05/20 14:27	
PA 9056A	Sulfate	29.6	mg/L	1.0	09/05/20 14:27	
PA 9060A	Total Organic Carbon	1.5	mg/L	1.0	09/18/20 17:26	
PA 9060A	Total Organic Carbon	1.4	mg/L	1.0	09/18/20 17:26	
PA 9060A	Total Organic Carbon	1.4	mg/L	1.0	09/18/20 17:26	
PA 9060A	Total Organic Carbon	1.4	mg/L	1.0	09/18/20 17:26	
PA 9060A	Mean Total Organic Carbon	1.5	mg/L	1.0	09/18/20 17:26	
PA 9066	Phenolics, Total Recoverable	0.035	mg/L	0.012	09/13/20 06:10	

(704)875-9092



SUMMARY OF DETECTION

Project: PP 2SA20 (A)-Revised Report

Pace Project No.: 92493784

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
2493784004	ABC-1614					
SM 2540C-2011	Total Dissolved Solids	244	mg/L	25.0	09/08/20 10:47	
EPA 6010D	Arsenic	44.1	ug/L	10.0	09/10/20 05:37	
EPA 6010D	Barium	185	ug/L	5.0	09/10/20 05:37	
EPA 6010D	Boron	212	ug/L	50.0	09/10/20 05:37	
EPA 6010D	Calcium	21600	ug/L	100	09/10/20 05:37	
PA 6010D	Nickel	15.1	ug/L	5.0	09/10/20 05:37	
PA 6010D	Hardness, Total(SM 2340B)	87800	ug/L	662	09/10/20 05:37	
PA 6020B	Cobalt	21.7	ug/L	1.0	09/10/20 13:07	
PA 6020B	Iron	31600	ug/L	2500	09/10/20 13:11	
PA 6020B	Lead	0.20	ug/L	0.10	09/10/20 00:30	
PA 6020B	Lithium	14.6	ug/L	2.5	09/10/20 00:30	
PA 6020B	Manganese	303	ug/L	5.0	09/10/20 13:07	
PA 6020B	Potassium	4040	ug/L	500	09/10/20 13:07	
PA 6020B	Sodium	20900	ug/L	12500	09/10/20 13:11	
PA 9315	Radium-226	0.221 ±	pCi/L		09/23/20 06:09	
		0.285				
		(0.610)				
	D !!	C:88% T:NA	0.4		00/0-/00 //	
PA 9320	Radium-228	0.0309 ± 0.392	pCi/L		09/25/20 11:47	
		(0.906)				
		C:64%				
		T:78%				
otal Radium Calculation	Total Radium	$0.252 \pm$	pCi/L		09/28/20 13:12	
		0.677				
TA 0050A	011.11	(1.52)		4.0	00/05/00 44 40	
PA 9056A	Chloride	17.2	mg/L		09/05/20 14:42	
PA 9056A	Fluoride	0.092J	mg/L	0.10	09/05/20 14:42	
PA 9056A	Sulfate	38.5	mg/L	1.0	09/05/20 14:42	
PA 9060A	Total Organic Carbon	3.0	mg/L	1.0	09/18/20 17:43	
PA 9060A	Total Organic Carbon	3.0	mg/L	1.0	09/18/20 17:43	
PA 9060A	Total Organic Carbon	2.9	mg/L	1.0	09/18/20 17:43	
PA 9060A	Total Organic Carbon	3.1	mg/L	1.0	09/18/20 17:43	
PA 9060A	Mean Total Organic Carbon	3.0	mg/L	1.0	09/18/20 17:43	
PA 9066	Phenolics, Total Recoverable	0.12	mg/L	0.012	09/13/20 06:10	
493784005	ABC-Duplicate					
M 2540C-2011	Total Dissolved Solids	128	mg/L		09/08/20 10:48	
PA 6010D	Arsenic	7.0J	ug/L	10.0	09/10/20 05:41	
PA 6010D	Barium	67.8	ug/L	5.0	09/10/20 05:41	
PA 6010D	Calcium	6670	ug/L	100	09/10/20 05:41	
PA 6010D	Copper	8.4	ug/L	5.0	09/10/20 05:41	
PA 6010D	Nickel	7.0	ug/L	5.0	09/10/20 05:41	
PA 6010D	Hardness, Total(SM 2340B)	33600	ug/L	662	09/10/20 05:41	
PA 6020B	Cobalt	12.0	ug/L	0.10	09/10/20 00:34	
PA 6020B	Iron	92.9	ug/L	50.0	09/10/20 00:34	
PA 6020B	Lithium	8.7	ug/L		09/10/20 00:34	
PA 6020B	Manganese	198	ug/L	10.0	09/10/20 13:15	
PA 6020B	Potassium	6080	ug/L	1000	09/10/20 13:15	
PA 6020B	Sodium	8130	ug/L		09/10/20 13:15	

SUMMARY OF DETECTION

Project: PP 2SA20 (A)-Revised Report

Pace Project No.: 92493784

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
92493784005	ABC-Duplicate					
EPA 9315	Radium-226	0.721 ± 0.409 (0.646) C:80% T:NA	pCi/L		09/23/20 06:11	
EPA 9320	Radium-228	0.915 ± 0.562 (1.06) C:61% T:75%	pCi/L		09/25/20 11:48	
Total Radium Calculation	Total Radium	1.64 ± 0.971 (1.71)	pCi/L		09/28/20 13:12	
EPA 9056A	Chloride	3.1	mg/L	1.0		
EPA 9056A	Sulfate	52.2	mg/L	1.0		
EPA 9060A	Total Organic Carbon	0.50J	mg/L	1.0		
EPA 9066	Phenolics, Total Recoverable	0.099	mg/L	0.012	09/13/20 06:13	
2493784006	ABC-Field Blank					
EPA 9315	Radium-226	0.231 ± 0.204 (0.345) C:86% T:NA	pCi/L		09/23/20 06:10	
EPA 9320	Radium-228	0.750 ± 0.417 (0.751) C:69% T:88%	pCi/L		09/25/20 11:48	
Total Radium Calculation	Total Radium	0.981 ± 0.621 (1.10)	pCi/L		09/28/20 13:12	
EPA 9056A	Sulfate	0.84Ĵ	mg/L	1.0	09/08/20 22:59	
EPA 9066	Phenolics, Total Recoverable	0.097	mg/L	0.012	09/13/20 06:14	

(704)875-9092

ANALYTICAL RESULTS

Project: PP 2SA20 (A)-Revised Report

Pace Project No.: 92493784

Date: 10/13/2020 08:41 AM

Sample: ABC-1602	Lab ID:	92493784001	01 Collected: 09/02/20 10:31			Received: 09/03/20 10:35		Matrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
1 drameters						- Troparcu	- Analyzed		
540C Total Dissolved Solids	Analytical I	Method: SM 25	540C-2011						
	Pace Analy	tical Services	- Eden						
Total Dissolved Solids	131	mg/L	25.0	25.0	1		09/08/20 10:47		
6010 MET ICP	Analytical I	Method: EPA 6	010D Prepa	ration Met	hod: EF	PA 3010A			
	Pace Analy	tical Services	- Asheville						
Antimony	ND	ug/L	5.0	3.0	1	09/09/20 01:47	09/10/20 05:11	7440-36-0	
Arsenic	ND	ug/L	10.0	4.7	1	09/09/20 01:47		7440-38-2	
Barium	65.9	ug/L	5.0	3.5	1		09/10/20 05:11		
Beryllium	ND	ug/L	1.0	0.70	1		09/10/20 05:11		
Boron	ND	ug/L	50.0	32.4	1		09/10/20 05:11		
Cadmium	ND	ug/L	1.0	0.40	1		09/10/20 05:11		
Calcium	6480	ug/L	100	94.2	1		09/10/20 05:11		
Chromium	ND	ug/L	5.0	3.7	1	09/09/20 01:47			
Copper	8.7	ug/L	5.0	4.3	1		09/10/20 05:11		
Molybdenum	ND	ug/L	5.0	3.9	1		09/10/20 05:11		
•	7.1	-		3.5	1		09/10/20 05:11		
lickel		ug/L	5.0						
Selenium	ND	ug/L	10.0	4.7	1		09/10/20 05:11		
Silver	ND	ug/L	5.0	2.5	1		09/10/20 05:11	7440-22-4	
lardness, Total(SM 2340B)	32800	ug/L	662	131	1		09/10/20 05:11		
/anadium	ND	ug/L	5.0	3.9	1	09/09/20 01:47			
inc	ND	ug/L	10.0	9.5	1	09/09/20 01:47	09/10/20 05:11	7440-66-6	
020 MET ICPMS	Analytical I	Method: EPA 6	020B Prepa	ration Metl	hod: EF	PA 3010A			
	Pace Analy	tical Services	- Asheville						
Cobalt	11.5	ug/L	0.10	0.050	1	09/09/20 16:11	09/10/20 12:48	7440-48-4	
ron	74.3	ug/L	50.0	20.9	1	09/09/20 16:11	09/10/20 12:48	7439-89-6	
ead	0.089J	ug/L	0.10	0.077	1	09/09/20 16:11	09/10/20 12:48	7439-92-1	
ithium	10.1	ug/L	2.5	0.39	1	09/09/20 16:11	09/10/20 12:48	7439-93-2	
Manganese	202	ug/L	10.0	9.5	20	09/09/20 16:11	09/10/20 12:52		
Potassium	6310	ug/L	1000	180	20	09/09/20 16:11	09/10/20 12:52		
Sodium	8570	ug/L	5000	982	20	09/09/20 16:11	09/10/20 12:52		
Thallium	ND	ug/L	0.10	0.050	1	09/09/20 16:11	09/10/20 12:48		
- Tin	ND	ug/L	0.50	0.24	1	09/09/20 16:11	09/10/20 12:48		
7470 Mercury	Analytical Method: EPA 7470A Preparation Method: EPA 7470A								
		tical Services							
Mercury	ND	ug/L	0.20	0.12	1	09/04/20 15:28	09/08/20 17:22	7439-97-6	
0056 IC anions 28 Days	Analytical Method: EPA 9056A								
	Pace Analy	tical Services	- Asheville						
Chloride	3.1	mg/L	1.0	0.60	1		09/05/20 13:27	16887-00-6	
Fluoride	ND	mg/L	0.10	0.050	1		09/05/20 13:27		
Sulfate	50.8	mg/L	1.0	0.50	1		09/05/20 13:27		

Project: PP 2SA20 (A)-Revised Report

Pace Project No.: 92493784

Date: 10/13/2020 08:41 AM

Sample: ABC-1602	Lab ID:	92493784001	Collecte	d: 09/02/20	10:31	Received: 09/	/03/20 10:35 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Total Organic Carbon, Asheville	Analytical	Method: EPA 9	9060A						
	Pace Ana	lytical Services	- Asheville						
Total Organic Carbon	ND	mg/L	1.0	0.50	1		09/18/20 13:12	7440-44-0	
Total Organic Carbon	ND	mg/L	1.0	0.50	1		09/18/20 13:12	7440-44-0	
Total Organic Carbon	ND	mg/L	1.0	0.50	1		09/18/20 13:12	7440-44-0	
Total Organic Carbon	ND	mg/L	1.0	0.50	1		09/18/20 13:12	7440-44-0	
Mean Total Organic Carbon	ND	mg/L	1.0	0.50	1		09/18/20 13:12	7440-44-0	
EPA 9066	Analytical	Method: EPA 9	066 Prepa	ration Metho	od: ME	THOD			
	Pace Ana	lytical Gulf Coa	st						
Phenolics, Total Recoverable	0.050	mg/L	0.012	0.012	1	09/12/20 11:45	09/13/20 06:06	64743-03-9	

(704)875-9092

ANALYTICAL RESULTS

Project: PP 2SA20 (A)-Revised Report

Pace Project No.: 92493784

Date: 10/13/2020 08:41 AM

Sample: ABC-1607	Lab ID:	92493784002	Collected	: 09/02/20	08:53	Received: 09/	/03/20 10:35 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
2540C Total Dissolved Solids	•	Method: SM 25							
Total Dissolved Solids	130	mg/L	25.0	25.0	1		09/08/20 10:47		
6010 MET ICP	Analytical	Method: EPA 6	010D Prepa	aration Met	hod: EF	PA 3010A			
	-	ytical Services							
Antimony	ND	ug/L	5.0	3.0	1	09/09/20 01:47	09/10/20 05:15	7440-36-0	
Arsenic	ND	ug/L	10.0	4.7	1	09/09/20 01:47			
Barium	51.7	ug/L	5.0	3.5	1	09/09/20 01:47			
Beryllium	ND	ug/L	1.0	0.70	1	09/09/20 01:47			
Boron	225	ug/L	50.0	32.4	1	09/09/20 01:47			
Cadmium	ND	ug/L	1.0	0.40	1	09/09/20 01:47			
Calcium	8380	ug/L	100	94.2	1	09/09/20 01:47			
Chromium	ND	ug/L	5.0	3.7	1	09/09/20 01:47			
Copper	ND	ug/L	5.0	4.3	1	09/09/20 01:47			
Molybdenum	ND	ug/L	5.0	3.9	1	09/09/20 01:47			
Nickel	10.0	ug/L	5.0	3.5	1	09/09/20 01:47			
Selenium	ND	ug/L	10.0	4.7	1	09/09/20 01:47			
Silver	ND	ug/L	5.0	2.5	1	09/09/20 01:47			
Hardness, Total(SM 2340B)	35900	ug/L	662	131	1		09/10/20 05:15		
/anadium	ND	ug/L	5.0	3.9	1	09/09/20 01:47		7440-62-2	
Zinc	19.8	ug/L	10.0	9.5	1	09/09/20 01:47			
6020 MET ICPMS	Analytical	Method: EPA 6	020B Brons	ration Mot	hod: EE	λ 2010Λ			
0020 MET ICFMS	•	ytical Services	•	ilation iviet	ilou. Li	A 30 10A			
Coh alt				0.050	4	00/00/20 46:44	00/00/20 22:45	7440 40 4	
Cobalt	8.2	ug/L	0.10	0.050	1	09/09/20 16:11	09/09/20 23:45		MC
ron	3230 ND	ug/L	1500	628	30	09/09/20 16:11	09/10/20 12:56		M6
_ead		ug/L	0.10	0.077	1	09/09/20 16:11	09/09/20 23:45		
_ithium	3.1 209	ug/L	2.5	0.39 14.2	1 30	09/09/20 16:11	09/09/20 23:45 09/10/20 12:56		M6
Manganese Potassium	2640	ug/L	15.0 1500	270	30	09/09/20 16:11 09/09/20 16:11	09/10/20 12:56		M6
		ug/L							
Sodium Fhallium	15900	ug/L	7500	1470	30	09/09/20 16:11	09/10/20 12:56		M6
Fin	ND ND	ug/L ug/L	0.10 0.50	0.050 0.24	1 1	09/09/20 16:11 09/09/20 16:11	09/09/20 23:45 09/09/20 23:45		
		Method: EPA 7			had: EE				
7470 Mercury		ytical Services		iralion Mel	ilou. Lr	A 7470A			
Mercury	ND	ug/L	0.20	0.12	1	09/04/20 15:28	09/08/20 17:30	7439-97-6	
9056 IC anions 28 Days	,	Method: EPA 9 ytical Services							
Oklasida		•		0.00			00/05/00 40 40	40007.00.0	
Chloride	16.2	mg/L	1.0	0.60	1		09/05/20 13:42		
Fluoride	ND	mg/L	0.10	0.050	1		09/05/20 13:42		
Sulfate	39.3	mg/L	1.0	0.50	1		09/05/20 13:42	14808-79-8	

Project: PP 2SA20 (A)-Revised Report

Pace Project No.: 92493784

Date: 10/13/2020 08:41 AM

Sample: ABC-1607	Lab ID:	92493784002	Collecte	d: 09/02/20	08:53	Received: 09/	/03/20 10:35 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Total Organic Carbon, Asheville	Analytical	Method: EPA 9	060A						
	Pace Anal	lytical Services	- Asheville						
Total Organic Carbon	0.82J	mg/L	1.0	0.50	1		09/18/20 13:29	7440-44-0	
Total Organic Carbon	0.69J	mg/L	1.0	0.50	1		09/18/20 13:29	7440-44-0	
Total Organic Carbon	0.71J	mg/L	1.0	0.50	1		09/18/20 13:29	7440-44-0	
Total Organic Carbon	0.73J	mg/L	1.0	0.50	1		09/18/20 13:29	7440-44-0	
Mean Total Organic Carbon	0.74J	mg/L	1.0	0.50	1		09/18/20 13:29	7440-44-0	
EPA 9066	Analytical	Method: EPA 9	066 Prepa	ration Metho	od: ME	THOD			
	Pace Anal	lytical Gulf Coa	st						
Phenolics, Total Recoverable	0.029	mg/L	0.012	0.012	1	09/12/20 11:45	09/14/20 13:50	64743-03-9	

(704)875-9092

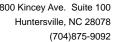
ANALYTICAL RESULTS

Project: PP 2SA20 (A)-Revised Report

Pace Project No.: 92493784

Date: 10/13/2020 08:41 AM

Sample: ABC-1608	Lab ID: 9	92493784003	Collected	09/02/20	10:13	Received: 09/	/03/20 10:35 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
2540C Total Dissolved Solids	•	Method: SM 25							
	Pace Analy	tical Services	- Eaen						
Total Dissolved Solids	239	mg/L	25.0	25.0	1		09/08/20 10:47		
6010 MET ICP	Analytical N	/lethod: EPA 6	010D Prepa	ration Met	hod: EF	PA 3010A			
	Pace Analy	tical Services	- Asheville						
Antimony	ND .	ug/L	5.0	3.0	1	00/00/20 01:47	09/10/20 05:34	7440-36-0	
Arsenic	5.7J	ug/L ug/L	10.0	4.7	1	09/09/20 01:47			
Barium	67.3	ug/L ug/L	5.0	3.5	1		09/10/20 05:34		
Beryllium	ND	ug/L ug/L	1.0	0.70	1		09/10/20 05:34		
Boron	217	ug/L ug/L	50.0	32.4	1		09/10/20 05:34		
Cadmium	ND	ug/L ug/L	1.0	0.40	1		09/10/20 05:34		
		•			1				
Calcium	20600	ug/L	100	94.2 3.7			09/10/20 05:34		
Chromium	ND	ug/L	5.0		1	09/09/20 01:47			
Copper	ND	ug/L	5.0	4.3	1		09/10/20 05:34		
Molybdenum	ND	ug/L	5.0	3.9	1		09/10/20 05:34		
lickel	19.8	ug/L	5.0	3.5	1		09/10/20 05:34		
Selenium	ND	ug/L	10.0	4.7	1		09/10/20 05:34		
Silver	ND	ug/L	5.0	2.5	1		09/10/20 05:34	7440-22-4	
Hardness, Total(SM 2340B)	89600	ug/L	662	131	1		09/10/20 05:34		
/anadium	ND	ug/L	5.0	3.9	1		09/10/20 05:34		
Zinc	12.3	ug/L	10.0	9.5	1	09/09/20 01:47	09/10/20 05:34	7440-66-6	
6020 MET ICPMS	Analytical N	/lethod: EPA 6	020B Prepa	ration Met	nod: EF	PA 3010A			
	Pace Analy	tical Services	- Asheville						
Cobalt	26.5	ug/L	1.0	0.50	10	09/09/20 16:11	09/10/20 13:00	7440-48-4	
ron	6090	ug/L	500	209	10	09/09/20 16:11	09/10/20 13:00		
.ead	ND	ug/L	0.10	0.077	1	09/09/20 16:11	09/10/20 00:27		
ithium	12.3	ug/L	2.5	0.39	1	09/09/20 16:11	09/10/20 00:27		
Manganese	181	ug/L	5.0	4.7	10	09/09/20 16:11	09/10/20 13:00		
Potassium	3790	ug/L	500	89.9	10	09/09/20 16:11	09/10/20 13:00		
Sodium	32200	ug/L	12500	2450	50	09/09/20 16:11	09/10/20 13:04		
Thallium	ND	ug/L	0.10	0.050	1	09/09/20 16:11	09/10/20 00:27		
- Tin	ND	ug/L	0.50	0.24	1	09/09/20 16:11	09/10/20 00:27		
470 Mercury	Analytical N	/lethod: EPA 7	470A Prepa	ration Metl	nod: EP	A 7470A			
•		tical Services							
Mercury	ND	ug/L	0.20	0.12	1	09/04/20 15:28	09/08/20 17:37	7439-97-6	
9056 IC anions 28 Days	Analytical N	Method: EPA 9	056A						
	Pace Analy	tical Services	- Asheville						
Chloride	54.7	mg/L	1.0	0.60	1		09/05/20 14:27	16887-00-6	
Fluoride	0.079J	mg/L	0.10	0.050	1		09/05/20 14:27		
IUOIIUO	0.0730	111g/ L	0.10	0.000	1		00/00/20 14.21	10007-40-0	



Project: PP 2SA20 (A)-Revised Report

Pace Project No.: 92493784

Date: 10/13/2020 08:41 AM

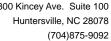
Sample: ABC-1608	Lab ID:	92493784003	Collecte	d: 09/02/20	10:13	Received: 09/	/03/20 10:35 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Total Organic Carbon, Asheville	Analytical	Method: EPA 9	060A						
_	Pace Ana	lytical Services	- Asheville						
Total Organic Carbon	1.5	mg/L	1.0	0.50	1		09/18/20 17:26	7440-44-0	
Total Organic Carbon	1.4	mg/L	1.0	0.50	1		09/18/20 17:26	7440-44-0	
Total Organic Carbon	1.4	mg/L	1.0	0.50	1		09/18/20 17:26	7440-44-0	
Total Organic Carbon	1.4	mg/L	1.0	0.50	1		09/18/20 17:26	7440-44-0	
Mean Total Organic Carbon	1.5	mg/L	1.0	0.50	1		09/18/20 17:26	7440-44-0	
EPA 9066	Analytical	Method: EPA 9	066 Prepa	ration Metho	od: ME	THOD			
	Pace Ana	lytical Gulf Coa	st						
Phenolics, Total Recoverable	0.035	mg/L	0.012	0.012	1	09/12/20 11:45	09/13/20 06:10	64743-03-9	

