

DOMINION ENERGY SOUTH CAROLINA

WILLIAMS STATION NEW FGD POND

BERKELEY COUNTY, SOUTH CAROLINA

EPA