Project: PP 2SA20 (A)-Revised Report

Pace Project No.: 92493784

Date: 10/13/2020 08:41 AM

Sample: ABC-1614	Lab ID:	92493784004	Collected	: 09/02/20	09:20	Received: 09/	03/20 10:35 M	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
T didinotoro						- Tropared	- Milalyzea		
540C Total Dissolved Solids	Analytical	Method: SM 25	40C-2011						
	Pace Anal	ytical Services	- Eden						
Total Dissolved Solids	244	mg/L	25.0	25.0	1		09/08/20 10:47		
6010 MET ICP	Analytical	Method: EPA 6	010D Prepa	ration Met	hod: EF	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Antimony	ND	ug/L	5.0	3.0	1	09/09/20 01:47	09/10/20 05:37	7440-36-0	
Arsenic	44.1	ug/L	10.0	4.7	1	09/09/20 01:47			
Barium	185	ug/L	5.0	3.5	1		09/10/20 05:37		
Beryllium	ND	ug/L	1.0	0.70	1		09/10/20 05:37		
Boron	212	ug/L	50.0	32.4	1		09/10/20 05:37		
Cadmium	ND	ug/L	1.0	0.40	1		09/10/20 05:37		
Calcium	21600	ug/L	100	94.2	1		09/10/20 05:37		
Chromium	ND	ug/L	5.0	3.7	1	09/09/20 01:47			
Copper	ND	ug/L	5.0	4.3	1		09/10/20 05:37		
Molybdenum	ND ND	ug/L ug/L	5.0	3.9	1		09/10/20 05:37		
lickel	15.1	ū	5.0	3.5	1		09/10/20 05:37		
		ug/L							
Selenium	ND	ug/L	10.0	4.7	1		09/10/20 05:37		
ilver	ND	ug/L	5.0	2.5	1		09/10/20 05:37		
lardness, Total(SM 2340B)	87800	ug/L	662	131	1		09/10/20 05:37		
/anadium	ND	ug/L	5.0	3.9	1		09/10/20 05:37		
linc	ND	ug/L	10.0	9.5	1	09/09/20 01:47	09/10/20 05:37	7440-66-6	
020 MET ICPMS	Analytical	Method: EPA 6	020B Prepa	ration Met	hod: EF	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Cobalt	21.7	ug/L	1.0	0.50	10	09/09/20 16:11	09/10/20 13:07	7440-48-4	
ron	31600	ug/L	2500	1050	50	09/09/20 16:11	09/10/20 13:11	7439-89-6	
.ead	0.20	ug/L	0.10	0.077	1	09/09/20 16:11	09/10/20 00:30	7439-92-1	
ithium	14.6	ug/L	2.5	0.39	1	09/09/20 16:11	09/10/20 00:30	7439-93-2	
Manganese	303	ug/L	5.0	4.7	10	09/09/20 16:11	09/10/20 13:07		
Potassium	4040	ug/L	500	89.9	10	09/09/20 16:11	09/10/20 13:07		
Sodium	20900	ug/L	12500	2450	50	09/09/20 16:11	09/10/20 13:11		
Thallium	ND	ug/L	0.10	0.050	1	09/09/20 16:11	09/10/20 00:30		
- Tin	ND	ug/L	0.50	0.24	1	09/09/20 16:11	09/10/20 00:30		
470 Mercury	Analytical	Method: EPA 7	470A Prena	ration Met	hod: EF	PA 7470A			
,		ytical Services							
Mercury	ND	ug/L	0.20	0.12	1	09/04/20 15:28	09/08/20 17:39	7439-97-6	
0056 IC anions 28 Days	Analytical	Method: EPA 9	056A						
-	Pace Anal	ytical Services	- Asheville						
Chloride	17.2	mg/L	1.0	0.60	1		09/05/20 14:42	16887-00-6	
Fluoride	0.092J	mg/L	0.10	0.050	1		09/05/20 14:42		
Sulfate	38.5	mg/L	1.0	0.50	1		09/05/20 14:42		



Project: PP 2SA20 (A)-Revised Report

Pace Project No.: 92493784

Date: 10/13/2020 08:41 AM

Sample: ABC-1614	Lab ID:	92493784004	Collecte	d: 09/02/20	09:20	Received: 09/	/03/20 10:35 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Total Organic Carbon, Asheville	Analytical	Method: EPA 9	060A						
-	Pace Anal	ytical Services	- Asheville						
Total Organic Carbon	3.0	mg/L	1.0	0.50	1		09/18/20 17:43	7440-44-0	
Total Organic Carbon	3.0	mg/L	1.0	0.50	1		09/18/20 17:43	7440-44-0	
Total Organic Carbon	2.9	mg/L	1.0	0.50	1		09/18/20 17:43	7440-44-0	
Total Organic Carbon	3.1	mg/L	1.0	0.50	1		09/18/20 17:43	7440-44-0	
Mean Total Organic Carbon	3.0	mg/L	1.0	0.50	1		09/18/20 17:43	7440-44-0	
EPA 9066	Analytical	Method: EPA 9	066 Prepa	ration Metho	od: ME	THOD			
	Pace Anal	ytical Gulf Coa	st						
Phenolics, Total Recoverable	0.12	mg/L	0.012	0.012	1	09/12/20 11:45	09/13/20 06:10	64743-03-9	

Project: PP 2SA20 (A)-Revised Report

Pace Project No.: 92493784

Date: 10/13/2020 08:41 AM

Sample: ABC-Duplicate	Lab ID:	92493784005	Collected:	09/02/20	10:45	Received: 09/	03/20 10:35 M	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
2540C Total Dissolved Solids	Analytical I	Method: SM 25	540C-2011						
	Pace Analy	ytical Services	- Eden						
Total Dissolved Solids	128	mg/L	25.0	25.0	1		09/08/20 10:48		
010 MET ICP	Analytical	Method: EPA 6	010D Prepa	ration Metl	nod: EF	PA 3010A			
	•	ytical Services							
Antimony	ND	ug/L	5.0	3.0	1	09/09/20 01:47	09/10/20 05:41	7440-36-0	
Arsenic	7.0J	ug/L	10.0	4.7	1	09/09/20 01:47			
Barium	67.8	ug/L	5.0	3.5	1		09/10/20 05:41		
Beryllium	ND	ug/L ug/L	1.0	0.70	1		09/10/20 05:41		
•	ND ND	-	50.0	32.4	1		09/10/20 05:41		
Boron		ug/L							
Cadmium	ND	ug/L	1.0	0.40	1		09/10/20 05:41		
Calcium	6670	ug/L	100	94.2	1		09/10/20 05:41		
Chromium	ND	ug/L	5.0	3.7	1	09/09/20 01:47			
Copper	8.4	ug/L	5.0	4.3	1		09/10/20 05:41		
Nolybdenum	ND	ug/L	5.0	3.9	1		09/10/20 05:41		
lickel	7.0	ug/L	5.0	3.5	1	09/09/20 01:47	09/10/20 05:41	7440-02-0	
Selenium	ND	ug/L	10.0	4.7	1	09/09/20 01:47	09/10/20 05:41	7782-49-2	
ilver	ND	ug/L	5.0	2.5	1	09/09/20 01:47	09/10/20 05:41	7440-22-4	
lardness, Total(SM 2340B)	33600	ug/L	662	131	1	09/09/20 01:47	09/10/20 05:41		
/anadium	ND	ug/L	5.0	3.9	1	09/09/20 01:47	09/10/20 05:41	7440-62-2	
inc	ND	ug/L	10.0	9.5	1	09/09/20 01:47	09/10/20 05:41	7440-66-6	
020 MET ICPMS	Analytical I	Method: EPA 6	020B Prepa	ration Meth	nod: EF	A 3010A			
	Pace Analy	ytical Services	- Asheville						
Cobalt	12.0	ug/L	0.10	0.050	1	09/09/20 16:11	09/10/20 00:34	7440-48-4	
ron	92.9	ug/L	50.0	20.9	1	09/09/20 16:11	09/10/20 00:34	7439-89-6	
ead	ND	ug/L	0.10	0.077	1	09/09/20 16:11	09/10/20 00:34		
ithium	8.7	ug/L	2.5	0.39	1	09/09/20 16:11	09/10/20 00:34		
/langanese	198	ug/L	10.0	9.5	20	09/09/20 16:11	09/10/20 13:15		
Potassium	6080	ug/L	1000	180	20	09/09/20 16:11	09/10/20 13:15		
Sodium	8130	ug/L	5000	982	20	09/09/20 16:11	09/10/20 13:15		
hallium	ND	ug/L	0.10	0.050	1	09/09/20 16:11	09/10/20 00:34		
in	ND	ug/L ug/L	0.50	0.030	1	09/09/20 16:11	09/10/20 00:34		
470 Mercury	Analytical	Method: EPA 7	470A Prepai	ration Meth	nod: EP	A 7470A			
		ytical Services				·· ÷· *			
Mercury	ND	ug/L	0.20	0.12	1	09/04/20 15:28	09/08/20 17:42	7439-97-6	
0056 IC anions 28 Days	Analytical I	Method: EPA 9	056A						
	Pace Analy	ytical Services	- Asheville						
Chloride	3.1	mg/L	1.0	0.60	1		09/05/20 14:56	16887-00-6	
Fluoride	ND	mg/L	0.10	0.050	1		09/05/20 14:56		
Sulfate	52.2	mg/L	1.0	0.50	1		09/05/20 14:56		

Project: PP 2SA20 (A)-Revised Report

Pace Project No.: 92493784

Date: 10/13/2020 08:41 AM

Sample: ABC-Duplicate	Lab ID:	92493784005	Collecte	d: 09/02/20	10:45	Received: 09/	/03/20 10:35 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Total Organic Carbon, Asheville	Analytical	Method: EPA 9	060A						
	Pace Ana	lytical Services	- Asheville						
Total Organic Carbon	0.50J	mg/L	1.0	0.50	1		09/18/20 18:01	7440-44-0	
Total Organic Carbon	ND	mg/L	1.0	0.50	1		09/18/20 18:01	7440-44-0	
Total Organic Carbon	ND	mg/L	1.0	0.50	1		09/18/20 18:01	7440-44-0	
Total Organic Carbon	ND	mg/L	1.0	0.50	1		09/18/20 18:01	7440-44-0	
Mean Total Organic Carbon	ND	mg/L	1.0	0.50	1		09/18/20 18:01	7440-44-0	
EPA 9066	Analytical	Method: EPA 9	066 Prepa	ration Metho	od: ME	THOD			
	Pace Ana	lytical Gulf Coa	st						
Phenolics, Total Recoverable	0.099	mg/L	0.012	0.012	1	09/12/20 11:45	09/13/20 06:13	64743-03-9	

Huntersville, NC 28078 (704)875-9092

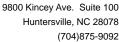
ANALYTICAL RESULTS

Project: PP 2SA20 (A)-Revised Report

Pace Project No.: 92493784

Date: 10/13/2020 08:41 AM

Sample: ABC-Field Blank	Lab ID:	92493784006	Collected	: 09/02/20	09:45	Received: 09/	/03/20 10:35 M	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
2540C Total Dissolved Solids	Analytical	Method: SM 25	40C-2011						
	Pace Anal	ytical Services	- Eden						
Total Dissolved Solids	ND	mg/L	25.0	25.0	1		09/08/20 10:48		
6010 MET ICP	Analytical	Method: EPA 6	010D Prepa	aration Met	hod: EF	PA 3010A			
		ytical Services							
Antimony	ND	ug/L	5.0	3.0	1	09/09/20 01:47	09/10/20 05:44	7440-36-0	
Arsenic	ND	ug/L	10.0	4.7	1	09/09/20 01:47			
Barium	ND	ug/L	5.0	3.5	1		09/10/20 05:44		
Beryllium	ND	ug/L	1.0	0.70	1		09/10/20 05:44		
Boron	ND	ug/L	50.0	32.4	1		09/10/20 05:44		
Cadmium	ND	ug/L	1.0	0.40	1		09/10/20 05:44		
Calcium	ND	ug/L	100	94.2	1		09/10/20 05:44		
Chromium	ND	ug/L	5.0	3.7	1	09/09/20 01:47			
Copper	ND	ug/L	5.0	4.3	1		09/10/20 05:44		
Molybdenum	ND	ug/L	5.0	3.9	1		09/10/20 05:44		
lickel	ND	ug/L	5.0	3.5	1		09/10/20 05:44		
Selenium	ND	ug/L	10.0	4.7	1		09/10/20 05:44		
ilver	ND	ug/L	5.0	2.5	1		09/10/20 05:44		
lardness, Total(SM 2340B)	ND	ug/L	662	131	1		09/10/20 05:44		
anadium	ND	ug/L ug/L	5.0	3.9	1		09/10/20 05:44		
linc	ND	ug/L ug/L	10.0	9.5	1		09/10/20 05:44		
6020 MET ICPMS	Analytical	Method: EPA 6	020R Prens	ration Met	hod: FE	ρ <u>Δ 3010Δ</u>			
0020 MILT ICT MIS		ytical Services		iration wet	nou. Li	A 30 10A			
Cobalt	ND	ug/L	0.10	0.050	1	09/09/20 16:11	09/10/20 00:38	7440-48-4	
ron	ND	ug/L	50.0	20.9	1	09/09/20 16:11	09/10/20 00:38		
ead	ND	ug/L	0.10	0.077	1	09/09/20 16:11	09/10/20 00:38		
ithium	ND	ug/L	2.5	0.39	1	09/09/20 16:11	09/10/20 00:38		
/langanese	ND	ug/L	0.50	0.47	1	09/09/20 16:11	09/10/20 00:38		
Potassium	ND	ug/L	50.0	9.0	1	09/09/20 16:11	09/10/20 00:38		
Sodium	ND	ug/L	250	49.1	1	09/09/20 16:11	09/10/20 00:38		
Thallium	ND	ug/L	0.10	0.050	1	09/09/20 16:11	09/10/20 00:38		
īn	ND	ug/L	0.50	0.24	1	09/09/20 16:11	09/10/20 00:38		
470 Mercury	Analytical	Method: EPA 7	470A Prepa	ration Met	hod: EP	A 7470A			
•		ytical Services							
Mercury	ND	ug/L	0.20	0.12	1	09/04/20 15:28	09/08/20 17:44	7439-97-6	
0056 IC anions 28 Days	Analytical	Method: EPA 9	056A						
	Pace Anal	ytical Services	- Asheville						
Chloride	ND	mg/L	1.0	0.60	1		09/08/20 22:59	16887-00-6	
Fluoride	ND	mg/L	0.10	0.050	1		09/08/20 22:59		
Sulfate	0.84J	mg/L	1.0	0.50	1		09/08/20 22:59		


Project: PP 2SA20 (A)-Revised Report

Pace Project No.: 92493784

Date: 10/13/2020 08:41 AM

Sample: ABC-Field Blank	Lab ID:	92493784006	Collected	d: 09/02/20	09:45	Received: 09/	/03/20 10:35 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Total Organic Carbon, Asheville	Analytical	Method: EPA 9	060A						
	Pace Ana	lytical Services	- Asheville						
Total Organic Carbon	ND	mg/L	1.0	0.50	1		09/18/20 18:18	7440-44-0	
Total Organic Carbon	ND	mg/L	1.0	0.50	1		09/18/20 18:18	7440-44-0	
Total Organic Carbon	ND	mg/L	1.0	0.50	1		09/18/20 18:18	7440-44-0	
Total Organic Carbon	ND	mg/L	1.0	0.50	1		09/18/20 18:18	7440-44-0	
Mean Total Organic Carbon	ND	mg/L	1.0	0.50	1		09/18/20 18:18	7440-44-0	
EPA 9066	Analytical	Method: EPA 9	066 Prepar	ation Metho	od: ME	ГНОД			
	Pace Ana	lytical Gulf Coa	st						
Phenolics, Total Recoverable	0.097	mg/L	0.012	0.012	1	09/12/20 11:45	09/13/20 06:14	64743-03-9	

Qualifiers

QUALITY CONTROL DATA

Project: PP 2SA20 (A)-Revised Report

Pace Project No.: 92493784

QC Batch: 564896 Analysis Method: SM 2540C-2011

QC Batch Method: SM 2540C-2011 Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Eden

Associated Lab Samples: 92493784001, 92493784002, 92493784003, 92493784004, 92493784005, 92493784006

METHOD BLANK: 2994207 Matrix: Water

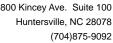
Associated Lab Samples: 92493784001, 92493784002, 92493784003, 92493784004, 92493784005, 92493784006

Blank Reporting
Parameter Units Result Limit MDL Analyzed

Total Dissolved Solids mg/L ND 25.0 09/08/20 10:46

LABORATORY CONTROL SAMPLE: 2994208

Spike LCS LCS % Rec Conc. % Rec Limits Qualifiers Parameter Units Result **Total Dissolved Solids** 250 268 107 90-110 mg/L


SAMPLE DUPLICATE: 2994209

92493444008 Dup Max Parameter Units Result Result **RPD RPD** Qualifiers 384 **Total Dissolved Solids** mg/L 346 10 25

SAMPLE DUPLICATE: 2994210

Date: 10/13/2020 08:41 AM

92493784002 Dup Max RPD RPD Parameter Units Result Result Qualifiers Total Dissolved Solids 130 mg/L 142 9 25

Project: PP 2SA20 (A)-Revised Report

Pace Project No.: 92493784

Mercury

QC Batch: 564629 Analysis Method: EPA 7470A

QC Batch Method: EPA 7470A Analysis Description: 7470 Mercury

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92493784001, 92493784002, 92493784003, 92493784004, 92493784005, 92493784006

METHOD BLANK: 2992788 Matrix: Water

Associated Lab Samples: 92493784001, 92493784002, 92493784003, 92493784004, 92493784005, 92493784006

 Parameter
 Units
 Blank Reporting Result
 Limit
 MDL
 Analyzed
 Qualifiers

 ug/L
 ND
 0.20
 0.12
 09/08/20 17:01

LABORATORY CONTROL SAMPLE: 2992789

Spike LCS LCS % Rec Conc. Limits Parameter Units Result % Rec Qualifiers Mercury 2.5 2.5 101 80-120 ug/L

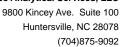
LABORATORY CONTROL SAMPLE: 2992790

LCS LCS Spike % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Mercury ug/L 2.5 2.7 107 80-120

LABORATORY CONTROL SAMPLE: 2992791

LCS LCS Spike % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Mercury 2.5 2.6 104 80-120 ug/L

LABORATORY CONTROL SAMPLE: 2992792


Date: 10/13/2020 08:41 AM

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Mercury ug/L 2.5 2.6 103 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2992793 2992794

MSD MS MSD MS MSD 92493776002 Spike Spike MS % Rec Max Parameter Units Conc. Conc. Result Result % Rec % Rec Limits **RPD** RPD Qual Result ND 2.5 Mercury ug/L 2.5 2.5 2.6 103 100 75-125 3 25

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: PP 2SA20 (A)-Revised Report

Pace Project No.: 92493784

Date: 10/13/2020 08:41 AM

MATRIX SPIKE & MATRIX S	PIKE DUPLI	ICATE: 2992		MOD	2992796	i						
Parameter	Units	92493784002 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Mercury	ug/L	ND	2.5	2.5	2.4	2.4	97	96	75-125	1	25	
MATRIX SPIKE & MATRIX S	PIKE DUPLI	ICATE: 2992	. • .	Med	2992798	<u> </u>						
MATRIX SPIKE & MATRIX S		ICATE: 2992 92493444008	797 MS Spike	MSD Spike	2992798 MS	MSD	MS	MSD	% Rec		Max	
MATRIX SPIKE & MATRIX S			MS	_			MS % Rec	MSD % Rec	% Rec	RPD	Max RPD	Qual

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(704)875-9092

QUALITY CONTROL DATA

Project: PP 2SA20 (A)-Revised Report

Pace Project No.: 92493784

Date: 10/13/2020 08:41 AM

QC Batch: 565136 Analysis Method: EPA 6010D
QC Batch Method: EPA 3010A Analysis Description: 6010 MET

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92493784001, 92493784002, 92493784003, 92493784004, 92493784005, 92493784006

METHOD BLANK: 2995305 Matrix: Water

Associated Lab Samples: 92493784001, 92493784002, 92493784003, 92493784004, 92493784005, 92493784006

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
Antimony	ug/L	ND ND	5.0	3.0	09/10/20 03:50	
Arsenic	ug/L	ND	10.0	4.7	09/10/20 03:50	
Barium	ug/L	ND	5.0	3.5	09/10/20 03:50	
Beryllium	ug/L	ND	1.0	0.70	09/10/20 03:50	
Boron	ug/L	ND	50.0	32.4	09/11/20 11:48	
Cadmium	ug/L	ND	1.0	0.40	09/10/20 03:50	
Calcium	ug/L	ND	100	94.2	09/10/20 03:50	
Chromium	ug/L	ND	5.0	3.7	09/10/20 03:50	
Copper	ug/L	ND	5.0	4.3	09/10/20 03:50	
Hardness, Total(SM 2340B)	ug/L	ND	662	131	09/10/20 03:50	
Molybdenum	ug/L	ND	5.0	3.9	09/10/20 03:50	
Nickel	ug/L	ND	5.0	3.5	09/10/20 03:50	
Selenium	ug/L	ND	10.0	4.7	09/10/20 03:50	
Silver	ug/L	ND	5.0	2.5	09/10/20 03:50	
Vanadium	ug/L	ND	5.0	3.9	09/10/20 03:50	
Zinc	ug/L	ND	10.0	9.5	09/10/20 03:50	

LABORATORY CONTROL SAMPLE:	2995306					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Antimony	ug/L	500	518	104	80-120	
Arsenic	ug/L	500	538	108	80-120	
Barium	ug/L	500	505	101	80-120	
Beryllium	ug/L	500	499	100	80-120	
Boron	ug/L	500	533	107	80-120	
Cadmium	ug/L	500	495	99	80-120	
Calcium	ug/L	5000	4810	96	80-120	
Chromium	ug/L	500	466	93	80-120	
Copper	ug/L	500	508	102	80-120	
Hardness, Total(SM 2340B)	ug/L	33100	31000	94	80-120	
/lolybdenum	ug/L	500	515	103	80-120	
Nickel	ug/L	500	499	100	80-120	
Selenium	ug/L	500	530	106	80-120	
Silver	ug/L	250	242	97	80-120	
√anadium	ug/L	500	474	95	80-120	
Zinc	ug/L	500	497	99	80-120	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(704)875-9092

QUALITY CONTROL DATA

Project: PP 2SA20 (A)-Revised Report

Pace Project No.: 92493784

Date: 10/13/2020 08:41 AM

MATRIX SPIKE & MATRIX SP	IKE DUPLI	CATE: 2995	307 MS	MSD	2995308							
	ç	92493443006	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qua
Antimony	ug/L	ND	500	500	539	543	107	108	75-125	1	20	
Arsenic	ug/L	ND	500	500	555	565	111	113	75-125	2	20	
Barium	ug/L	150	500	500	661	667	102	103	75-125	1	20	
Beryllium	ug/L	ND	500	500	514	516	103	103	75-125	0	20	
Boron	ug/L	1480	500	500	1930	1970	91	99	75-125	2	20	
Cadmium	ug/L	ND	500	500	517	523	103	104	75-125	1	20	
Calcium	ug/L	40300	5000	5000	43800	44500	69	84	75-125	2	20	M1
Chromium	ug/L	ND	500	500	481	483	96	97	75-125	0	20	
Copper	ug/L	ND	500	500	523	525	104	104	75-125	0	20	
Hardness, Total(SM 2340B)	ug/L	187000	33100	33100	213000	216000	78	88	75-125	2		
Molybdenum	ug/L	ND	500	500	526	530	105	106	75-125	1	20	
Nickel	ug/L	ND	500	500	501	506	100	101	75-125	1	20	
Selenium	ug/L	ND	500	500	562	565	112	113	75-125	1	20	
Silver	ug/L	ND	250	250	251	254	100	102	75-125	1	20	
√anadium	ug/L	ND	500	500	495	500	99	100	75-125	1	20	
Zinc	ug/L	ND	500	500	515	522	103	104	75-125	1	20	
MATRIX SPIKE & MATRIX SP	IKE DUPLI	CATE: 2995	309		2995310							
			MS	MSD								
	(92493784002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qua
Antimony	ug/L	ND	500	500	538	542	107	108	75-125	1	20	

MATRIX SPIKE & MATRIX SPI	IKE DUPL	ICATE: 2995			2995310	1						
			MS	MSD								
		92493784002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Antimony	ug/L	ND	500	500	538	542	107	108	75-125	1	20	
Arsenic	ug/L	ND	500	500	558	554	111	110	75-125	1	20	
Barium	ug/L	51.7	500	500	573	572	104	104	75-125	0	20	
Beryllium	ug/L	ND	500	500	518	518	104	104	75-125	0	20	
Boron	ug/L	225	500	500	722	720	99	99	75-125	0	20	
Cadmium	ug/L	ND	500	500	520	523	104	105	75-125	1	20	
Calcium	ug/L	8380	5000	5000	13400	13200	100	96	75-125	1	20	
Chromium	ug/L	ND	500	500	487	484	97	97	75-125	1	20	
Copper	ug/L	ND	500	500	524	525	104	105	75-125	0	20	
Hardness, Total(SM 2340B)	ug/L	35900	33100	33100	68300	67400	98	95	75-125	1		
Molybdenum	ug/L	ND	500	500	526	529	105	105	75-125	0	20	
Nickel	ug/L	10.0	500	500	520	524	102	103	75-125	1	20	
Selenium	ug/L	ND	500	500	561	572	112	114	75-125	2	20	
Silver	ug/L	ND	250	250	252	252	101	101	75-125	0	20	
Vanadium	ug/L	ND	500	500	498	492	100	98	75-125	1	20	
Zinc	ug/L	19.8	500	500	540	542	104	104	75-125	0	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

300 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

QUALITY CONTROL DATA

Project: PP 2SA20 (A)-Revised Report

Pace Project No.: 92493784

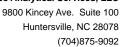
Date: 10/13/2020 08:41 AM

QC Batch: 565305 Analysis Method: EPA 6020B
QC Batch Method: EPA 3010A Analysis Description: 6020 MET

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92493784001, 92493784002, 92493784003, 92493784004, 92493784005, 92493784006

METHOD BLANK: 2995907 Matrix: Water

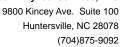

Associated Lab Samples: 92493784001, 92493784002, 92493784003, 92493784004, 92493784005, 92493784006

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Cobalt	ug/L	ND	0.10	0.050	09/09/20 23:38	
Iron	ug/L	ND	50.0	20.9	09/09/20 23:38	
Lead	ug/L	ND	0.10	0.077	09/09/20 23:38	
Lithium	ug/L	ND	2.5	0.39	09/09/20 23:38	
Manganese	ug/L	ND	0.50	0.47	09/09/20 23:38	
Potassium	ug/L	ND	50.0	9.0	09/09/20 23:38	
Sodium	ug/L	ND	250	49.1	09/09/20 23:38	
Thallium	ug/L	ND	0.10	0.050	09/09/20 23:38	
Tin	ug/L	ND	0.50	0.24	09/09/20 23:38	

LABORATORY CONTROL SAMPLE:	2995908					
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Cobalt	ug/L	10	10.2	102	80-120	
Iron	ug/L	625	648	104	80-120	
Lead	ug/L	50	50.3	101	80-120	
Lithium	ug/L	50	47.2	94	80-120	
Manganese	ug/L	50	50.8	102	80-120	
Potassium	ug/L	625	617	99	80-120	
Sodium	ug/L	625	633	101	80-120	
Thallium	ug/L	10	10	100	80-120	
Tin	ug/L	50	49.2	98	80-120	

MATRIX SPIKE & MATRIX	SPIKE DUPLIC	CATE: 2995	909		2995910							
Parameter	g Units	2493784002 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Cobalt	ug/L	8.2	10	10	18.4	18.7	102	105	75-125	2	20	
Iron	ug/L	3230	625	625	4360	4440	181	194	75-125	2	20	M6
Lead	ug/L	ND	50	50	51.3	51.1	103	102	75-125	0	20	
Lithium	ug/L	3.1	50	50	47.3	47.5	88	89	75-125	0	20	
Manganese	ug/L	209	50	50	292	297	168	177	75-125	2	20	M6
Potassium	ug/L	2640	625	625	3520	3580	139	150	75-125	2	20	M6
Sodium	ug/L	15900	625	625	18300	19000	383	495	75-125	4	20	M6
Thallium	ug/L	ND	10	10	10.2	10.2	101	102	75-125	0	20	
Tin	ug/L	ND	50	50	50.4	49.7	101	99	75-125	1	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project: PP 2SA20 (A)-Revised Report

Pace Project No.: 92493784

Date: 10/13/2020 08:41 AM

MATRIX SPIKE & MATRIX	SPIKE DUPI	LICATE: 2995	911		2995912							
			MS	MSD								
		92493444008	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Cobalt	ug/L	44.0	10	10	52.1	50.0	81	60	75-125	4	20	M6
Iron	ug/L	6430	625	625	6730	6390	47	-7	75-125	5	20	M6
Lead	ug/L	0.15	50	50	51.0	50.5	102	101	75-125	1	20	
Lithium	ug/L	14.7	50	50	55.9	55.5	82	82	75-125	1	20	
Manganese	ug/L	983	50	50	962	924	-42	-117	75-125	4	20	M6
Potassium	ug/L	4710	625	625	5230	5000	84	46	75-125	5	20	M6
Sodium	ug/L	71200	625	625	73500	72800	361	257	75-125	1	20	M6
Thallium	ug/L	ND	10	10	10.2	10.1	102	101	75-125	1	20	
Tin	ug/L	ND	50	50	48.7	48.5	97	97	75-125	0	20	

Project: PP 2SA20 (A)-Revised Report

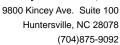
Pace Project No.: 92493784

Recoverable

Date: 10/13/2020 08:41 AM

QC Batch: 692013 Analysis Method: EPA 9066

QC Batch Method: METHOD Analysis Description: EPA 9066 Phenolics Water


Laboratory: Pace Analytical Gulf Coast

Associated Lab Samples: 92493784001, 92493784002, 92493784003, 92493784004, 92493784005, 92493784006

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2082287 2082288

MS MSD

MS 92493784002 Spike Spike MSD MS MSD % Rec Max Parameter Units Conc. Result % Rec % Rec **RPD** RPD Qual Result Conc. Result Limits Phenolics, Total mg/L 0.029 0.10 0.10 80-120 20 M1 0.1 0.1 73 73 0

Project: PP 2SA20 (A)-Revised Report

Pace Project No.: 92493784

QC Batch: 692013 Analysis Method: EPA 9066

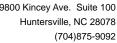
QC Batch Method: EPA 420.1 Analysis Description: EPA 420.4 Phenolics Water

Laboratory: Pace Analytical Gulf Coast

Associated Lab Samples:

Date: 10/13/2020 08:41 AM

METHOD BLANK: 2082819 Matrix: Water


Associated Lab Samples: 92493784001, 92493784002, 92493784003, 92493784004, 92493784005, 92493784006

Blank Reporting
Parameter Units Result Limit MDL Analyzed Qualifiers

Phenolics, Total Recoverable mg/L ND 0.012 0.012 09/13/20 05:52

LABORATORY CONTROL SAMPLE: 2082820

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Phenolics, Total Recoverable mg/L 0.1 0.11 109 80-120

Project: PP 2SA20 (A)-Revised Report

Pace Project No.: 92493784

Date: 10/13/2020 08:41 AM

QC Batch: 564789 Analysis Method: EPA 9056A

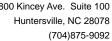
QC Batch Method: EPA 9056A Analysis Description: 9056 IC anions 28 Days

> Laboratory: Pace Analytical Services - Asheville

92493784001, 92493784002, 92493784003, 92493784004, 92493784005, 92493784006 Associated Lab Samples:

METHOD BLANK: 2993840 Matrix: Water

Associated Lab Samples: 92493784001, 92493784002, 92493784003, 92493784004, 92493784005, 92493784006


		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	ND	1.0	0.60	09/05/20 12:42	
Fluoride	mg/L	ND	0.10	0.050	09/05/20 12:42	
Sulfate	mg/L	ND	1.0	0.50	09/05/20 12:42	

LABORATORY CONTROL SAMPLE:	2993841					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L	50	52.8	106	90-110	
Fluoride	mg/L	2.5	2.7	108	90-110	
Sulfate	ma/L	50	53.2	106	90-110	

MATRIX SPIKE & MATRIX SP		2993843										
			MS	MSD								
		92493784002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	16.2	50	50	68.9	69.2	106	106	90-110	0	10	
Fluoride	mg/L	ND	2.5	2.5	2.7	2.7	106	106	90-110	0	10	
Sulfate	mg/L	39.3	50	50	92.0	92.3	105	106	90-110	0	10	

MATRIX SPIKE & MATRIX SP		2993845										
			MS	MSD								
		92493444008	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	92.2	50	50	138	139	92	94	90-110	1	10	
Fluoride	mg/L	0.14	2.5	2.5	2.8	2.9	106	109	90-110	2	10	
Sulfate	mg/L	115	50	50	166	167	102	103	90-110	0	10	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: PP 2SA20 (A)-Revised Report

Pace Project No.: 92493784

Date: 10/13/2020 08:41 AM

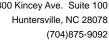
QC Batch: 567230 Analysis Method: EPA 9060A
QC Batch Method: EPA 9060A Analysis Description: 9060 TOC, AVL

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92493784001, 92493784002

METHOD BLANK: 3005931 Matrix: Water

Associated Lab Samples: 92493784001, 92493784002


Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
Mean Total Organic Carbon	mg/L	ND	1.0	0.50	09/18/20 05:33	
Total Organic Carbon	mg/L	ND	1.0	0.50	09/18/20 05:33	
Total Organic Carbon	mg/L	ND	1.0	0.50	09/18/20 05:33	
Total Organic Carbon	mg/L	ND	1.0	0.50	09/18/20 05:33	
Total Organic Carbon	mg/L	ND	1.0	0.50	09/18/20 05:33	

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Mean Total Organic Carbon	mg/L	25	25.8	103	75-125	
Total Organic Carbon	mg/L	25	25.7	103	75-125	
Total Organic Carbon	mg/L	25	25.8	103	75-125	
Total Organic Carbon	mg/L	25	25.7	103	75-125	
Total Organic Carbon	mg/L	25	26.0	104	75-125	

MATRIX SPIKE & MATRIX SP	IKE DUP	LICATE: 3005	933		3005934							
		92493443006	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Mean Total Organic Carbon	mg/L	ND	25	25	26.3	26.4	104	104	75-125	0	25	
Total Organic Carbon	mg/L	ND	25	25	26.2	26.3	103	104	75-125	1	25	
Total Organic Carbon	mg/L	ND	25	25	26.6	26.5	105	104	75-125	0	25	
Total Organic Carbon	mg/L	ND	25	25	26.0	26.1	103	103	75-125	0	25	
Total Organic Carbon	mg/L	ND	25	25	26.6	26.7	105	105	75-125	1	25	

MATRIX SPIKE & MATRIX SP	IKE DUPL	ICATE: 3005	935		3005936	i						
			MS	MSD								
		92493784002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Mean Total Organic Carbon	mg/L	0.74J	25	25	26.7	26.8	104	104	75-125	0	25	
Total Organic Carbon	mg/L	0.69J	25	25	26.8	26.7	105	104	75-125	1	25	
Total Organic Carbon	mg/L	0.73J	25	25	26.8	27.1	104	105	75-125	1	25	
Total Organic Carbon	mg/L	0.82J	25	25	26.4	26.8	102	104	75-125	1	25	
Total Organic Carbon	mg/L	0.71J	25	25	26.9	26.8	105	104	75-125	0	25	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: PP 2SA20 (A)-Revised Report

Pace Project No.: 92493784

Date: 10/13/2020 08:41 AM

QC Batch: 567284 Analysis Method: EPA 9060A
QC Batch Method: EPA 9060A Analysis Description: 9060 TOC, AVL

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92493784003, 92493784004, 92493784005, 92493784006

METHOD BLANK: 3006435 Matrix: Water

Associated Lab Samples: 92493784003, 92493784004, 92493784005, 92493784006

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Mean Total Organic Carbon	mg/L	ND	1.0	0.50	09/18/20 16:15	
Total Organic Carbon	mg/L	ND	1.0	0.50	09/18/20 16:15	
Total Organic Carbon	mg/L	ND	1.0	0.50	09/18/20 16:15	
Total Organic Carbon	mg/L	ND	1.0	0.50	09/18/20 16:15	
Total Organic Carbon	mg/L	ND	1.0	0.50	09/18/20 16:15	

LABORATORY CONTROL SAMPLE: 3006436

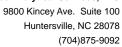
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
				/0 TCC		Qualificis
Mean Total Organic Carbon	mg/L	25	25.6	103	75-125	
Total Organic Carbon	mg/L	25	25.6	102	75-125	
Total Organic Carbon	mg/L	25	26.0	104	75-125	
Total Organic Carbon	mg/L	25	25.3	101	75-125	
Total Organic Carbon	mg/L	25	25.8	103	75-125	

MATRIX SPIKE & MATRIX SP	PIKE DUPL	ICATE: 3006	437		3006438							
Parameter	Units	92493444008 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Mean Total Organic Carbon	mg/L	0.80J	25	25	21.5	21.5	83	83	75-125	0	25	
Total Organic Carbon	mg/L	0.79J	25	25	21.4	21.6	82	83	75-125	1	25	
Total Organic Carbon	mg/L	0.85J	25	25	21.8	21.6	84	83	75-125	1	25	
Total Organic Carbon	mg/L	0.78J	25	25	21.0	21.3	81	82	75-125	2	25	
Total Organic Carbon	mg/L	0.79J	25	25	21.7	21.7	84	84	75-125	0	25	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: PP 2SA20 (A)-Revised Report

Pace Project No.: 92493784


Sample: ABC-1602 PWS:	Lab ID: 9249 Site ID:	3784001 Collected: 09/02/20 10:31 Sample Type:	Received:	09/03/20 10:35	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.948 ± 0.401 (0.349) C:75% T:NA	pCi/L	09/23/20 06:1	1 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	2.34 ± 0.898 (1.40) C:53% T:70%	pCi/L	09/25/20 11:48	8 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	3.29 ± 1.30 (1.75)	pCi/L	09/28/20 13:12	2 7440-14-4	

Project: PP 2SA20 (A)-Revised Report

Pace Project No.: 92493784

Sample: ABC-1607 PWS:	Lab ID: 9249 Site ID:	3784002 Collected: 09/02/20 08:53 Sample Type:	Received:	09/03/20 10:35	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.260 ± 0.255 (0.493) C:86% T:NA	pCi/L	09/23/20 06:09	9 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	1.05 ± 0.595 (1.10) C:62% T:76%	pCi/L	09/25/20 11:47	7 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	1.31 ± 0.850 (1.59)	pCi/L	09/28/20 13:12	2 7440-14-4	

Project: PP 2SA20 (A)-Revised Report

Pace Project No.: 92493784


Sample: ABC-1608 PWS:	Lab ID: 9249 Site ID:	3784003 Collected: 09/02/20 10:13 Sample Type:	Received:	09/03/20 10:35	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.230 ± 0.215 (0.386) C:86% T:NA	pCi/L	09/23/20 06:1	1 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.606 ± 0.480 (0.964) C:65% T:89%	pCi/L	09/25/20 11:48	8 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	$0.836 \pm 0.695 (1.35)$	pCi/L	09/28/20 13:1:	2 7440-14-4	

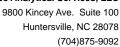
Project: PP 2SA20 (A)-Revised Report

Pace Project No.: 92493784

Sample: ABC-1614 PWS:	Lab ID: 9249 Site ID:	3784004 Collected: 09/02/20 09:20 Sample Type:	Received:	09/03/20 10:35	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.221 ± 0.285 (0.610) C:88% T:NA	pCi/L	09/23/20 06:09	9 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.0309 ± 0.392 (0.906) C:64% T:78%	pCi/L	09/25/20 11:47	7 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	0.252 ± 0.677 (1.52)	pCi/L	09/28/20 13:12	2 7440-14-4	

Project: PP 2SA20 (A)-Revised Report

Pace Project No.: 92493784


Sample: ABC-Duplicate PWS:	Lab ID: 924937 8 Site ID:	84005 Collected: 09/02/20 10:45 Sample Type:	Received:	09/03/20 10:35	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Se	rvices - Greensburg				
Radium-226	EPA 9315	0.721 ± 0.409 (0.646) C:80% T:NA	pCi/L	09/23/20 06:1	1 13982-63-3	
	Pace Analytical Se	rvices - Greensburg				
Radium-228	EPA 9320	0.915 ± 0.562 (1.06) C:61% T:75%	pCi/L	09/25/20 11:48	3 15262-20-1	
	Pace Analytical Se	rvices - Greensburg				
Total Radium	Total Radium Calculation	1.64 ± 0.971 (1.71)	pCi/L	09/28/20 13:1	2 7440-14-4	

Project: PP 2SA20 (A)-Revised Report

Pace Project No.: 92493784

Sample: ABC-Field Blank PWS:	Lab ID: 9249 Site ID:	3784006 Collected: 09/02/20 09:45 Sample Type:	Received:	09/03/20 10:35	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.231 ± 0.204 (0.345) C:86% T:NA	pCi/L	09/23/20 06:10	0 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.750 ± 0.417 (0.751) C:69% T:88%	pCi/L	09/25/20 11:48	3 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	0.981 ± 0.621 (1.10)	pCi/L	09/28/20 13:12	2 7440-14-4	

QUALITY CONTROL - RADIOCHEMISTRY

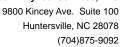
Project: PP 2SA20 (A)-Revised Report

Pace Project No.: 92493784

QC Batch: 413711 Analysis Method: EPA 9315

QC Batch Method: EPA 9315 Analysis Description: 9315 Total Radium

Laboratory: Pace Analytical Services - Greensburg


Associated Lab Samples: 92493784001, 92493784002, 92493784003, 92493784004, 92493784005, 92493784006

METHOD BLANK: 2001147 Matrix: Water

Associated Lab Samples: 92493784001, 92493784002, 92493784003, 92493784004, 92493784005, 92493784006

ParameterAct \pm Unc (MDC) Carr TracUnitsAnalyzedQualifiersRadium-2260.246 \pm 0.265 (0.536) C:93% T:NApCi/L09/23/20 06:09

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL - RADIOCHEMISTRY

Project: PP 2SA20 (A)-Revised Report

Pace Project No.: 92493784

QC Batch: 413498 Analysis Method: EPA 9320

QC Batch Method: EPA 9320 Analysis Description: 9320 Radium 228

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 92493784001, 92493784002, 92493784003, 92493784004, 92493784005, 92493784006

METHOD BLANK: 1999849 Matrix: Water

Associated Lab Samples: 92493784001, 92493784002, 92493784003, 92493784004, 92493784005, 92493784006

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-228
 0.389 ± 0.401 (0.829) C:68% T:80%
 pCi/L
 09/25/20 11:45

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(704)875-9092

QUALIFIERS

Project: PP 2SA20 (A)-Revised Report

Pace Project No.: 92493784

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Act - Activity

Unc - Uncertainty: SDWA = 1.96 sigma count uncertainty, all other matrices = Expanded Uncertainty (95% confidence interval). Gamma Spec = Expanded Uncertainty (95.4% Confidence Interval)

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 10/13/2020 08:41 AM

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

M6 Matrix spike and Matrix spike duplicate recovery not evaluated against control limits due to sample dilution.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: PP 2SA20 (A)-Revised Report

Pace Project No.: 92493784

Date: 10/13/2020 08:41 AM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
92493784001	ABC-1602	SM 2540C-2011	564896	_	
92493784002	ABC-1607	SM 2540C-2011	564896		
92493784003	ABC-1608	SM 2540C-2011	564896		
92493784004	ABC-1614	SM 2540C-2011	564896		
2493784005	ABC-Duplicate	SM 2540C-2011	564896		
2493784006	ABC-Field Blank	SM 2540C-2011	564896		
2493784001	ABC-1602	EPA 3010A	565136	EPA 6010D	565166
2493784002	ABC-1607	EPA 3010A	565136	EPA 6010D	565166
2493784003	ABC-1608	EPA 3010A	565136	EPA 6010D	565166
2493784004	ABC-1614	EPA 3010A	565136	EPA 6010D	565166
2493784005	ABC-Duplicate	EPA 3010A	565136	EPA 6010D	565166
2493784006	ABC-Field Blank	EPA 3010A	565136	EPA 6010D	565166
2493784001	ABC-1602	EPA 3010A	565305	EPA 6020B	565362
2493784002	ABC-1607	EPA 3010A	565305	EPA 6020B	565362
2493784003	ABC-1608	EPA 3010A	565305	EPA 6020B	565362
2493784004	ABC-1614	EPA 3010A	565305	EPA 6020B	565362
2493784005	ABC-Duplicate	EPA 3010A	565305	EPA 6020B	565362
2493784006	ABC-Field Blank	EPA 3010A	565305	EPA 6020B	565362
2493784001	ABC-1602	EPA 7470A	564629	EPA 7470A	564719
2493784002	ABC-1607	EPA 7470A	564629	EPA 7470A	564719
2493784003	ABC-1608	EPA 7470A	564629	EPA 7470A	564719
2493784004	ABC-1614	EPA 7470A	564629	EPA 7470A	564719
2493784005	ABC-Duplicate	EPA 7470A	564629	EPA 7470A	564719
2493784006	ABC-Field Blank	EPA 7470A	564629	EPA 7470A	564719
2493784001	ABC-1602	EPA 9315	413711		
2493784002	ABC-1607	EPA 9315	413711		
2493784003	ABC-1608	EPA 9315	413711		
2493784004	ABC-1614	EPA 9315	413711		
2493784005	ABC-Duplicate	EPA 9315	413711		
2493784006	ABC-Field Blank	EPA 9315	413711		
2493784001	ABC-1602	EPA 9320	413498		
2493784002	ABC-1607	EPA 9320	413498		
2493784003	ABC-1608	EPA 9320	413498		
2493784004	ABC-1614	EPA 9320	413498		
2493784005	ABC-Duplicate	EPA 9320	413498		
2493784006	ABC-Field Blank	EPA 9320	413498		
2493784001	ABC-1602	Total Radium Calculation	415894		
2493784002	ABC-1607	Total Radium Calculation	415894		
2493784003	ABC-1608	Total Radium Calculation	415894		
2493784004	ABC-1614	Total Radium Calculation	415894		
2493784005	ABC-Duplicate	Total Radium Calculation	415894		
2493784006	ABC-Field Blank	Total Radium Calculation	415894		
92493784001	ABC-1602	EPA 9056A	564789		
2493784002	ABC-1607	EPA 9056A	564789		
55.5.502	ABC-1608	EPA 9056A	564789		

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: PP 2SA20 (A)-Revised Report

Pace Project No.: 92493784

Date: 10/13/2020 08:41 AM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
92493784004	ABC-1614	EPA 9056A	 564789		
92493784005	ABC-Duplicate	EPA 9056A	564789		
92493784006	ABC-Field Blank	EPA 9056A	564789		
2493784001	ABC-1602	EPA 9060A	567230		
2493784002	ABC-1607	EPA 9060A	567230		
2493784003	ABC-1608	EPA 9060A	567284		
2493784004	ABC-1614	EPA 9060A	567284		
2493784005	ABC-Duplicate	EPA 9060A	567284		
2493784006	ABC-Field Blank	EPA 9060A	567284		
2493784001	ABC-1602	METHOD	692013	EPA 9066	692044
2493784002	ABC-1607	METHOD	692013	EPA 9066	692044
2493784003	ABC-1608	METHOD	692013	EPA 9066	692044
2493784004	ABC-1614	METHOD	692013	EPA 9066	692044
2493784005	ABC-Duplicate	METHOD	692013	EPA 9066	692044
2493784006	ABC-Field Blank	METHOD	692013	EPA 9066	692044

Refinquished by/Company: (Signature) package requested. See sample memo, reporting group samples immediately preserved on ice. Level II Reporting Relinquished by/Company: (Signature) for more details Customer Remarks / Special Conditions / Possible Hazards: All Relinquished-by/Company: (Signature) Customer Sample ID * Matrix Codes (Insert in Matrix box below): Drinking Water (DW), Ground Water (GW), Wastewater (WW) [X] Hold: 3 Months Sample Disposal: Phone: 804-258-2398 Customer Project Name/Number: Possum Point 2SA2020 Nicole Gasiorowski nicole.gasiorowski@pacelabs.com Report To: Amanda Reynolds/Mike Williams Collected By (signature): Collected By (print Email: areynolds@golder.com Modified Assessment Copy To: Martha Smith Richmond, VA 23227 Address: 2108 W. Laburnum Ave. Suite 200 Company: Golder Associates Inc. Product (P), Soil/Solid (SL), Oil (OL), Wipe (WP), Air (AR), Tissue (TS), Bioassay (B), Vapor (V), Other (OT) Dispose as appropriate [] Return #B -734)ours Pace Analytical -11000 Duplicate Field Blank 1607 1614 Rads ABC COMP [] Same Day [] Next Day Turnaround Date Required: Standard Purchase Order #: 20139775 Site/Facility ID #: (Expedited Charges Apply)] 2 Day [] 3 Day [] 4 Day [] 5 Day CV 24 Cal Con Matrix * Cin **CHAIN-OF-CUSTODY Analytical Request Document** hu Chain-of-Custody is a LEGAL DOCUMENT - Complete all relevent fields Grab 5 Date/Time: Date/Time: 9-3-2020 Date/Time: Type of Ice Used: Packing Material Used: 9-2-2020 Radchem sample(s) screened (<500 cpm): 9-2-2010 State: 9-7-2020 7-2-2020 9-7-220 Site Collection Info/Address: Possum Point Power Station Email To: areynolds@golder.com/Martha_Smith@golder.com Billing Information: 20139775 VA Composite Start) Collected (or Dumfries 5450 0853 County/City: 020 1045 1013 1031 1955 Time Received by/Company: (Signature) [X] Yes [X] Yes JPT []MT []CT [X]ET Field Filtered (if applicable): Immediately Packed on Ice: DW Location Code: DW PWS ID #: Compliance Monitoring?] Yes Wet Date Composite End Time Zone Collected Blue company: [X] No Time DN ~ Signature) Res 2 3 2 2 z None INNIIA Z # of Ctns 0 0 0 0 ठ 6010/6020 Metals (B, Ca, Sb, As, Ba, Be, Cd, Cr, Co, (C) ammonium hydroxide, (D) TSP, (U) Unpreserved, (O) Other phosphoric acid (O1) Other 1 nitrous acid ** Preservative Types: (1) nitric acid, (2) sulfuric acid, (3) hydrochloric acid, (4) sodium hydroxide, (5) zinc acetate (6) methanol, (7) sodium bisulfate, (8) sodium thiosulfate, (9) hexane, (A) ascorbic acid, (B) ammonium sulfate, X Cu, Fe, Pb, Li, Mn, Ni, Mo, K, Se, Ag, Na, Tl, Sn, V, Zn) SHORT HOLDS PRESENT (<72 hours): Samples received via: Lab Tracking #: 7470 Mercury FEDEX 9-3-20 Date/Time: 9.5.2Date/Time Date/Time: LAB USE ONLY- Affix Workord 9056 Anions (Chloride, Fluoride, Sulfate) _ Container Preservative Type ** UPS SM2540 Total Dissolved Solids **ALL SHADED** SM2340B Hardness Client 9065 Phenolics 2 Courier Pace Courier PM: Prelogin: Template Acctnum: Table #: 9315 Radium-226 MTJL LAB USE ONLY 9320 Radium-228 × < W0#:92493784 3 9060A Total Organic Carbon N/A LAB USE ONLY: Lab Sample # / Comments: Lead Acetate Strips: Sulfide Present pH Strips: Sample pH Acceptable Cl Strips: Residual Chlorine Present Samples USDA Regulated Soils VOA - Headspace Acceptable Samples Received on Ice Sufficient Volume Correct Bottles Custody Seals Present/Intact Lab Profile/Line: ran Linker iniquagei Bottles Intact Collector Signature Custody Signatures Present Lab Sample Receipt Checklist Sample Cooler 1 Corrected Temp: 0-Cooler 1 Therm Corr. Factor: p. DC Cooler 1 Corrected Tomm. Therm ID#: Temp Blank Received LAB Sample Temperature Info: Cooler 1 Temp Upon Receipt: 0.

25

1

10

001

005 200

004 200

006

in Holding Time

Page 45 of 45

232518V

NA X N NA

K

Non Conformance(s):

Page:

Trip Blank Received: Y N NA

K

z

HCL MeOH

TSP

Other

Enthalpy Analytical 1941 Reymet Road Richmond, VA 23237 (804)-358-8295 - Telephone (804)-358-8297 - Fax

9/18/2020 8:17:13AM

Dil

Date Issued:

Analysis Detects Report

Client Name: Golder Associates, Inc.

Possum Point PS

Submitted To: Amanda Reynolds

Client Site ID:

Laboratory Sample ID: 2010147-04 Client Sample ID: ABC-1614

Parameter	Samp ID	Reference Method	Sample Results	Qual	DL	LOQ	Factor	Units
Chromium, Hexavalent	04	SW7196A	14		5	5	1	ug/L

Note that this report is not the "Certificate of Analysis". This report only lists the target analytes that displayed concentrations that exceeded the detection limit specified for that analyte. For a complete listing of all analytes requested and the results of the analysis see the "Certificate of Analysis".

1941 Reymet Road • Richmond, Virginia 23237 • Tel: (804)-358-8295 Fax: (804)-358-8297

Certificate of Analysis

Final Report

Laboratory Order ID 2010147

Client Name: Golder Associates, Inc.

2108 W. Laburnum Ave. Suite 200

Richmond, VA 23227

Submitted To: Amanda Reynolds

Client Site I.D.: Possum Point PS

Date Received: September 2, 2020 15:51

Date Issued: September 18, 2020 8:17

Project Number: 20139775

Purchase Order: 70313832

Enclosed are the results of analyses for samples received by the laboratory on 09/02/2020 15:51. If you have any questions concerning this report, please feel free to contact the laboratory.

Sincerely,

Mandy Mishra

Laboratory Director

minish.

End Notes:

The test results listed in this report relate only to the samples submitted to the laboratory and as received by the Laboratory.

Unless otherwise noted, the test results for solid materials are calculated on a wet weight basis. Analyses for pH, dissolved oxygen, temperature, residual chlorine and sulfite that are performed in the laboratory do not meet NELAC requirements due to extremely short holding times. These analyses should be performed in the field. The results of field analyses performed by the Sampler included in the Certificate of Analysis are done so at the client's request and are not included in the laboratory's fields of certification nor have they been audited for adherence to a reference method or procedure.

The signature on the final report certifies that these results conform to all applicable NELAC standards unless otherwise specified. For a complete list of the Laboratory's NELAC certified parameters please contact customer service.

This report shall not be reproduced except in full without the expressed and written approval of an authorized representative of Air Water & Soil Laboratories, Inc.

Certificate of Analysis

Client Name: Golder Associates, Inc.

Client Site I.D.: Possum Point PS
Submitted To: Amanda Reynolds

Date Issued:

9/18/2020 8:17:13AM

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
ABC-1602	2010147-01	Ground Water	09/02/2020 10:31	09/02/2020 15:51
ABC-1607	2010147-02	Ground Water	09/02/2020 08:53	09/02/2020 15:51
ABC-1608	2010147-03	Ground Water	09/02/2020 10:13	09/02/2020 15:51
ABC-1614	2010147-04	Ground Water	09/02/2020 09:20	09/02/2020 15:51
ABC-Duplicate	2010147-05	Ground Water	09/02/2020 10:45	09/02/2020 15:51
ABC-Field Blank	2010147-06	Ground Water	09/02/2020 09:45	09/02/2020 15:51

Certificate of Analysis

Client Name: Golder Associates, Inc.

Date Issued:

2010147-01

9/18/2020 8:17:13AM

Client Site I.D.: Possum Point PS
Submitted To: Amanda Reynolds

Client Sample ID: ABC-1602 Laboratory Sample ID:

Parameter	Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	DL	LOQ	DF	Units	Analyst
Wet Chemistry Analysis												
Chromium, Hexavalent	01	18540-29-9	SW7196A	09/03/2020 08:00	09/03/2020 08:00	BLOD		5	5	1	ug/L	MWL

Certificate of Analysis

Client Name: Golder Associates, Inc.

Date Issued:

9/18/2020 8:17:13AM

Client Site I.D.: Possum Point PS
Submitted To: Amanda Reynolds

Client Sample ID: ABC-1607 Laboratory Sample ID: 2010147-02

Reference Sample Prep Analyzed Sample Samp ID CAS Method Date/Time Date/Time Results Qual DL LOQ DF Units Analyst **Parameter Wet Chemistry Analysis** 02 **BLOD** Chromium, Hexavalent 18540-29-9 SW7196A 09/03/2020 08:00 09/03/2020 08:00 5 5 1 ug/L MWL

Certificate of Analysis

Client Name: Golder Associates, Inc.

Date Issued:

9/18/2020 8:17:13AM

Client Site I.D.: Possum Point PS
Submitted To: Amanda Reynolds

Client Sample ID: ABC-1608

Laboratory Sample ID: 2010147-03

Parameter	Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	DL	LOQ	DF	Units	Analyst
Wet Chemistry Analysis												
Chromium, Hexavalent	03	18540-29-9	SW7196A	09/03/2020 08:00	09/03/2020 08:00	BLOD		5	5	1	ug/L	MWL

Certificate of Analysis

Client Name: Golder Associates, Inc.

Date Issued:

9/18/2020 8:17:13AM

Client Site I.D.: Possum Point PS
Submitted To: Amanda Reynolds

Client Sample ID: ABC-1614

Laboratory Sample ID: 2010147-04

Parameter	Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	DL	LOQ	DF	Units	Analyst
Wet Chemistry Analysis												
Chromium, Hexavalent	04	18540-29-9	SW7196A	09/03/2020 08:00	09/03/2020 08:00	14		5	5	1	ug/L	MWL

Certificate of Analysis

Client Name: Golder Associates, Inc.

Date Issued:

9/18/2020 8:17:13AM

Client Site I.D.: Possum Point PS
Submitted To: Amanda Reynolds

Client Sample ID: ABC-Duplicate Laboratory Sample ID: 2010147-05

Reference Sample Prep Analyzed Sample Samp ID CAS Method Date/Time Date/Time Results Qual DL LOQ DF Units Analyst **Parameter Wet Chemistry Analysis** 05 **BLOD** Chromium, Hexavalent 18540-29-9 SW7196A 09/03/2020 08:00 09/03/2020 08:00 5 5 1 ug/L MWL

Certificate of Analysis

Client Name: Golder Associates, Inc.

Date Issued:

9/18/2020 8:17:13AM

Client Site I.D.: Possum Point PS
Submitted To: Amanda Reynolds

Client Sample ID: ABC-Field Blank Laboratory Sample ID:

2010147-06

Parameter	Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	DL	LOQ	DF	Units	Analyst
Wet Chemistry Analysis												
Chromium, Hexavalent	06	18540-29-9	SW7196A	09/03/2020 08:00	09/03/2020 08:00	BLOD		5	5	1	ug/L	MWL

Certificate of Analysis

Client Name: Golder Associates, Inc.

Possum Point PS

Submitted To: Amanda Reynolds

Client Site I.D.:

Date Issued:

9/18/2020 8:17:13AM

Wet Chemistry Analysis - Quality Control

Air Water & Soil Laboratories, Inc.

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch I	BDI0382 - No Prep	Wet Chem								
Blank (BDI0382-BLK1)				Prepared & Analy	yzed: 09/03/2020					
Chromium, Hexavalent	ND	5	ug/L							
LCS (BDI0382-BS1)				Prepared & Analy	yzed: 09/03/2020					
Chromium, Hexavalent	99	5	ug/L	100		99.0	80-120			
Matrix Spike (BDI0382-MS1)	Source	e: 2010147-05		Prepared & Analy	yzed: 09/03/2020					
Chromium, Hexavalent	86	5	ug/L	100	BLOD	86.0	80-120			
Matrix Spike Dup (BDI0382-MSD1)	Source	e: 2010147-05		Prepared & Analy	yzed: 09/03/2020					
Chromium, Hexavalent	84	5	ug/L	100	BLOD	84.0	80-120	2.35	20	

Analytical Summary

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Wet Chemistry Analysi	s		Preparation Method:	No Prep Wet Chem	
2010147-01	100 mL / 100 mL	SW7196A	BDI0382	SDI0352	AI00049
2010147-02	100 mL / 100 mL	SW7196A	BDI0382	SDI0352	AI00049
2010147-03	100 mL / 100 mL	SW7196A	BDI0382	SDI0352	AI00049
2010147-04	100 mL / 100 mL	SW7196A	BDI0382	SDI0352	AI00049
2010147-05	100 mL / 100 mL	SW7196A	BDI0382	SDI0352	AI00049
2010147-06	100 mL / 100 mL	SW7196A	BDI0382	SDI0352	AI00049

Certificate of Analysis

Client Name: Golder Associates, Inc.

Date Issued:

9/18/2020 8:17:13AM

Client Site I.D.: Possum Point PS
Submitted To: Amanda Reynolds

Certified Analyses included in this Report

Analyte Certifications

SW7196A in Non-Potable Water

Chromium, Hexavalent VELAP

Code	Description	Laboratory ID	Expires
MdDOE	Maryland DE Drinking Water	341	12/31/2020
NC	North Carolina DENR	495	12/31/2020
NJDEP	New Jersey DEP	VA015	06/30/2021
NYDOH	New York DOH Drinking Water	12096	04/01/2021
PADEP	NELAC-Pennsylvania Certificate #005	68-03503	10/31/2020
VELAP	NELAC-Virginia Certificate #11064	460021	06/14/2021
WVDEP	West Virginia DEP	350	11/30/2020

Date Issued:

Certificate of Analysis

Client Name: Golder Associates, Inc.

Possum Point PS

Submitted To: Amanda Reynolds

e of Affaiysis

9/18/2020 8:17:13AM

Qualifiers and Definitions

RPD Relative Percent Difference

Qual Qualifers

Client Site I.D.:

-RE Denotes sample was re-analyzed

LOD Limit of Detection

BLOD Below Limit of Detection

LOQ Limit of Quantitation

DF Dilution Factor

TIC Tentatively Identified Compounds are compounds that are identified by comparing the analyte mass spectral pattern with the NIST spectral

library. A TIC spectral match is reported when the pattern is at least 75% consistent with the published pattern. Compound concentrations

are estimated and are calculated using an internal standard response factor of 1.

PCBs, Total Total PCBs are defined as the sum of detected Aroclors 1016, 1221, 1232, 1248, 1254, 1260, 1262, and 1268.

1941 KETWIET KUAD RICHMOND, VIRGINIA 23237 (804) 358-8295 PHONE (804)358-8297 FAX Effective: Nov 15, 2018

AIR SOIL

CHAIN OF CUSTODY PAGE 1 OF 1 COMP LABORATORIES, INC. COMPANY NAME: Golder Associates Inc INVOICE TO: Golder Associates Inc PROJECT NAME/Quote #: Possum Point 2SA2020 Cr6+ Pon SITE NAME: Yorktown Industrial Landfill (Possum Point CONTACT: Amanda Reynolds / Mike Williams INVOICE CONTACT: Amanda Reynolds ADDRESS: 2108 W Laburnum Ave, Suite 200, RVA 23227 INVOICE ADDRESS: gaiapdataentry_invoices@golder.com PROJECT NUMBER: 20139775 P.O. #: PHONE #: 804-258-2398 INVOICE PHONE #: EMAIL: areynolds@golder.com / Martha Smith@golder.com Pretreatment Program: FAX #: NO Regulatory State: NA Is sample from a chlorinated supply? Is sample for compliance reporting? YES PWS I.D. #: SAMPLER NAME (PRINT): 139 SAMPLER SIGNATURE: WG **Turn Around Time:** Standard COMMENTS Matrix Codes: WW=Waste Water/Storm Water GW=Ground Water DW=Drinking Water S=Soil/Solids OR=Organic A=Air WP=Wipe OT=Other_ Preservative Codes: N=Nitric Acid Field Filtered (Dissolved Metals) ANALYSIS / (PRESERVATIVE) C=Hydrochloric Acid S=Sulfuric Acid Stop H=Sodium Hydroxide A=Ascorbic Acid Z=Zinc Acetate T=Sodium 7196A Hexavalent Chromium Thiosulfate M=Methanol Time or Composite Number of Containers Composite Start Date Composite Start Time Grab Date or Composite Stop Date Matrix (See Codes) CLIENT SAMPLE I.D. Time Preserved Composite Grab Date Grab . PLEASE NOTE PRESERVATIVE(S) Grab INTERFERENCE CHECKS or PUMP RATE (L/min) 103 1) ARC-1607 103 GW 9-2-2020 All samples immediately ARC-1607 0853 X preserved on ice. Level aw X 9-2-2020 X Il Reporting package ABC-1609 9-2-2020 1013 1013 GW requested. × ARC-1614 -2-2020 0920 0920 GW ABL-Duplicate -2-2070 EW × 1045 1045 See sample memo dated 0945 Blank X 222020 0945 July 17, 2020, for more information. 7) 8) 9) POTT Group 10) LAB USE ONLY Therm ID: 27/ Custody Seals used and intact? (YN) COOLER TEMP ()- 6 °C N) RELINQUISHED: DATE / TIME RECEIVED DATE / TIME QC Data Package 9-1-20 9-2-2020 1410 Level III RELINQUISHED: DATE / TIME DATE / TIME RECEIVED GA 2010147 Possum Point PS: Report Set A DATE / TIME RECEIVED Level

v130325002

Page 13 of 14

Recd: 09/02/2020 Due: 09/10/20

9/18/2020 8:17:13AM

Date Issued:

Certificate of Analysis

Client Name: Golder Associates, Inc.

Client Site I.D.: Possum Point PS
Submitted To: Amanda Reynolds

Sample Conditions Checklist

Samples Received at:	0.60°C
How were samples received?	ent Provided Courier
Were Custody Seals used? If so, were they received intact?	Yes
Are the custody papers filled out completely and correctly?	Yes
Do all bottle labels agree with custody papers?	Yes
Is the temperature blank or representative sample within acceptable limits or received on ice, and recently taken?	Yes
Are all samples within holding time for requested laboratory tests?	Yes
Is a sufficient amount of sample provided to perform the tests included?	Yes
Are all samples in appropriate containers for the analyses requested?	Yes
Were volatile organic containers received?	No
Are all volatile organic and TOX containers free of headspace?	NA
Is a trip blank provided for each VOC sample set? VOC sample sets include EPA8011, EPA504, EPA8260, EPA624, EPA8015 GRO, EPA8021, EPA524, and RSK-175.	NA
Are all samples received appropriately preserved? Note that metals containers do not require field preservation but lab preservation may delay analysis.	Yes

Work Order Comments

APPENDIX E.3 LABORATORY ANALYTICAL RESULTS SECOND SEMI-ANNUAL VERIFICATION GROUNDWATER MONITORING EVENT (OCTOBER 2020)

(704)875-9092

October 21, 2020

Mike Williams Golder Associates 2108 W Laburnum Ave Suite 200 Richmond, VA 23227

RE: Project: Possum Point 2SA20 Verif.

Pace Project No.: 92500785

Dear Mike Williams:

Enclosed are the analytical results for sample(s) received by the laboratory on October 15, 2020. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Asheville

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Nicole Gasiorowski

Micolo Maziorovske

nicole.gasiorowski@pacelabs.com

(704)875-9092

Project Manager

Enclosures

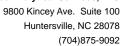
cc: Craig LaCosse, Golder Associates Inc. Rachel Powell, Golder Associates Amanda Reynolds, Golder Associates Martha Smith, Golder Associates Inc.

Pace Analytical www.pacelabs.com

9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

CERTIFICATIONS

Project: Possum Point 2SA20 Verif.

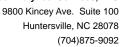

Pace Project No.: 92500785

Pace Analytical Services Asheville

2225 Riverside Drive, Asheville, NC 28804 Florida/NELAP Certification #: E87648 Massachusetts Certification #: M-NC030

North Carolina Drinking Water Certification #: 37712

North Carolina Wastewater Certification #: 40 South Carolina Certification #: 99030001 Virginia/VELAP Certification #: 460222



SAMPLE SUMMARY

Project: Possum Point 2SA20 Verif.

Pace Project No.: 92500785

Lab ID	Sample ID	Matrix	Date Collected	Date Received
92500785001	ABC-1608	Water	10/15/20 11:12	10/15/20 16:00

SAMPLE ANALYTE COUNT

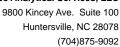
Project: Possum Point 2SA20 Verif.

Pace Project No.: 92500785

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
92500785001	ABC-1608	EPA 6020B	JOR	1	PASI-A

PASI-A = Pace Analytical Services - Asheville

9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092



SUMMARY OF DETECTION

Project: Possum Point 2SA20 Verif.

Pace Project No.: 92500785

Lab Sample ID Client Sample ID Method Parameters Result Report Limit Analyzed Qualifiers Units 92500785001 ABC-1608 EPA 6020B Cobalt 25.4 1.0 10/21/20 13:43 ug/L

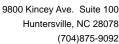
ANALYTICAL RESULTS

Project: Possum Point 2SA20 Verif.

Pace Project No.: 92500785

Date: 10/21/2020 03:30 PM

Sample: ABC-1608 Lab ID: 92500785001 Collected: 10/15/20 11:12 Received: 10/15/20 16:00 Matrix: Water


Report

Parameters Results Units Limit MDL DF Prepared Analyzed CAS No. Qual

6020 MET ICPMS Analytical Method: EPA 6020B Preparation Method: EPA 3010A

Pace Analytical Services - Asheville

Cobalt 25.4 ug/L 1.0 0.50 10 10/21/20 01:13 10/21/20 13:43 7440-48-4

QUALITY CONTROL DATA

Project:

Possum Point 2SA20 Verif.

Pace Project No.:

92500785

QC Batch: QC Batch Method: 574580

EPA 3010A

Analysis Method:

EPA 6020B

Analysis Description:

6020 MET

Laboratory:

Pace Analytical Services - Asheville

Associated Lab Samples:

92500785001

METHOD BLANK:

Matrix: Water

Associated Lab Samples:

92500785001

Blank Result Reporting Limit

MDL

106

Analyzed

Qualifiers

Cobalt

Units ug/L

Units

ug/L

ND

0.10

0.050 10/21/20 13:13

LABORATORY CONTROL SAMPLE: Parameter

Parameter

3041809

Spike Conc.

LCS Result

LCS % Rec % Rec Limits

80-120

Qualifiers

MATRIX SPIKE & MATRIX SPIKE DUPLICATE:

3041810

MS

10

MSD

10

MS

MSD

MS

MSD % Rec

104

% Rec

Max RPD

Parameter Cobalt

Cobalt

92500784001 Units Result

ug/L

Spike

ND

Spike Conc. Conc.

10

Result 10.1

10.6

3041811

Result 10.4 % Rec 101 Limits

75-125

RPD

Qual 20 2

Date: 10/21/2020 03:30 PM

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

QUALIFIERS

Project: Possum Point 2SA20 Verif.

Pace Project No.: 92500785

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

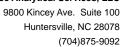
RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.


A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

Date: 10/21/2020 03:30 PM

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: Possum Point 2SA20 Verif.


Pace Project No.: 92500785

Date: 10/21/2020 03:30 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
92500785001	ABC-1608	EPA 3010A	574580	EPA 6020B	574600

CHAIN-OF-CUSTODY Analytical Request Document

b Pro b Sistodillies that Little ad J. Lies to Still S	Relinquished by/Company: (Signature) Date/Time: Received by/Company: (Signature) PB:	Relinquished by/Company: (Signature) Date/Time: Received by/Company: (Signature) Template: Prelogin:	See to the second secon	Company: (Signature)	ror more details. Radchem sample(s) screened (<500 cpm): Y N NA FEDEX UPS Client Courier Pace Courier	samples immediately preserved on ice. Level II keporting package requested. See sample memo, reporting group A	;; All Type of Ice Used: (Wet) Blue Dry None	ABC-1608 GW Grab (11/3) N 1 X	Date lime Date lime	ected (or Composite End Cl C) Res # of Ctns C Oosite Start)	Matrix Codes (Insert in Matrix box below): Drinking Water (DW), Ground Water (GW), Wastewater (WW), Product (P), Soil/Solid (SL), Oil (OL), Wipe (WP), Air (AR), Tissue (TS), Bioassay (B), Vapor (V), Other (OT)		ature): Turnaround Date Required: Standard Immediately Packed on Ice: [X] Yes] No	Purchase Order # : 20139775 DW PWS ID #; Quote #: DW Location Code:	Site/Facility ID #: Possum Point P.S. Compliance Monitoring? [X] Yes] No	VA / Dumfries []PT []MT []CT [X]ET	Customer Project Name/Number: Possum Point 2SA2020 State: County/City: Time Zone Collected: Customer Project Name/Number: Possum Point 2SA2020 State: County/City: Time Zone Collected: Analyses Lab Profile/Line:	Report To: Amanda Reynolds/Mike Williams Email To: areynolds@golder.com/Martha_Smith@golder.com Nicole Gasiorowski nicole.gasiorowski@pacelabs.com	Container Preservative Type ***	Billing Information: 20139775 ALL SHADED	Chain-of-Custody is a LEGAL DOCUMENT - Complete all relevent fields	
(a) sodium hydroxide, (5) zinc acetate, scorbic acid, (B) ammonium sulfate, scorbic acid, (B) ammonium	PM:	Acctnum: Template: Prelogin:	2) iwa		Client Courier Pace Courier	C	N N/A		77		Lead Acetate Strips:	Samples in Holding Time Residual Chlorine Present C1 Strips: Sample pH Acceptable pH Strips: 7292518V Sulfide Present	VOA - Headspace Accepta USDA Regulated Soils	Correct Bottles Sufficient Volume	Custody Signatures Present Collector Signature Present Bottles Intact	Lab Sample Receipt Checkist: Custody Seals Present/Intact.	Analyses Lab Profile/Line:	e Types: (1) nitric acid, (2) sulfuric acid, (3) hydrochloric acid, (4) sodium hydroxide, (5) zinc aceta (7) sodium bisulfate, (8) sodium thiosulfate, (9) hexane, (A) ascorbic acid, (B) ammonium sulfate, hydroxide (D1 TGs (1)) Ingreserved (D) Other thosehoric acid (D1 Other 1 nitrous acid	Container Preservative Type ** Lab Project Manager:			

(704)875-9092

October 21, 2020

Mike Williams Golder Associates 2108 W Laburnum Ave Suite 200 Richmond, VA 23227

RE: Project: Possum Point 2SA20 Verif.

Pace Project No.: 92500784

Dear Mike Williams:

Enclosed are the analytical results for sample(s) received by the laboratory on October 15, 2020. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Asheville

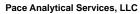
If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Nicole Gasiorowski

Micolo Maziorovske

nicole.gasiorowski@pacelabs.com


(704)875-9092

Project Manager

Enclosures

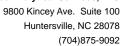
cc: Craig LaCosse, Golder Associates Inc. Rachel Powell, Golder Associates Amanda Reynolds, Golder Associates Martha Smith, Golder Associates Inc.

Pace Analytical www.pacelabs.com

9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

CERTIFICATIONS

Project: Possum Point 2SA20 Verif.

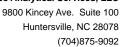

Pace Project No.: 92500784

Pace Analytical Services Asheville

2225 Riverside Drive, Asheville, NC 28804 Florida/NELAP Certification #: E87648 Massachusetts Certification #: M-NC030

North Carolina Drinking Water Certification #: 37712

North Carolina Wastewater Certification #: 40 South Carolina Certification #: 99030001 Virginia/VELAP Certification #: 460222

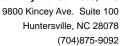


SAMPLE SUMMARY

Project: Possum Point 2SA20 Verif.

Pace Project No.: 92500784

Lab ID	Sample ID	Matrix	Date Collected	Date Received
92500784001	Field Blank-Cobalt	Water	10/15/20 09:35	10/15/20 16:00


SAMPLE ANALYTE COUNT

Project: Possum Point 2SA20 Verif.

Pace Project No.: 92500784

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
92500784001	Field Blank-Cobalt	EPA 6020B	JOR	1	PASI-A

PASI-A = Pace Analytical Services - Asheville

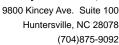
ANALYTICAL RESULTS

Project: Possum Point 2SA20 Verif.

Pace Project No.: 92500784

Date: 10/21/2020 03:29 PM

Sample: Field Blank-Cobalt Lab ID: 92500784001 Collected: 10/15/20 09:35 Received: 10/15/20 16:00 Matrix: Water


Report

Parameters Results Units Limit MDL DF Prepared Analyzed CAS No. Qual

6020 MET ICPMS Analytical Method: EPA 6020B Preparation Method: EPA 3010A

Pace Analytical Services - Asheville

Cobalt ND ug/L 0.10 0.050 1 10/21/20 01:13 10/21/20 13:21 7440-48-4

QUALITY CONTROL DATA

Project:

Possum Point 2SA20 Verif.

Pace Project No.:

92500784

QC Batch:

574580

QC Batch Method:

EPA 3010A

Analysis Method:

EPA 6020B

Analysis Description:

6020 MET

Laboratory:

Pace Analytical Services - Asheville

Associated Lab Samples:

92500784001

METHOD BLANK:

Matrix: Water

Associated Lab Samples: 92500784001

Parameter

Units

Units

ug/L

92500784001

Result

ND

Blank Result Reporting Limit

MDL

Analyzed

Qualifiers

Cobalt

Cobalt

Cobalt

Units

ug/L

ug/L

ND

0.10

0.050

10/21/20 13:13

LABORATORY CONTROL SAMPLE:

Parameter

3041809

Spike Conc.

LCS Result

LCS % Rec % Rec Limits

Qualifiers

MATRIX SPIKE & MATRIX SPIKE DUPLICATE:

3041810

10

MSD

MS

10.6

MSD Result

10.4

106

MSD

80-120

% Rec

75-125

Max

Parameter

Date: 10/21/2020 03:29 PM

MS

Spike

Spike Conc. Conc.

10

10

Result 10.1

3041811

MS % Rec 101

% Rec 104

Limits **RPD** RPD

Qual 20 2

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

QUALIFIERS

Project: Possum Point 2SA20 Verif.

Pace Project No.: 92500784

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

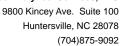
RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.


A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

Date: 10/21/2020 03:29 PM

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: Possum Point 2SA20 Verif.

Pace Project No.: 92500784

Date: 10/21/2020 03:29 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
92500784001	Field Blank-Cobalt	EPA 3010A	574580	EPA 6020B	574600

Relinquished by/Company: (Signature) Customer Sample ID Collected By (signature): Phone: 804-258-2398 Copy To: Martha Smith Relinquished by/Company: (Signature) Relinquished by/Compary: (Signature) for more details. package requested. See sample memo, reporting group __H samples immediately preserved on ice. Level II Reporting Customer Remarks / Special Conditions / Possible Hazards: All Field Blank-Cobalt * Matrix Codes (Insert in Matrix box below): Drinking Water (DW), Ground Water (GW), Wastewater (WW) Sample Disposal: Collected By (print):

O. Stell Verification - Ponds ABC Customer Project Name/Number: Possum Point 2SA2020 [X] Hold: 3 Months Email: areynolds@golder.com Nicole Gasiorowski nicole gasiorowski@pacelabs.com Report To: Amanda Reynolds/Mike Williams Richmond, VA 23227 Address: 2108 W. Laburnum Ave. Suite 200 Company: Golder Associates Inc. Product (P), Soil/Solid (SL), Oil (OL), Wipe (WP), Air (AR), Tissue (TS), Bioassay (B), Vapor (V), Other (OT) Dispose as appropriate [] Return Face Analytical Site/Facility ID #: Possum Point P.S. Turnaround Date Required: Standard Quote #: Purchase Order # : 20139775 (Expedited Charges Apply) [] Same Day [] Next Day [] 2 Day [] 3 Day [] 4 Day [] 5 Day Matrix * GW **CHAIN-OF-CUSTODY Analytical Request Document** Chain-of-Custody is a LEGAL DOCUMENT - Complete all relevent fields Grab Comp / Grab 16/15/2020 (1600 Date/Time: Date/Time: Date/Time: 55 bo ene/51/01 Radchem sample(s) screened (<500 cpm): Packing Material Used: Type of Ice Used: State: Site Collection Info/Address: Possum Point Power Station Email To: areynolds@golder.com/Martha_Smith@golder.com Billing Information: 20139775 X Date Composite Start) Collected (or / Dumfries []PT []MT []CT [X]ET Time Received by/Company: (Signature) Received by/Company: (Signature) DW Location Code: DW PWS ID #: [] Yes Field Filtered (if applicable): Immediately Packed on Ice [X] Yes Compliance Monitoring? Wet X] Yes Date Composite End Time Zone Collected: Blue [] No oN[X] ON Time DURAN DIV ~ Res Z z None NA # of Ctns (6) methanol, (7) sodium bisulfate, (8) sodium thiosulfate, (9) hexane, (A) ascorbic acid, (B) ammonium sulfate, (C) ammonium hydroxide, (D) TSP, (U) Unpreserved, (O) Other <u>phosphoric acid</u> (O1) Other 1 <u>nitrous acid</u> ** Preservative Types: (1) nitric acid, (2) sulfuric acid, (3) hydrochloric acid, (4) sodium hydroxide, (5) zinc acetate, 6020 Cobalt, Total SHORT HOLDS PRESENT (<72 hours): Lab Tracking #: Samples received via: FEDEX 0-1520 LAB USE ONLY- Affix W. WO#: 92500784 Date/Time: Date/Time: Date/Time: Container Preservative Type UPS 0001 Client Courier Pace Courier Table #: PB: PM: Prelogin: Template: Acctnum: MTJL LAB USE ONLY < 3 N/A LAB USE ONLY: Lab Sample # / Comments: Sample pH Acceptable pH Strips: 232518V Cl Strips: Lab Project Manager: Lead Acetate Strips: Sulfide Present Samples in Holding Time Samples Received on Ice Sufficient Volume Residual Chlorine Present USDA Regulated Soils VOA - Headspace Acceptable Correct Bottles Bottles Intact Collector Signature Present Custody Signatures Present Custody Seals Present/Intact Y N Lab Sample Receipt Checklist: Lab Profile/Line: Temp Blank Received: Y N NA
Therm ID#: 1-3
Cooler 1 Temp Upon Receipt: 1-800 Cooler 1 Therm Corr. Factorto. OC Cooler 1 Corrected Temp: 1.4 OC LAB Sample Temperature Info: Non Conformance(s): 4840058b YES / NO Trip Blank Received: Y N NA HCL MeOH TSP Other of: HANGE STATES X N NA 100 MNA Page 9 of 9

APPENDIX F HISTORICAL LABORATORY DETECTIONS

Appendix F Historical Laboratory Detections Possum Point Power Station, Ponds ABC Permit No. 617

		Location	ABC-1602	ABC-1607	ABC-1608	ABC-1614	Field Blank
Sample Dates	Method	Unit	ADO-1002	ADC-1007	ADC-1000	ADC-1014	I leid Dialik
Arsenic	Wethou	Onit					
11/02-04/2016	SW6020B	μg/L	< 0.5 U	0.88 J	6.8	25.4	
12/12-13/2016	SW6020B	μg/L	< 0.5 U	1.1	49.3	28.1	
01/25-26/2017	SW6020B	μg/L μg/L	0.63 J	0.98 J	36	37.4	
	SW6020B		< 0.5 U			39.5	
03/06-07/2017		μg/L		1.3	24.1		
04/19-21/2017	SW6020B	μg/L	< 0.5 U	1.5 J+	15	32.8	
05/30-06/01/2017	SW6020B	μg/L	< 0.5 U	1.1	11.5	31	-
07/10-12/2017	SW6020B	μg/L	< 0.5 U	1.5	12.2	31.7	-
08/21-23/2017	SW6020B	μg/L	< 0.5 U	0.95 J	12.4	36.9	-
06/27/2018	SW6010D	μg/L	< 5.0	< 5.0	9.6 J	35.4	< 5.0
09/19/2018	SW6010D	μg/L	< 5.0	< 5.0	9.3 J	39.2	< 5.0
12/12-13/2018	SW6010D	μg/L	< 5.0 U	< 5.0 U	< 5.0 U	40.1	< 5.0 U
08/26-29/2019	SW6010D	μg/L	< 4.7	< 4.7	< 4.7	30.1	< 4.7
02/17-19/2020	SW6010D	μg/L	< 4.7	< 4.7	5.8 J	44.4	< 4.7
08/31-09/02/2020	SW6010D	μg/L	< 4.7	< 4.7	5.7 J	44.1	< 4.7
Barium							
11/02-04/2016	SW6020B	μg/L	52.9	34.1	157	230	-
12/12-13/2016	SW6020B	μg/L	53 B	33.9 B	150	263	
01/25-26/2017	SW6020B	μg/L	67.3	31.4	132	222	
03/06-07/2017	SW6020B	µg/L	77.6	45	125	236	
04/19-21/2017	SW6020B	µg/L	81	33.9	89.9	203	
05/30-06/01/2017	SW6020B	μg/L	81.4	35.1	95.1	208	
07/10-12/2017	SW6020B	µg/L	75.8	31.3	93	243	
08/21-23/2017	SW6020B	μg/L	73.3	29.4	96.2	251	
06/27/2018	SW6010D	μg/L	82.8	36.0	79.4	235	< 2.5
09/19/2018	SW6010D		68.6	33.7	72.2	244	< 2.5
12/12-13/2018	SW6010D	μg/L μg/L	68.5	37.5	64.3	204	< 2.5 U
08/26-29/2019	SW6010D		62.1			211	
		μg/L		54.1 J+	66.2	175	1.1 J
02/17-19/2020	SW6010D	μg/L	67.9	50.6	64.2		< 1.0
08/31-09/02/2020	SW6010D	μg/L	65.9	51.7	67.3	185	< 3.5
Beryllium	OWOOOD		0.4.1	0.0.1	.0011	0.00.1	1
11/02-04/2016	SW6020B	μg/L	0.4 J	0.2 J	< 0.2 U	0.26 J	-
12/12-13/2016	SW6020B	μg/L	0.61 B	< 0.2 U	< 0.2 U	0.58 B	-
01/25-26/2017	SW6020B	μg/L	0.36 J	< 0.2 U	< 0.2 U	< 0.2 U	-
03/06-07/2017	SW6020B	μg/L	0.7 J	< 0.2 U	< 0.2 U	0.28 J	-
04/19-21/2017	SW6020B	μg/L	0.65 J	< 0.2 U	< 0.2 U	< 0.2 U	
05/30-06/01/2017	SW6020B	μg/L	0.76 J	< 0.2 U	< 0.2 U	< 0.2 U	
07/10-12/2017	SW6020B	μg/L	0.9 J	< 0.2 U	< 0.2 U	< 0.2 U	
08/21-23/2017	SW6020B	μg/L	0.67 J	0.31 J	< 0.2 U	< 0.2 U	
06/27/2018	SW6010D	μg/L	0.64 J	< 0.50	< 0.50	< 0.50	< 0.50
09/19/2018	SW6010D	μg/L	0.65 J	< 0.50	< 0.50	< 0.50	< 0.50
12/12-13/2018	SW6010D	μg/L	0.54 J	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U
08/26-29/2019	SW6010D	μg/L	0.60 J	< 0.50	< 0.50	< 0.50	< 0.20
02/17-19/2020	SW6010D	μg/L	0.68 J	< 0.20	< 0.20	< 0.20	< 0.20
08/31-09/02/2020	SW6010D	μg/L	< 0.70	< 0.70	< 0.70	< 0.70	< 0.70
Boron						•	
11/02-04/2016	SW6020B	μg/L	24.6 J	280	234 J	218 J	< 5.7
12/12-13/2016	SW6020B	μg/L	35 B	211 J	230 J	269	< 0.57
01/25-26/2017	SW6020B	μg/L	41.4 J	279	311	251	2.8 J
03/06-07/2017	SW6020B	µg/L	45.3 J	437	339	265	16.3 J
04/19-21/2017	SW6020B	μg/L	18.5 J	277	232 J	194 J	94.9
05/30-06/01/2017	SW6020B	μg/L	93.6 J+	340	284	223 J	66.1
07/10-12/2017	SW6010	μg/L μg/L	< 25	275	226	256	< 25
08/21-23/2017	SW6010	μg/L μg/L	< 25	256	212	242	< 25
06/27/2018	SW6010D	μg/L	< 25	240	170	240	< 25
09/19/2018	SW6010D	μg/L	< 25	240	210	300	< 25
12/12-13/2018	SW6010D	μg/L	< 25	250	210	240	48 J
03/11-15/2019	SW6010D	μg/L	< 25	190	150	180	< 25
08/26-29/2019	SW6010D	μg/L	8.8 J	190	220	240	7.4 J
02/17-19/2020	SW6010D	μg/L	< 6.6	190	220	200	< 6.6
08/31-09/02/2020	SW6010D	μg/L	< 32	225	217	212	< 32

Appendix F Historical Laboratory Detections Possum Point Power Station, Ponds ABC Permit No. 617

		Location	ABC-1602	ABC-1607	ABC-1608	ABC-1614	Field Blank
Sample Dates	Method	Unit		7.20.00.	7.20 1.00		
Calcium							
11/02-04/2016	SW6020B	μg/L	4700	33100	19100	68400	< 1030
12/12-13/2016	SW6020B	μg/L	5000 B	22500	29800	78900	1910
01/25-26/2017	SW6020B	μg/L	5570	18600	29000	62200	< 103
03/06-07/2017	SW6020B	µg/L	6070	19100	28600	59600	< 103
04/19-21/2017	SW6020B	µg/L	6280	14800	22500	53900	< 103
05/30-06/01/2017	SW6020B	µg/L	5430	15100	21700	55900	< 103
07/10-12/2017	SW6020B	µg/L	5800	15000	21900	63100	< 103
08/21-23/2017	SW6020B	µg/L	6380	13900	23600	60500	< 1030
06/27/2018	SW6010D	µg/L	6300	13100	16300	50300	< 50
09/19/2018	SW6010D	µg/L	5400	11100	19000	49900	< 50
12/12-13/2018	SW6010D	µg/L	5600	7400	17900	34900	< 50
03/11-15/2019	SW6010D	µg/L	5900	6200	12600	22300	< 50
08/26-29/2019	SW6010D	μg/L	5900	6600	19600	35000	< 24
02/17-19/2020	SW6010D	µg/L	7100	7100	20600	24000	< 94.2
08/31-09/02/2020	SW6010D	μg/L	6480	8400	20600	21600	< 94.2
	300010D	µg/L	0400	0400	20000	21000	₹ 34.2
Chloride 11/02-04/2016	SW9056A	mg/L	5.0	17.4	59.5	19.1	l
12/12-13/2016	SW9056	mg/L	5.0	17.4	47.0	15.0	
01/25-26/2017	SW9056A		3.1		53.1	16.0	
03/06-07/2017		mg/L	3.1	16.6 15.9	53.1	14.6	
03/06-07/2017	SW9056A	mg/L					
04/19-21/2017 05/30-06/01/2017	SW9056A	mg/L	2.6	16.8	56.9	15.5	
	SW9056A	mg/L		16.7	54.9	18.1	
07/10-12/2017	SW9056A	mg/L	2.5	16.9	53.8	19.3	
08/21-23/2017	SW9056A	mg/L	2.8	17.4	60.2	20.0	
06/27/2018	E300	mg/L	2.4	19.5	54.1	20.3	< 0.50
09/19/2018	E300	mg/L	2.6	17.0	54.9	24.5	< 0.50
12/12-13/2018	E300	mg/L	2.7	15.7	50.9	17.9	0.61 J
03/11-15/2019	E300	mg/L	2.7	11.1	55.4	16.2	< 0.60
08/26-29/2019	SW9056A	mg/L	2.8	12.2	52.8	17.2	< 0.60
02/17-19/2020	SW9056A	mg/L	2.9	18.7	53.2	15.0	< 0.60
08/31-09/02/2020	SW9056A	mg/L	3.1	16.2	54.7	17.2	< 0.60
Chromium	011/0000					1	1
11/02-04/2016	SW6020B	μg/L	< 1 U	< 1 U	2 J	1.1 J	-
12/12-13/2016	SW6020B	μg/L	< 1 U	< 1 U	< 1 U	< 1 U	
01/25-26/2017	SW6020B	μg/L	< 1 U	< 1 U	< 1 U	< 1 U	-
03/06-07/2017	SW6020B	μg/L	1.1 B	< 1 U	< 1 U	2.3 B	
04/19-21/2017	SW6020B	μg/L	< 1 U	1 J+	< 1 U	< 1 U	
05/30-06/01/2017	SW6020B	μg/L	< 1 U	< 1 U	< 1 U	< 1 U	
07/10-12/2017	SW6020B	μg/L	< 1 U	< 1 U	< 1 U	< 1 U	
08/21-23/2017	SW6020B	μg/L	< 1 U	< 1 U	< 1 U	1.2 J	-
06/27/2018	SW6010D	μg/L	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5
09/19/2018	SW6010D	μg/L	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5
12/12-13/2018	SW6010D	μg/L	< 2.5 U	< 2.5 U	< 2.5 U	< 2.5 U	< 2.5 U
08/26-29/2019	SW6010D	μg/L	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
02/17-19/2020	SW6010D	μg/L	1.3 J	< 1.0	< 1.0	< 1.0	< 1.0
08/31-09/02/2020	SW6010D	μg/L	< 3.7	< 3.7	< 3.7	< 3.7	< 3.7
Hexavalent Chromiu							
11/02-04/2016	SW7196	μg/L	< 10 U	< 10 U	< 10 U	< 10 U	
12/12-13/2016	SW7196	μg/L	< 10 U	< 10 U	17 ^	< 10 U	
01/25-26/2017	SW7196A	μg/L	6 ^	< 5 U	< 5 U	< 5 U	
03/06-07/2017	SW7196A	μg/L	< 5 U	< 5 U	< 5 U	< 5 U	
04/19-21/2017	SW7196A	μg/L	< 5 U	< 5 U	< 5 U	< 5 U	
05/30-06/01/2017	SW7196A	μg/L	< 5 U	< 5 U	< 5 U	< 5 U	
07/10-12/2017	SW7196A	μg/L	< 5 U	< 5 U	< 5 U	< 5 U	
08/21-23/2017	SW7196A	μg/L	< 5 U	< 5 U	< 5 U	< 5 U	
06/27/2018	SW7196A	μg/L	< 5	< 5	< 5	0.006 (ND)	< 5
09/19/2018	SW7196A	μg/L	< 5	< 5	< 5	< 5	< 5
12/12-13/2018	SW7196A	μg/L	< 5 U	< 5 U	26	< 5 U	< 5 U
08/26-29/2019	SW7196A	μg/L	< 5	5 R (ND)	< 5	< 5	< 5
			< 5	< 5	< 5	< 5	< 5
02/17-19/2020	SW7196A	μg/L	~ 0	\ 0	٠ ٠	٠ ٠	٠ ٠

		Location	ABC-1602	ABC-1607	ABC-1608	ABC-1614	Field Blank
Sample Dates	Method	Unit		,,	7.20.1000	7.50	
Cobalt							
11/02-04/2016	SW6020B	μg/L	3.5	8.3	36.1	17.3	
12/12-13/2016	SW6020B	μg/L	5.7	7.6	36.4	19.2	
01/25-26/2017	SW6020B	μg/L	9.2	7.8	35.4	17.1	
03/06-07/2017	SW6020B	μg/L	11	10.2	36	19.2	
04/19-21/2017	SW6020B	μg/L	13.6	7.6	28.5	18.5	
05/30-06/01/2017	SW6020B	μg/L	15.3	7.9	27.7	21.2	
07/10-12/2017	SW6020B	μg/L	18.4	7.5	30	25.9	
08/21-23/2017	SW6020B	μg/L	18.8 J+	7.8	30.6	25	
06/27/2018	SW6010D	μg/L	9.8	6.8	21.8	20.9	< 2.5
09/19/2018	SW6010D	μg/L	9.9	6.9	22.2	21.8	< 2.5
12/12-13/2018	SW6010D	μg/L	10	6.5	21.0	17.8	< 2.5 U
08/26-29/2019	SW6020B	μg/L	11.1	8.1	22.5	21.1	< 0.050
02/17-19/2020	SW6020B		15.0	8.7	23.5	19.9	< 0.050
		μg/L					
08/31-09/02/2020	SW6020B	μg/L	11.5	8.2	26.5	21.7	< 0.050
Copper	OMICCOOD	1 1	4.0.1	.4011	401	.4011	T
11/02-04/2016	SW6020B	μg/L	1.3 J	< 1.2 U	1.9 J	< 1.2 U	
12/12-13/2016	SW6020B	μg/L	2.4 B	1.3 B	< 1.2 U	< 1.2 U	
01/25-26/2017	SW6020B	μg/L	10.1	< 1.2 U	< 1.2 U	< 1.2 U	
03/06-07/2017	SW6020B	μg/L	16	< 1.2 U	< 1.2 U	< 1.2 U	
04/19-21/2017	SW6020B	μg/L	17.5 J+	< 1.2 U	< 1.2 U	2.7 J+	
05/30-06/01/2017	SW6020B	μg/L	14.4	< 1.2 U	< 1.2 U	1.3 J+	
07/10-12/2017	SW6020B	μg/L	13.6	< 1.2 U	< 1.2 U	< 1.2 U	
08/21-23/2017	SW6020B	μg/L	12.9	< 1.2 U	< 1.2 U	< 1.2 U	
06/27/2018	SW6020A	μg/L	7.6	0.35 J	0.75 J	1.5	0.67 J
09/19/2018	SW6020A	μg/L	6.9	0.22 J+	0.22 J	0.29 J+	0.64 J
12/12-13/2018	SW6020B	μg/L	5.8	0.52 J+	< 0.23 U	< 0.23 U	1.4
08/26-29/2019	SW6010D	μg/L	4.9 J	< 2.1	< 2.1	< 2.1	< 2.1
02/17-19/2020	SW6010D	μg/L	7.7	< 2.1	< 2.1	< 2.1	< 2.1
08/31-09/02/2020	SW6010D	μg/L	8.7	< 4.3	< 4.3	< 4.3	< 4.3
Fluoride							
11/02-04/2016	SW9056A	mg/L	0.035 J	0.028 J	0.064 J	0.15	
12/12-13/2016	SW9056	mg/L	0.093	0.063	0.23	0.23	
01/25-26/2017	SW9056A	mg/L	< 0.020 U	< 0.020 U	0.15	0.12	
03/06-07/2017	SW9056A	mg/L	< 0.020 U	< 0.020 U	0.091 J	0.10	
04/19-21/2017	SW9056A	mg/L	< 0.050 U	< 0.050 U	0.098 J	0.13	
05/30-06/01/2017	SW9056A	mg/L	< 0.050 U	< 0.050 U	0.12	0.14	
07/10-12/2017	SW9056A	mg/L	< 0.050 U	< 0.050 U	0.093 J	0.14	
08/21-23/2017	SW9056A	mg/L	< 0.050 U	< 0.050 U	0.10	0.16	
06/27/2018	E300	mg/L	< 0.050	< 0.050	< 0.050	0.077 J	< 0.050
09/19/2018	E300	mg/L	< 0.050	< 0.050	0.086 J	0.12	< 0.050
12/12-13/2018	E300	mg/L	< 0.050 U	0.053 J	0.14	0.10	< 0.050 U
03/11-15/2019	E300	mg/L	< 0.050	< 0.050	0.11	0.12	< 0.050
08/26-29/2019	SW9056A	mg/L	< 0.050	< 0.050	0.064 J	0.11	< 0.050
02/17-19/2020	SW9056A	mg/L	< 0.050	0.063 J	0.068 J	0.057 J	< 0.050
08/31-09/02/2020	SW9056A	mg/L	< 0.050	< 0.050	0.079 J	0.092 J	< 0.050
Hardness					•	•	•
11/02-04/2016	SW6020B	mg/L	23.8	118	97.4	259	
12/12-13/2016	SW6020B	mg/L	24.9 B	79.8	154	289	
01/25-26/2017	SW6020B	mg/L	28.5	67.8	145	228	
03/06-07/2017	SW6020B	mg/L	30.6	71.7	139	220	
04/19-21/2017	SW6020B	mg/L	32.6	56.1	105	199	
05/30-06/01/2017	SW6020B	mg/L	28.7	55.8	102	210	
07/10-12/2017	SW6020B	mg/L	30	55.5	104	235	
08/21-23/2017	SW6020B	mg/L	31.8	53	109	226	
06/27/2018	E200.7	mg/L	34.6	50.5	78	187	< 0.662
09/19/2018	E200.7	mg/L	27.9	42.1	82.1	189	< 0.662
12/12-13/2018	E200.7	mg/L	27.5	33.1	79.2	126	< 0.662 U
08/26-29/2019	SW6010D	mg/L	29.7	30.8	85.5	135	< 0.131
02/17-19/2020	SM2340B	mg/L	36.3	33.1	90.4	97	< 0.131
08/31-09/02/2020	SM2340B	mg/L	32.8	35.9	89.6	87.8	< 0.131
00/01-03/02/2020	SIVIZ 34UD	my/L	JZ.0	33.8	03.0	01.0	~ 0.131

		Location	ABC-1602	ABC-1607	ABC-1608	ABC-1614	Field Blank
Sample Dates	Method	Unit	7120 1002	7.50 1001	7120 1000	7.50 1014	Tiola Blank
Iron	ourou	0					
11/02-04/2016	SW6020B	μg/L	1230	2330	20400	15100	< 118
12/12-13/2016	SW6020B	μg/L	1890	2770	34000	20900	202
01/25-26/2017	SW6020B	μg/L	1950	2860	29900	19700	< 11.8
03/06-07/2017	SW6020B	µg/L	683	3500	21900	23500	< 11.8
04/19-21/2017	SW6020B	μg/L	188 J	3700	15100	24300	< 11.8
05/30-06/01/2017	SW6020B	μg/L	< 118	3780	15300	28200	< 11.8
07/10-12/2017	SW6020B	µg/L	< 118	3860	14900	37700	< 11.8
08/21-23/2017	SW6020B	μg/L	124 J	4000	15200	37300	< 11.8
06/27/2018	E200.7	µg/L	196	6250	12100	40600	< 25.0
09/19/2018	E200.7	µg/L	117	5280	7710	44600	< 25
12/12-13/2018	E200.7	μg/L	74.2	4500	6310	32100	< 25
08/26-29/2019	SW6020B	μg/L	280	1350 J	5780	32800	< 7.5
02/17-19/2020	SW6020B	μg/L	55.6	1740	5660	28300	< 7.5
08/31-09/02/2020	SW6020B	μg/L	74.3	3230	6090	31600	< 20.9
Lead	01100202	P9'-	7 1.0	0200	0000	01000	20.0
11/02-04/2016	SW6020B	μg/L	< 0.8 U	< 0.8 U	< 0.8 U	< 0.8 U	
12/12-13/2016	SW6020B	μg/L	< 0.8 U	< 0.8 U	< 0.8 U	< 0.8 U	
01/25-26/2017	SW6020B	μg/L	< 0.8 U	< 0.8 U	< 0.8 U	< 0.8 U	
03/06-07/2017	SW6020B	μg/L	< 0.8 U	< 0.8 U	< 0.8 U	< 0.8 U	
04/19-21/2017	SW6020B	μg/L	< 0.8 U	< 0.8 U	< 0.8 U	< 0.8 U	
05/30-06/01/2017	SW6020B	μg/L	< 0.8 U	< 0.8 U	< 0.8 U	< 0.8 U	
07/10-12/2017	SW6020B	μg/L	< 0.8 U	< 0.08 U	< 0.08 U	< 0.8 U	
08/21-23/2017	SW6020B	μg/L	< 0.8 U	< 0.8 U	< 0.8 U	< 0.8 U	
06/27/2018	SW6010D	μg/L	< 2.5	< 2.5	< 2.5	2.7 J	< 2.5
09/19/2018	SW6010D	μg/L	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5
12/12-13/2018	SW6010D	μg/L	< 2.5 U				
08/26-29/2019	SW6020B	μg/L	0.19	0.085 J	0.056 J	0.50	< 0.050
02/17-19/2020	SW6020B	μg/L	0.13	0.088 J	0.030 J	0.18	< 0.050
08/31-09/02/2020	SW6020B	μg/L	0.089 J	< 0.007	< 0.077	0.20	< 0.077
Lithium	CVVOOZOB	P9/L	0.000 0	10.077	10.011	0.20	10.011
11/02-04/2016	SW6020B	μg/L	10.3 B	5.7 B	17.4 J	25.3	I
12/12-13/2016	SW6020B	μg/L	9.8 J	1.3 B	15.3 J	22 J	
01/25-26/2017	SW6020B	μg/L	10.4 J	3.7 J	18.2 J	26.9	
03/06-07/2017	SW6020B	μg/L	11.2 J	4.3 J	20.4 J	27.9	
04/19-21/2017	SW6020B	μg/L	10.7 J+	3.9 J+	18.9 J+	25.5	
05/30-06/01/2017	SW6020B	μg/L	15.7 J+	5.3 J+	18.6 J+	25.1	
07/10-12/2017	SW6020B	μg/L	10.5 J	4.4 J+	18.4 J	29.2 J+	
08/21-23/2017	SW6020B	μg/L	10.4 J	3.2 J	16 J	31.2 J+	
06/27/2018	SW6010C	μg/L	9.8	< 2.8	12.2	24.2	< 2.8
09/19/2018	SW6010C	μg/L	10.2	< 4.6	17.5	26.3	< 4.6
12/12-13/2018	SW6020B	μg/L	8.9	3.3	15.0	17.8	< 0.42 U
08/26-29/2019	SW6020B	μg/L	9.4	4.6	14.2	17.5	< 0.42
02/17-19/2020	SW6020B	μg/L	11.6	3.9	13.6	15.7	< 0.42
08/31-09/02/2020	SW6020B	μg/L	10.1	3.1	12.3	14.6	< 0.39
	3VV0020D	µg/L	10.1	3.1	12.5	14.0	\ 0.59
Manganese 11/02-04/2016	SW6020B	ug/l	261	425	283	599	< 1.9
12/12-13/2016	SW6020B	μg/L μg/L	285	320	261	720	10.1
01/25-26/2017	SW6020B SW6020B	μg/L μg/L	309	276	238	592	0.6
03/06-07/2017	SW6020B SW6020B	μg/L μg/L	257	309	233	753	< 0.19
04/19-21/2017	SW6020B	μg/L μg/L	236	247	183	570	< 0.19
05/30-06/01/2017	SW6020B SW6020B	μg/L μg/L	236	247	186	596	< 0.19
07/10-12/2017	SW6020B SW6020B						< 0.19
08/21-23/2017		μg/L	219	245	181	670	
	SW6020B	μg/L	238	239	190	642	< 0.19
06/27/2018	E200.7	μg/L	224	236	149	507	< 2.5
09/19/2018	E200.7	μg/L	187	208	144	533	< 2.5
12/12-13/2018	E200.7	μg/L	180	173	141	373	< 2.5
08/26-29/2019	SW6020B	μg/L	166	170	152	348	< 0.14
			000	404	404	240	0.40 1.
02/17-19/2020 08/31-09/02/2020	SW6020B SW6020B	μg/L μg/L	200 202	181 209	164 181	312 303	0.46 J+ < 0.47

		Location	ABC-1602	ABC-1607	ABC-1608	ABC-1614	Field Blank
Sample Dates	Method	Unit					
Molybdenum							•
11/02-04/2016	SW6020B	μg/L	< 1.1 U	< 1.1 U	< 1.1 U	2.5 J	
12/12-13/2016	SW6020B	µg/L	< 1.1 U	< 1.1 U	2.2 J	3.4 J	
01/25-26/2017	SW6020B	µg/L	< 1.1 U	< 1.1 U	1.3 J	2.2 J	
03/06-07/2017	SW6020B	μg/L	< 1.1 U	< 1.1 U	< 1.1 U	2.5 J	
04/19-21/2017	SW6020B	μg/L	< 1.1 U	< 1.1 U	< 1.1 U	1.9 J	
05/30-06/01/2017	SW6020B	μg/L	< 1.1 U	< 1.1 U	< 1.1 U	1.7 J	
07/10-12/2017	SW6020B	μg/L	< 1.1 U	< 1.1 U	< 1.1 U	1.8 J	
08/21-23/2017	SW6020B	μg/L	< 1.1 U	< 1.1 U	< 1.1 U	2.1 J	
06/27/2018	SW6010D	μg/L	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5
09/19/2018	SW6010D	μg/L	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5
12/12-13/2018	SW6010D	μg/L	< 2.5 U	< 2.5 U	< 2.5 U	< 2.5 U	< 2.5 U
08/26-29/2019	SW6010D	μg/L	< 0.90	1.0 J	1.7 J	1.6 J	< 0.90
02/17-19/2020	SW6010D	μg/L	< 0.90	< 0.90	2.0 J	< 0.90	< 0.90
08/31-09/02/2020	SW6010D	μg/L	< 3.9	< 3.9	< 3.9	< 3.9	< 3.9
Nickel							
11/02-04/2016	SW6020B	μg/L	< 4.5 U	7.6	23	15.6	
12/12-13/2016	SW6020B	μg/L	< 4.5 U	7.1	24.5	15.5	
01/25-26/2017	SW6020B	μg/L	5.4 B	8	25.2	15.1	
03/06-07/2017	SW6020B	μg/L	7.2	11.3	27.4	16.3	
04/19-21/2017	SW6020B	μg/L	8.2	8.1	20.6	14.1	
05/30-06/01/2017	SW6020B	μg/L	7.5	8.6	21.1	15.6	
07/10-12/2017	SW6020B	μg/L	8.9	8.1	21.9	18.8	
08/21-23/2017	SW6020B	μg/L	9.9	9.1	22	18.3	
06/27/2018	SW6020A	μg/L	6.0	8.4	16.5	16.2	0.13 J
09/19/2018	SW6020A	μg/L	6.2	8.9	18.6	19.7 J+	0.22 J
12/12-13/2018	SW6020B	μg/L	5.5	7.8	16.7	14.2	< 0.11 U
08/26-29/2019	SW6010D	μg/L	6.2	10	17.9	15.5	< 0.90
02/17-19/2020	SW6010D	μg/L	7.8	10.7	18.0	14.8	< 0.90
08/31-09/02/2020	SW6010D	μg/L	7.1	10.0	19.8	15.1	< 3.5
pH		1 1		T = 00			T
11/02-04/2016	FIELD	SU	5.46	5.66	5.94	6.60	
12/12-13/2016	FIELD	SU	5.65	5.72	6.35	6.79	
01/25-26/2017	FIELD	SU	4.98	5.04	5.74	6.19	
03/06-07/2017	FIELD	SU	4.95	5.24	5.90	6.39	
04/19-21/2017	FIELD	SU	4.82	5.36	5.86	6.47	
05/30-06/01/2017	FIELD	SU	4.60	5.34	5.85	6.41	
07/10-12/2017	FIELD	SU	4.67	5.30	5.81	6.40	
08/21-23/2017	FIELD	SU	4.73	5.30	5.91	6.44	
06/27/2018	FIELD	SU	4.70	5.15	5.68	6.37	
09/19/2018	FIELD	SU	4.59	5.11	5.61	6.29	
12/12-13/2018	FIELD		4.08	4.67	5.47	6.14	
03/11-15/2019	FIELD	SU SU	4.43	4.86	5.48	6.13	
08/26-29/2019	FIELD FIELD	SU	4.17	4.73	5.63	6.06	
02/17-19/2020			4.62	5.09	5.89	6.15	
08/31-09/02/2020	FIELD	SU	4.44	5.43	6.09	5.86	
Phenolics 08/26-29/2019	SWOOSE	ua/I	< FO	Z 50	Z 50	Z 50	< F0
08/26-29/2019	SW9065 SW9066	μg/L	< 50	< 50 < 50	< 50 < 50	< 50 12.0	< 50 < 50
08/31-09/02/2020	SW9066	μg/L	6.4 J			12.0 12 J+	97
	2119000	μg/L	50 J	29 J+	35 J+	I∠ J⊤	91
Potassium 08/26-29/2019	SW6020B	ua/I	5470	1910	3030	1250	763
	SW6020B SW6020B	μg/L	5470 6450	2060	3830 3840	4250 4240	< 6.2
02/17-19/2020 08/31-09/02/2020	SW6020B SW6020B	μg/L μg/L	6450 6310	2640	3790	4240	< 6.2 < 9.0
00/31-09/02/2020	SVVUUZUD	μg/L	0310	2040	3190	4040	\ ∀.∪

		Location	ABC-1602	ABC-1607	ABC-1608	ABC-1614	Field Blank
Sample Dates	Method	Unit		1.20 .00.	1	7.50 1011	
Selenium							
11/02-04/2016	SW6020B	μg/L	< 3.2 U	< 3.2 U	< 3.2 U	< 3.2 U	
12/12-13/2016	SW6020B	μg/L	< 3.2 U	< 3.2 U	3.5 J	< 3.2 U	
01/25-26/2017	SW6020B	μg/L	< 3.2 U	< 3.2 U	< 3.2 U	< 3.2 U	
03/06-07/2017	SW6020B	μg/L	< 3.2 U	< 3.2 U	< 3.2 U	< 3.2 U	
04/19-21/2017	SW6020B	μg/L	< 3.2 U	< 3.2 U	< 3.2 U	< 3.2 U	
05/30-06/01/2017	SW6020B	μg/L	< 3.2 U	< 3.2 U	< 3.2 U	< 3.2 U	
07/10-12/2017	SW6020B	μg/L	< 3.2 U	< 3.2 U	< 3.2 U	< 3.2 U	
08/21-23/2017	SW6020B	μg/L	< 3.2 U	< 3.2 U	< 3.2 U	< 3.2 U	
06/27/2018	SW6010D	μg/L	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
09/19/2018	SW6010D	μg/L	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
12/12-13/2018	SW6010D	μg/L	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U
08/26-29/2019	SW6010D	μg/L	< 4.7	< 4.7	< 4.7	< 4.7	< 4.7
02/17-19/2020	SW6010D	μg/L	< 4.7	< 4.7	< 4.7	< 4.7	< 4.7
08/31-09/02/2020	SW6010D	μg/L	< 4.7	< 4.7	< 4.7	< 4.7	< 4.7
Silver							
11/02-04/2016	SW6020B	μg/L	< 0.8 U	< 0.8 U	< 0.8 U	< 0.8 U	
12/12-13/2016	SW6020B	μg/L	< 0.8 U	< 0.8 U	< 0.8 U	< 0.8 U	
01/25-26/2017	SW6020B	μg/L	< 0.8 U	< 0.8 U	< 0.8 U	< 0.8 U	
03/06-07/2017	SW6020B	μg/L	< 0.8 U	< 0.8 U	< 0.8 U	< 0.8 U	
04/19-21/2017	SW6020B	μg/L	< 0.8 U	< 0.8 U	< 0.8 U	< 0.8 U	
05/30-06/01/2017	SW6020B	μg/L	1.1 J	< 0.8 U	< 0.8 U	< 0.8 U	
07/10-12/2017	SW6020B	μg/L	1.4 J	< 0.8 U	< 0.8 U	< 0.8 U	
08/21-23/2017	SW6020B	μg/L	< 0.8 U	0.85 J	< 0.8 U	< 0.8 U	
06/27/2018	SW6020A	μg/L	0.16 J	< 0.15	< 0.15	0.29 J	< 0.15
09/19/2018	SW6020A	μg/L	< 0.15	< 0.15	< 0.15	0.91 J	< 0.15
12/12-13/2018	SW6020B	μg/L	0.11 J	< 0.050 U	< 0.050 U	0.20 J	< 0.050 U
08/26-29/2019	SW6010D	μg/L	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5
02/17-19/2020	SW6010D	μg/L	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5
08/31-09/02/2020	SW6010D	μg/L	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5
Sodium	OMICCOOR	1	7000	00700	40000	05400	000 1
11/02-04/2016	SW6020B	μg/L	7880	22700	40900	25100	302 J
12/12-13/2016	SW6020B	μg/L	9010 B	20300	39600	25200	2240
01/25-26/2017	SW6020B	µg/L	9450	19100	38200	23600	146 J
03/06-07/2017	SW6020B	µg/L	8730	23800	40200	21000	46 J
04/19-21/2017 05/30-06/01/2017	SW6020B	µg/L	8930	18400	32800	20600	66.1 J
07/10-12/2017	SW6020B	µg/L	8090 8550	18400 20000	31500 35200	22500 23500	52 J 155 J
08/21-23/2017	SW6020B	µg/L	8330	20000	36300	22900	< 129
	SW6020B	µg/L	9240				
06/27/2018 09/19/2018	E200.8 E200.8	µg/L	9240 8110	18100 17000	28300 34600	24400 24700	< 18.4 < 18.4
12/12-13/2018	E200.8	µg/L	7490	14900	32000	21500	15.9 J
08/26-29/2019	SW6020B	μg/L μg/L	7490	14200	36800	30300	< 14.3
02/17-19/2020	SW6020B	μg/L μg/L	8240	14200	33400	22100	41.0 J+
08/31-09/02/2020	SW6020B	μg/L μg/L	8570	15900	32200	20900	< 49.1
Sulfate	O V V U U Z U D	μ9/∟	0370	10300	J2200	20300	` すび. 1
11/02-04/2016	SW9056A	mg/L	25.3	51.9	29.2	58.3	
12/12-13/2016	SW9056	mg/L	28.8	41.6	16.1	44.7	
01/25-26/2017	SW9056A	mg/L	28.4	44.1	20.9	49.5	
03/06-07/2017	SW9056A	mg/L	40.4	40.8	23.8	44.1	
04/19-21/2017	SW9056A	mg/L	53.8 J+	41.8	28.2	46.8	
05/30-06/01/2017	SW9056A	mg/L	49.1	44.5	27.9	44.4	
07/10-12/2017	SW9056A	mg/L	47.9	41.8	28.2	37.8	
08/21-23/2017	SW9056A	mg/L	46.5	42.3	29.5	36.7	
06/27/2018	E300	mg/L	51.6	40.3	23.5	37.8	< 0.50
09/19/2018	E300	mg/L	44.3	39.6	29.1	34.5	< 0.50
12/12-13/2018	E300	mg/L	47.4	44.9	28.1	39.9	1.0
03/11-15/2019	E300	mg/L	59.7	43.5	31.9	44.4	< 0.50
08/26-29/2019	SW9056A	mg/L	41.4	30.9	27.8	38.5	< 0.50
02/17-19/2020	SW9056A	mg/L	56.7	33.5	28.1	39.3	< 0.50
08/31-09/02/2020	SW9056A	mg/L	50.8	39.3	29.6	38.5	0.84 J
		····ə' =		1			

		Location	ABC-1602	ABC-1607	ABC-1608	ABC-1614	Field Blank
Sample Dates	Method	Unit		1.20 .00.	1		
Thallium							
11/02-04/2016	SW6020B	μg/L	< 0.2 U	< 0.2 U	< 0.2 U	< 0.2 U	
12/12-13/2016	SW6020B	μg/L	< 0.2 U	< 0.2 U	< 0.2 U	0.24 J	
01/25-26/2017	SW6020B	μg/L	< 0.2 U	< 0.2 U	< 0.2 U	< 0.2 U	
03/06-07/2017	SW6020B	μg/L	< 0.2 U	< 0.2 U	< 0.2 U	0.28 J	
04/19-21/2017	SW6020B	μg/L	< 0.2 U	< 0.2 U	< 0.2 U	< 0.2 U	
05/30-06/01/2017	SW6020B	μg/L	0.3 J	< 0.2 U	< 0.2 U	< 0.2 U	
07/10-12/2017	SW6020B	μg/L	0.31 J	< 0.2 U	< 0.2 U	< 0.2 U	
08/21-23/2017	SW6020B	μg/L	< 0.2 U	0.39 J	< 0.2 U	< 0.2 U	
06/27/2018	SW6020A	μg/L	0.050 J	0.050 J	0.027 J	0.033 J	< 0.026
09/19/2018	SW6020A	μg/L	0.034 J	0.034 J	< 0.026	< 0.026	< 0.026
12/12-13/2018	SW6020B	μg/L	< 0.060 U	< 0.060 U	< 0.060 U	< 0.060 U	< 0.060 U
08/26-29/2019	SW6020B	μg/L	< 0.060	< 0.060	< 0.060	< 0.060	< 0.060
02/17-19/2020	SW6020B	μg/L	< 0.060	< 0.060	< 0.060	< 0.060	< 0.060
08/31-09/02/2020	SW6020B	μg/L	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Tin		, , , ,		Į.	Į.	Į.	JI.
11/02-04/2016	SW6020B	μg/L	< 0.7 U	< 0.7 U	< 0.7 U	< 0.7 U	
12/12-13/2016	SW6020B	μg/L	2.5 J	< 0.7 U	< 0.7 U	2.4 J	
01/25-26/2017	SW6020B	μg/L	< 0.7 U	< 0.7 U	< 0.7 U	< 0.7 U	
03/06-07/2017	SW6020B	μg/L	4.7 J	2 J	1.6 J	7.3	
04/19-21/2017	SW6020B	μg/L	11.4	1.4 J+	2 J+	12.3	
05/30-06/01/2017	SW6020B	μg/L	< 0.7 U	< 0.7 U	< 0.7 U	< 0.7 U	
07/10-12/2017	SW6020B	μg/L	< 0.7 U	< 0.7 U	< 0.7 U	< 0.7 U	
08/21-23/2017	SW6020B	μg/L	< 0.7 U	< 0.7 U	< 0.7 U	< 0.7 U	
06/27/2018	SW6020A	μg/L	< 0.16	< 0.16	< 0.16	< 0.16	< 0.16
09/19/2018	SW6020A	μg/L	< 0.16	< 0.16	< 0.16	< 0.16	< 0.16
12/12-13/2018	SW6020A	μg/L	0.12 J	< 0.090 U	< 0.090 U	< 0.090 U	0.35 J
08/26-29/2019	SW6020B	μg/L	< 0.090	< 0.090	< 0.090	< 0.090	< 0.090
02/17-19/2020	SW6020B	μg/L	< 0.090	0.091 J	< 0.090	< 0.090	< 0.090
08/31-09/02/2020	SW6020B	μg/L	< 0.24	< 0.24	< 0.24	< 0.24	< 0.24
Total Dissolved So		M9/ □	0.21	10.21	0.21	10.21	0.21
11/02-04/2016	SM2540C	mg/L	116	206	279	389	
12/12-13/2016	SM2540C	mg/L	122	173	305	465	
01/25-26/2017	SM2540C	mg/L	67.0	200	284	334	
03/06-07/2017	SM2540C	mg/L	45.0	145	248	294	
04/19-21/2017	SM2540C	mg/L	124 J+	156	254	316	
05/30-06/01/2017	SM2540C	mg/L	109	139	234	365	
07/10-12/2017	SM2540C	mg/L	113	137	246	321	
08/21-23/2017	SM2540C	mg/L	109	137	240	330	
06/27/2018	SM2540C	mg/L	126	116	225	321	< 25.0
09/19/2018	SM2540C	mg/L	113	133	213	317	< 25.0
12/12-13/2018	SM2540C	mg/L	117	130	232	244	< 25.0 U
03/11-15/2019	SM2540C	mg/L	132 J+	132	250	260 J	254
08/26-29/2019	SM2540C	mg/L	144 J+	118	237	284	45.0
02/17-19/2020	SM2540C	mg/L	131	123	241	242	< 25.0
08/31-09/02/2020	SM2540C	mg/L	131	130	239	244	< 25.0
Total Organic Carb		g/L	101	100		_ TT	- 20.0
11/02-04/2016	SM5310B	mg/L	< 0.50 U	1.4	2.9	5.9	
12/12-13/2016	SM5310B	mg/L	< 0.50 U	0.94 J	1.8	5.4	
01/25-26/2017	SM5310B	mg/L	< 0.50 U	1.1	2.0	4.2	
03/06-07/2017	SM5310B	mg/L	< 0.50 U	0.87 J	1.5	3.8	
04/19-21/2017	SM5310B	mg/L	< 0.50 U	1.7	3.0	4.1	
05/30-06/01/2017	SM5310B	mg/L	< 0.50 U	0.97 J	1.5	4.1	
07/10-12/2017	SM5310B	mg/L	< 0.50 U	1.1	1.4	4.7	
08/21-23/2017	SM5310B	mg/L	< 0.50 U	0.72 J	1.4	3.8	
06/27/2018	SM5310B	mg/L	< 0.50	1.0	1.6	4.6	< 0.50
09/19/2018	SM5310B SM5310B	mg/L	< 0.50	1.0	1.3	4.6	< 0.50
12/12-13/2018	SM5310B SM5310B	mg/L	< 0.50 U	0.93 J	1.4	3.4	< 0.50 U
08/26-29/2019	SW9060A	mg/L	< 0.50	19.9 J	0.97 J	3.1	< 0.50
02/17-19/2020	SW9060A SW9060A	mg/L	< 0.50	0.63 J	1.2	2.8	< 0.50
08/31-09/02/2020	SW9060A SW9060A	mg/L	< 0.50	0.63 J 0.74 J	1.5	3.0	< 0.50
00/01-00/02/2020	O V V 3000A	my/L	` 0.00	0.743	1.0	J.0	` 0.00

		Location	ABC-1602	ABC-1607	ABC-1608	ABC-1614	Field Blank
Sample Dates	Method	Unit					
Total Radium							
11/02-04/2016	CALC	pCi/L	2.82 J	1.27 U	1.16 U	1.28 U	
12/12-13/2016	CALC	pCi/L	1.23 U	0.796 U	0.241 U	0.402 U	
01/25-26/2017	CALC	pCi/L	1.02 U	0.948 U	0.783 U	0.678 U	
03/06-07/2017	CALC	pCi/L	1.01 U	1.70	1.26 U	0.588 U	
04/19-21/2017	CALC	pCi/L	0.941 U	0.810 U	1.20 U	0.616 U	
05/30-06/01/2017	CALC	pCi/L	1.63	0.768 U	0.737 U	0.632	
07/10-12/2017	CALC	pCi/L	2.79	1.28	0.949	0.737 U	
08/21-23/2017	CALC	pCi/L	1.56	1.09 U	1.56	1.96	
06/27/2018	CALC	pCi/L	2.73	1.58 U	0.801 U	0.994 U	0.506 U
09/19/2018	RA226RA228	pCi/L	1.26 J	0.852 U	0.731 U	1.42 J	0.659 U
12/12-13/2018	RA226RA228	pCi/L	1.54	0.825 U	0.843 U	1.12	0.570 U
08/26-29/2019	RA226RA228	pCi/L	1.87	1.58	1.59	1.56	1.33 J
02/17-19/2020	RA226RA228	pCi/L	2.79 J	1.76 J	2.00 J	1.52 J	0.359 U
08/31-09/02/2020	RA226RA228	pCi/L	3.29	1.31 U	0.836 U	0.252 U	0.981 U
Vanadium		F					
11/02-04/2016	SW6020B	μg/L	< 0.7 U	< 0.7 U	2 J	1.4 J	
12/12-13/2016	SW6020B	μg/L	< 0.7 U	0.87 B	< 0.7 U	< 0.7 U	
01/25-26/2017	SW6020B	μg/L	< 0.7 U	< 0.7 U	< 0.7 U	< 0.7 U	
03/06-07/2017	SW6020B	μg/L	1.2 J	1.3 J	0.89 J	2 J	
04/19-21/2017	SW6020B	μg/L	1.2 J+	1.1 J+	< 0.7 U	1.7 J+	
05/30-06/01/2017	SW6020B	µg/L	< 0.7 U	< 0.7 U	1.2 J	1 J	
07/10-12/2017	SW6020B	μg/L	< 0.7 U	< 0.7 U	< 0.7 U	0.74 J	
08/21-23/2017	SW6020B	µg/L	< 0.7 U	< 0.7 U	< 0.7 U	0.7 J	
06/27/2018	SW6020A	µg/L	0.34 J	0.76 J	1.1	2.4	< 0.27
09/19/2018	SW6020A	ua/L	< 0.27	< 0.27	0.31 J	0.38 J	< 0.27
12/12-13/2018	SW6020B	µg/L	0.17 J	1.6	0.22 J	0.27 J	< 0.12 U
08/26-29/2019	SW6010D	µg/L	< 1.3	< 1.3	1.9 J	2.3 J	< 1.3
02/17-19/2020	SW6010D	µg/L	< 1.3	< 1.3	< 1.3	1.4 J	< 1.3
08/31-09/02/2020	SW6010D	µg/L	< 3.9	< 3.9	< 3.9	< 3.9	< 3.9
Zinc		1 1-3-					
11/02-04/2016	SW6020B	μg/L	< 24 U	< 24 U	< 24 U	< 24 U	
12/12-13/2016	SW6020B	µg/L	< 24 U	< 24 U	< 24 U	< 24 U	
01/25-26/2017	SW6020B	µg/L	< 24 U	< 24 U	< 24 U	< 24 U	
03/06-07/2017	SW6020B	µg/L	< 24 U	25.4 J	< 24 U	< 24 U	
04/19-21/2017	SW6020B	µg/L	< 24 U	< 24 U	< 24 U	< 24 U	
05/30-06/01/2017	SW6020B	µg/L	< 24 U	< 24 U	< 24 U	< 24 U	
07/10-12/2017	SW6020B	µg/L	< 24 U	< 24 U	< 24 U	< 24 U	
08/21-23/2017	SW6020B	μg/L	< 24 U	< 24 U	< 24 U	< 24 U	
06/27/2018	SW6020A	μg/L	4.9 J	13.9	10.9	8.4	< 1.9
09/19/2018	SW6020A	μg/L	6.1 J+	13.1	15.5 J+	8.2	2.3 J+
12/12-13/2018	SW6020B	µg/L	4.1 J	15.2	13.8 J+	5.0 J	1.6 J
08/26-29/2019	SW6010D	μg/L	< 3.9	19.5	12.2	5.5 J	7.4 J+
02/17-19/2020	SW6010D	µg/L	4.0 J	21.3	9.6 J	< 3.9	< 3.9
08/31-09/02/2020	SW6010D	µg/L	< 9.5	19.8	12.3	< 9.5	< 9.5

Notes: μ g/L = Microgram per liter

mg/L = Milligram per liter

SU = Standard Units

C= Degrees Celsius

pCi/L = picoCurie per liter

J = Estimated concentration

J+ = Potential bias high

U = Not detected at the indicated Minimum Detectable Concentration

-- = Not Sampled

APPENDIX G DATA VALIDATION FORMS

APPENDIX G.1 FIRST SEMI-ANNUAL GROUNDWATER MONITORING EVENT DATA VALIDATION FORM (FEBRUARY 2020)

Project Name: Possum Point Power Station - Pond ABC - 1SA2020

Project Reference Number: 20139775.230 Sampling Event Date: February 19, 2020

 Review Date: 03/03/2020
 Initials: AB

 Review Date: 03/20/2020
 Initials: ALR

 Review Date: 05/15/2020
 Initials: RMS

Person(s) performing the review are to initial each item on this form as acknowledgement of data acceptance, or as acknowledgement of a review issue. In the case of the latter, a brief explanation should follow the applicable item.

Golder Associates Inc. has reviewed the laboratory certificates of analysis, chain-of-custody form, and laboratory provided sample group quality assurance and quality control data for the above referenced sample group to identify potential bias or inaccuracy, in general accordance with the following United States Environmental Protection Agency (EPA) and Department of Energy (DOE) documents:

- National Functional Guidelines for Organic Superfund Methods Data Review, January 2017;
- National Functional Guidelines for Inorganic Superfund Methods Data Review, January 2017;
- US Department of Energy Evaluation of Radiochemical Data Usability, April 1997; and
- Sampling and Analysis Plan for US Department of Energy Office of Legacy Management Sites.

COMMON ACRONYMS:

- MS = matrix spike
- MSD = matrix spike duplicate
- LCS = laboratory control spike
- RPD = relative percent difference
- MB = method blank
- DUP = duplicate
- FB = field blank
- VSWMR = Virginia Solid Waste Management Regulations
- J = estimated
- ND and/or U= not detected
- COC = chain of custody
- QC = quality control
- µg/L = micrograms per liter
- mg/L = milligrams per liter
- EPA = United States Environmental Protection Agency
- pCi/L = picocuries per liter

COMPLIANCE ANALYTE LIST

- Historical VPDES Parameters: <u>Hardness, Iron, Manganese, Potassium, Sodium, Phenolics, Total</u>

 <u>Organic Carbon</u>
- CCR Appendix III to Part 257
- CCR Appendix IV to Part 257
- VSWMR Phase II Parameters: Copper, Nickel, Silver, Tin, Vanadium, Zinc
- Other: Hexavalent Chromium

Note: Pace Package No.: 92466164; AWS Work Order: 20B0838

1.0 CHAIN OF CUSTODY (COC) REVIEW

Yes COC was properly signed by all parties.

Yes Correct project name and number are on the form.

Yes Sample receipt condition at laboratory was acceptable.

Yes Each sample and blank submitted for analysis appears in the data report.

Note: _____

2.0 SAMPLE HOLDING TIMES

Yes Holding times for extraction and/or analysis were met for each analytical method.

	Review Criteria							
Method	Analytes	Holding Time						
EPA 9056A	Chloride, Fluoride, Sulfate, Nitrate	28 days						
EPA 6000 series	Metals	6 months						
EPA 7470	Mercury	28 days						
EPA 9000 series	Radium-226 & Radium-228	6 months						
SM2340B	Hardness	6 months						
SM 2540C	TDS	7 days						
EPA 9060	Total Organic Carbon	28 days						
EPA 9066	Phenolics	28 days						
EPA 7196	Hexavalent Chromium	24 hours (unpreserved)						

Notes: _____

3.0 LABORATORY QUALITY CONTROL REVIEW

Yes Laboratory analyzed at least one internal blank for each method, where applicable.

See Note Laboratory blanks were interference free.

Notes:

The following table presents method blank detections and their associated sample delivery groups (SDG; batch). In accordance with EPA guidance, associated samples within the same batch have been evaluated using professional judgement. Inorganic data less than 10X the blank concentration may be qualified if the detection is not considered part of a visual data trend and is not consistent with recent historical data (i.e. the highest concentration reported over the last 8 sampling events). Organic data corresponding to blank contamination may be qualified if the detection is not considered part of a visual data trend and is not consistent with recent historical data. Additionally, associated samples for organic common lab contaminants (acetone, MC, and MEK) may be qualified if the results are 2X greater than the detected blank concentration. Associated samples may be qualified estimated high (J+), estimated low (J-),

non-detect estimated (UJ) or unusable (R). As presented below, data qualification is recommended.

For radiochemistry data, if the reported absolute value of the method blank is above the minimum detectable concentration (MDC) and no other deficiencies are noted in the associated dataset, detections above the MDC and less than 5 times the concentration reported in the method blank may be blank qualified "J" in accordance with qualification guidance. As presented below, data qualification is recommended. Based on EPA guidance, qualified results for radium-226 and/or radium-228 will result in qualified results for total radium.

Parameter	Method Blank Detection (μg/L)	Batch	Associated Qualified Sample(s)	Validator Qualifier
Lead	0.051 J	527589	ı	
Manganese	0.19 J	527589	ABC- Field Blank	J+
Sodium	21.5 J	527589	ABC- Field Blank	J+
Radium-226	0.526 (pCi/L)	385164	ABC-1602, ABC-1607, ABC-1608, ABC-1614	J

NA Surrogate recoveries are provided for each analytical method, where application
--

NA Surrogate recoveries for each method are within the acceptable limits.

Notes:

Yes Tracer and carrier yields are provided for each analytical method, where applicable (Radiochemical Data Only).

<u>Yes</u> Tracer and carrier yields for each method are within the acceptable limits (Radiochemical Data Only).

Notes:

Yes MS/MSD/LCS/RPD data results are provided for each analytical method.

See Note MS/MSD/LCS/RPD recoveries for each method are within the acceptable limits.

Notes: The following table presents recoveries and relative percent differences (RPDs) that were outside of QC limits for the associated sample delivery group (analytical batch). In accordance with EPA guidance for evaluation of spike recoveries, the associated samples may be qualified estimated high (J+), estimated low (J-), non-detect estimated (UJ), or unusable (R) using professional judgement to evaluate the spike recovery. Post-digestion spike recovery will be evaluated for MS/MSD qualification purposes where provided. As presented, no data qualification is recommended using professional jusgement based on the review of historical results and acceptable LCS recoveries.

In accordance with EPA guidance for evaluation of RPDs, the associated samples may be qualified estimated (J or UJ) using professional judgement to evaluate the RPD. As presented, no data qualification is recommended using professional judgement based on the review of historical results and acceptable LCS recoveries.

Parameter	Recovery Outside QC Limits	QC Batch	MS/MSD Batch ID	Associated Qualified Sample(s)	Validator Qualifier
Potassium	MS, MSD	527589	2818861/2818862		
Polassium	MS	527569	2818836/2818864	-	
Sodium	MS, MSD	527589	2818861/2818862	1	
Sodium	MS, MSD	527569	2818836/2818864		
Fluoride	MS, RPD	526599	2814064/2814065		
Fluoride	MS, MSD	526599	2814066/2814067		
Sulfate	MS, MSD	526599	2814064/2814065		
Phenolics	MS, MSD	614847	3340674/3340675		

Yes Minimum Detectable Concentrations (MDCs) are provided for radiological samples.

Yes Radiological samples reported below their respective MDC have been qualified with a "U."

Notes: ____

Parameter	Associated Samples Below MDC
Radium-226	ABC-Field Blank
Radium-228	ABC-1602, ABC-1614, ABC-Duplicate, ABC-Field Blank
Total Radium	ABC-Duplicate, ABC-Field Blank

4.0 ANALYTE LISTS/METHODS

<u>Yes</u> The proper number of constituents are present for each analyte list as identified above (including detects where applicable).

Yes Proper EPA SW-846 analytical methods were used for analysis.

Notes: ____

5.0 OUTLIER EVALUATION

<u>Yes</u> Analytical results have been evaluated for variances +/- 25% compared to the average of the most recent 8 data points.

Yes Analytical results with variances >25% have been evaluated for trends.

NA If no trends were identified for analytical results with variances >25%, a data quality review (DQR) was conducted for suspect analytical results identified as possible outliers. DQR results summarized below.

Analyte	Location	DQR identified issues?	Re-analysis requested?	Outlier Identification

6.0 DATA REPORTING

<u>See Note</u> Trip; field and/or equipment; and laboratory blank results have all been reported and the detected constituents in these blanks, if any, have been qualified using professional judgement where detected in other samples.

Notes: The following table presents field blank detections and associated samples that have been qualified. In accordance with EPA guidance, associated samples have been evaluated using professional judgement. Inorganic data less than 10X the blank concentration may be qualified if the detection is not considered part of a visual data trend and is not consistent with recent historical data (i.e. the highest concentration reported over the last 8 sampling events). Organic data corresponding to blank contamination may be qualified if the detection is not considered part of a visual data trend and is not consistent with recent historical data. Additionally, associated samples for organic common lab contaminants (acetone, MC, and MEK) may be qualified if the results are 2X greater than the detected blank concentration. Associated samples may be qualified estimated high (J+), estimated low (J-), non-detect estimated (UJ) or unusable (R). As presented below, no data qualification is recommended.

Sample ID	Sample ID Parameter		Associated Qualified Sample(s)	Validator Qualifier
Field Blank	Manganese	0.46 J		
Field Dialik	Sodium	41.0 J		

Yes It is clear from the laboratory report that samples have or have not been diluted during analysis, and if the samples have been diluted, the result is reported as a multiple of the dilution (*e.g.*, a sample diluted 10x resulting in an analytical detection of 1.0 should be reported as 10).

Yes The report provides the reporting limit for each constituent.

5/6

<u>Yes</u>	The proper reporting limits have been used (e.g. NC Solid Waste Section approved PQLs, or
	VA DEQ Permit approved detection limits, as appropriate).
Notes:	
7.0	FIELD DUPLICATE PRECISION
<u>Yes</u>	Field duplicate sample results were within control limits of 20% relative percent difference for sample results greater than 5 times the quantitation limit. When one or both results were less than 5 times the quantitation limit, the difference between the two results was less than twice the reporting limit.
Notes:	

https://golderassociates.sharepoint.com/sites/123488/project files/6 deliverables/2021-01-29 ppt pond abc ccr+vswmr amr/data reviews/1sa2020/2020-03-03 ppt pond abc 1sa2020 data review.docx

APPENDIX G.2 SECOND SEMI-ANNUAL GROUNDWATER MONITORING EVENT DATA VALIDATION FORM (AUGUST-SEPTEMBER 2020)

Project Name: Possum Point Power Station - Ponds ABC - 2SA2020

Project Reference Number: 20139775.220A Sampling Event Date: September 2, 2020

 Review Date: 10/20/2020
 Initials: ALR

 Review Date: 12/10/2020
 Initials: RMS

Person(s) performing the review are to initial each item on this form as acknowledgement of data acceptance, or as acknowledgement of a review issue. In the case of the latter, a brief explanation should follow the applicable item.

Golder Associates Inc. has reviewed the laboratory certificates of analysis, chain-of-custody form, and laboratory provided sample group quality assurance and quality control data for the above referenced sample group to identify potential bias or inaccuracy, in general accordance with the following United States Environmental Protection Agency (EPA) and Department of Energy (DOE) documents:

- · National Functional Guidelines for Inorganic Superfund Methods Data Review, January 2017;
- National Functional Guidelines for Organic Superfund Methods Data Review, January 2017;
- US Department of Energy Evaluation of Radiochemical Data Usability, April 1997; and
- Sampling and Analysis Plan for US Department of Energy Office of Legacy Management Sites.

COMMON ACRONYMS:

- MS = matrix spike
- MSD = matrix spike duplicate
- LCS = laboratory control spike
- RPD = relative percent difference
- MB = method blank
- DUP = duplicate
- FB = field blank
- VSWMR = Virginia Solid Waste Management Regulations
- J = estimated
- ND and/or U= not detected
- COC = chain of custody
- QC = quality control
- μg/L = micrograms per liter
- mg/L = milligrams per liter
- EPA = United States Environmental Protection Agency
- pCi/L = picocuries per liter

COMPLIANCE ANALYTE LIST

- Historical VPDES Parameters: <u>Alkalinity, Iron, Hardness, Manganese, Sodium, Total Organic</u>
 Carbon
- CCR Appendix III to Part 257
- CCR Appendix IV to Part 257
- VSWMR Phase II Parameters: <u>Antimony, Arsenic, Barium, Beryllium, Cadmium, Total Chromium, Cobalt, Lead, Lithium, Mercury, Selenium, Thallium, Copper, Cyanide, Nickel, Silver, Sulfide, Tin, Vanadium, Zinc</u>
- Other: <u>Hexavalent Chromium</u>

Note: Pace Project No: 92493784; AWS Work Order: 2010147

1.0 CHAIN OF CUSTODY (COC) REVIEW

Yes COC was properly signed by all parties.

Yes Correct project name and number are on the form.

Yes Sample receipt condition at laboratory was acceptable.

Yes Each sample and blank submitted for analysis appears in the data report.

Note:	

2.0 SAMPLE HOLDING TIMES

Yes Holding times for extraction *and/or* analysis were met for each analytical method.

Review Criteria					
Method	Analytes	Holding Time			
EPA 9056A	Chloride, Fluoride,Sulfate	28 days			
EPA 6000 series	Metals	6 months			
EPA 7470	Mercury	28 days			
EPA 9000 series	Radium-226 & Radium-228	6 months			
SM2340B	Hardness	6 months			
SM 2540C	TDS	7 days			
EPA 9060	Total Organic Carbon	28 days			
EPA 9066	Phenolics	28 days			
EPA 7196	Hexavalent Chromium	24 hours (unpreserved)			

Notes:	
3.0	LABORATORY QUALITY CONTROL REVIEW
<u>Yes</u>	Laboratory analyzed at least one internal blank for each method, where applicable.
<u>Yes</u>	Laboratory blanks were interference free.
Notes:	:
<u>NA</u>	Surrogate recoveries are provided for each analytical method, where applicable.
<u>NA</u>	Surrogate recoveries for each method are within the acceptable limits.
Notes	
<u>Yes</u>	Tracer and carrier yields are provided for each analytical method, where applicable (Radiochemical Data Only).
<u>Yes</u>	Tracer and carrier yields for each method are within the acceptable limits (Radiochemical Data Only).
Notes:	

<u>Yes</u> MS/MSD/LCS/RPD data results are provided for each analytical method.

See Note MS/MSD/LCS/RPD recoveries for each method are within the acceptable limits.

Notes: The following table presents recoveries and relative percent differences (RPDs) that were outside of QC limits for the associated sample delivery group (analytical batch). In accordance with EPA guidance for evaluation of spike recoveries, the associated samples may be qualified estimated high (J+), estimated low (J-), non-detect estimated (UJ), or unusable (R) using professional judgement to evaluate the spike recovery. Post-digestion spike recovery will be evaluated for MS/MSD qualification purposes where provided. As presented, no data qualification is recommended. No MS/MSD results were provided for radium-226 or radium-228.

In accordance with EPA guidance for evaluation of RPDs, the associated samples may be qualified estimated (J or UJ) using professional judgement to evaluate the RPD. As presented, no data qualification is recommended.

Parameter	Recovery Outside QC Limits	QC Batch	MS/MSD Batch ID	Associated Qualified Sample(s)	Validator Qualifier
Calcium	MS	565136	2995307/2995308		
Iron	MS, MSD	565305	2995909/2995910		
Manganese	MS, MSD	565305	2995909/2995910		
Potassium	MS, MSD	565305	2995909/2995910		
Sodium	MS, MSD	565305	2995909/2995910		
Cobalt	MSD	565305	2995911/2995912		
Iron	MS, MSD	565305	2995911/2995912		
Manganese	MS, MSD	565305	2995911/2995912		
Potassium	MSD	565305	2995911/2995912		
Sodium	MS, MSD	565305	2995911/2995912		
Phenolics	MS, MSD	692013	2082287/2082288		

<u>Yes</u> Minimum Detectable Concentrations (MDCs) are provided for radiological samples.

Yes Radiological samples reported below their respective MDC have been qualified with a "U."

Notes: ____

Parameter	Associated Samples Below MDC		
Radium-226 ABC-1607, ABC-1608, ABC-1614, ABC-Field Blank Radium-228 ABC-1607, ABC-1608, ABC-1614, ABC-Duplicate, ABC-Field Blank			
		Total Radium ABC-1607, ABC-1608, ABC-1614, ABC-Duplicate, ABC-Field Blank	

4.0 ANALYTE LISTS/METHODS

<u>Yes</u> The proper number of constituents are present for each analyte list as identified above (including detects where applicable).

Yes Proper EPA SW-846 analytical methods were used for analysis.

Notes: ____

5.0 OUTLIER EVALUATION

Yes Analytical results have been evaluated for variances +/- 25% compared to the average of the most recent 8 data points.

<u>Yes</u> Analytical results with variances >25% have been evaluated for trends.

NA If no trends were identified for analytical results with variances >25%, a data quality review (DQR) was conducted for suspect analytical results identified as possible outliers. DQR results summarized below.

Analyte	Location	DQR identified issues?	Re-analysis requested?	Outlier Identification
Hexavalent Chromium	ABC-1614	High concentration reported; no issues noted with associated QC	No	Result qualified as estimated (J) as total chromium results were reported as non-detect

6.0 DATA REPORTING

<u>See Note</u> Trip; field and/or equipment; and laboratory blank results have all been reported and the detected constituents in these blanks, if any, have been qualified using professional judgement where detected in other samples.

Notes: The following table presents field blank detections and associated samples that have been qualified. In accordance with EPA guidance, associated samples have been evaluated using professional judgement. Inorganic data less than 10X the blank concentration may be qualified if the detection is not considered part of a visual data trend and is not consistent with recent historical data (i.e. the highest concentration reported over the last 8 sampling events). Organic data corresponding to blank contamination may be qualified if the detection is not considered part of a visual data trend and is not consistent with recent historical data. Additionally, associated samples for organic common lab contaminants (acetone, MC, and MEK) may be qualified if the results are 2X greater than the detected blank concentration. Associated samples may be qualified estimated high (J+), estimated low (J-), non-detect estimated (UJ) or unusable (R). As presented below, no data qualification is recommended.

Sample ID	Parameter	Blank Detection	Associated Qualified Sample(s)	Validator Qualifier
Field Blank	Sulfate (mg/L)	0.84 J		
Field Blank	Phenolics (mg/L)	0.097	ABC-1602, ABC-1607, ABC-1608, ABC-1614, ABC-Duplicate	J+

Yes It is clear from the laboratory report that samples have or have not been diluted during analysis, and if the samples have been diluted, the result is reported as a multiple of the dilution (*e.g.*, a sample diluted 10x resulting in an analytical detection of 1.0 should be reported as 10).

Yes The report provides the reporting limit for each constituent.

<u>Yes</u> The proper reporting limits have been used (*e.g.* NC Solid Waste Section approved PQLs, or VA DEQ Permit approved detection limits, as appropriate).

Notes:

7.0 FIELD DUPLICATE PRECISION

<u>Yes</u> Field duplicate sample results were within control limits of 20% relative percent difference for sample results greater than 5 times the quantitation limit. When one or both results were less than 5 times the quantitation limit, the difference between the two results was less than twice the reporting limit.

Notes: The following table presents field duplicates and their associated parent samples that were not within control limits. In accordance with EPA guidance, sample results with field duplicate imprecison may be qualified estimated (J) or non-detect estimated (UJ). As presented below, data qualification is recommended.

Parameter	Associated Samples	Parent Sample Result (µg/L)	Duplicate Sample Result (µg/L)	Re-analysis Requested?	Outlier Indentification
Phenolics	ABC-1602/ ABC-1602 DUP	50.0	99.0	No	Both parent and duplicate sample qualified as estimated (J)

Note: Due to field duplicate imprecision, following qualification guidance, the parent sample for ABC-1602 is qualified as estimated (J); this non-directionally biased qualifier supercedes the directionally biased qualifier (J+).

https://golderassociates.sharepoint.com/sites/123488/project files/6 deliverables/2021-01-29 ppt pond abc ccr+vswmr amr/data reviews/2sa2020/2020-10-20 ppt pond abc 2sa2020 data review.docx

APPENDIX G.3 SECOND SEMI-ANNUAL VERIFICATION GROUNDWATER MONITORING EVENT DATA VALIDATION FORM (OCTOBER 2020)

Project Name: Possum Point Power Station - Ponds ABC - 2SA2020 Verification

Project Reference Number: 20139775.220A Sampling Event Date: October 15, 2020

 Review Date: 11/23/2020
 Initials: ALR

 Review Date: 12/10/2020
 Initials: RMS

Person(s) performing the review are to initial each item on this form as acknowledgement of data acceptance, or as acknowledgement of a review issue. In the case of the latter, a brief explanation should follow the applicable item.

Golder Associates Inc. has reviewed the laboratory certificates of analysis, chain-of-custody form, and laboratory provided sample group quality assurance and quality control data for the above referenced sample group to identify potential bias or inaccuracy, in general accordance with the following United States Environmental Protection Agency (EPA) documents:

- National Functional Guidelines for Inorganic Superfund Methods Data Review, January 2017;
- and
- Sampling and Analysis Plan for US Department of Energy Office of Legacy Management Sites.

COMMON ACRONYMS:

- MS = matrix spike
- MSD = matrix spike duplicate
- LCS = laboratory control spike
- RPD = relative percent difference
- MB = method blank
- DUP = duplicate
- FB = field blank
- VSWMR = Virginia Solid Waste Management Regulations
- J = estimated
- ND and/or U= not detected
- COC = chain of custody
- QC = quality control
- μg/L = micrograms per liter
- mg/L = milligrams per liter
- EPA = United States Environmental Protection Agency
- pCi/L = picocuries per liter

COMPLIANCE ANALYTE LIST

	Historical VPDES Parameters:
	CCR Appendix III to Part 257
	CCR Appendix IV to Part 257
	VSWMR Phase II Parameters:
\boxtimes	Other: Cobalt

Note: Pace Project No: 92500785, 92500784

1.0 CHAIN OF CUSTODY (COC) REVIEW

Yes COC was properly signed by all parties.

Yes Correct project name and number are on the form.

Yes Sample receipt condition at laboratory was acceptable.

Yes Each sample and blank submitted for analysis appears in the data report.

Note: _____

2.0 SAMPLE HOLDING TIMES

Yes Holding times for extraction *and/or* analysis were met for each analytical method.

Review Criteria					
Method Analytes Holding Time					
EPA 6000 series	Metals	6 months			

3.0 LABORATORY QUALITY CONTROL REVIEW

Yes Laboratory analyzed at least one internal blank for each method, where applicable.

Yes Laboratory blanks were interference free.

Notes:

Parameter	Method Blank Detection	Batch	Associated Qualified Sample(s)	Validator Qualifier
	-		1	

<u>NA</u>	Surrogate recoveries are provided for each analytical method, where applicable.
<u>NA</u>	Surrogate recoveries for each method are within the acceptable limits.

Notes: ____

NA Tracer and carrier yields are provided for each analytical method, where applicable (Radiochemical Data Only).

NA Tracer and carrier yields for each method are within the acceptable limits (Radiochemical Data Only).

Notes: ____

<u>Yes</u>	MS/MSD/LCS/RPD data results are provided for each analytical method.
<u>Yes</u>	MS/MSD/LCS/RPD recoveries for each method are within the acceptable limits.
Notes:	
<u>NA</u>	Minimum Detectable Concentrations (MDCs) are provided for radiological samples.
<u>NA</u>	Radiological samples reported below their respective MDC have been qualified with a "U."
Notes:	
4.0	ANALYTE LISTS/METHODS
<u>Yes</u>	The proper number of constituents are present for each analyte list as identified above (including detects where applicable).
<u>Yes</u>	Proper EPA SW-846 analytical methods were used for analysis.
Notes:	
5.0	OUTLIER EVALUATION
<u>NA</u>	Analytical results have been evaluated for variances +/- 25% compared to the average of the most recent 8 data points.
<u>NA</u>	Analytical results with variances >25% have been evaluated for trends.
<u>NA</u>	If no trends were identified for analytical results with variances >25%, a data quality review (DQR) was conducted for suspect analytical results identified as possible outliers. DQR results summarized below.
6.0	DATA REPORTING
<u>Yes</u>	Trip; field and/or equipment; and laboratory blank results have all been reported and the detected constituents in these blanks, if any, have been qualified using professional judgement where detected in other samples.
Notes:	
<u>Yes</u>	It is clear from the laboratory report that samples have or have not been diluted during analysis, and if the samples have been diluted, the result is reported as a multiple of the dilution (e.g., a sample diluted 10x resulting in an analytical detection of 1.0 should be reported as 10).
<u>Yes</u>	The report provides the reporting limit for each constituent.
<u>Yes</u>	The proper reporting limits have been used (e.g. NC Solid Waste Section approved PQLs, or VA DEQ Permit approved detection limits, as appropriate).
Notes:	

7.0 FIELD DUPLICATE PRECISION

<u>NA</u>	Field duplicate sample results were within control limits of 20% relative percent difference for
	sample results greater than 5 times the quantitation limit. When one or both results were less
	than 5 times the quantitation limit, the difference between the two results was less than twice the
	reporting limit.
Notes:	

https://golderassociates.sharepoint.com/sites/123488/project files/6 deliverables/2021-01-29 ppt pond abc ccr+vswmr amr/data reviews/2sa2020/2020-11-23 ppt pond abc 2sa2020 verification data review.docx

APPENDIX H PONDS ABC ASSESSMENT OF CORRECTIVE MEASURES EXTENSION DEMONSTRATION AND CERTIFICATION

HALEY & ALDRICH, INC. 1 Park West Circle Suite 208 Midlothian, Virginia 23114 804-419-0199

21 April 2020 File No. 134660-002

Dominion Energy Services, Inc. 120 Tredegar Street Richmond, Virginia 23219

Attention:

Ms. Kelly Hicks, P.G.

Environmental Consultant

Subject:

Groundwater Assessment of Corrective Measures Extension

Demonstration of Need Certification
Pond ABC – Possum Point Power Station

Dumfries, Virginia

Dear Ms. Hicks:

Haley & Aldrich, Inc. (Haley & Aldrich) is providing Dominion Energy Services, Inc. (Dominion) with this letter certifying that, based on our knowledge of the groundwater monitoring and assessment of corrective measure (ACM) activities for Pond ABC at the Possum Point Power Station in Dumfries, Virginia (Site), the demonstration of need for a 60-day extension to complete the ACM is justified and valid.

The facility identified a groundwater protection standard exceedance on 24 October 2019. In accordance with the *Virginia Solid Waste Management Regulations 9VAC 20-81-800*, and the United States Environmental Protection Agency (USEPA) *Standards for the Disposal of Coal Combustion Residuals and Surface Impoundments 40 CFR §257.96*, the facility is required to complete an ACM by April 21, 2020. A monitoring well to characterize the groundwater was installed in early February 2020, but due in part to complications and availability of resources as a result of the Covid-19 pandemic, the facility needs additional time to complete monitoring and other activities. Due to these Site-specific circumstances, a 60-day extension to the completion timeframe pursuant to 40 CFR §257.96(a) is needed in order to complete the assessment. The facility intends to complete the characterization activities and the associated ACM report by June 20, 2020.

As used herein, the word "certification" or "certifying" shall mean an expression of the Engineer's professional opinion to the best of his or her information, knowledge, and belief, and does not constitute a warranty or guarantee by the Engineer.

Dominion Energy Services, Inc. 21 April 2020 Page 2

Should you have any questions regarding this notification, please contact Monty Bennett at 804-419-0010 or at mbennett@haleyaldrich.com or the undersigned at 864-214-8754 or at jklaiber@haleyaldrich.com.

Sincerely yours, HALEY & ALDRICH, INC.

Jeffrey A. Klaiber, P.E. Principal Consultant

cc: Montgomery Bennett, P.G. Nadia Glucksberg, P.G.

C\Usern\bmcclure\AppData\Local\Microsoft\Windows\INetCache\Content Out ook\VPVFGW8F\2019-04-21_PP Pond ABC ACM Extension Letter F.docx

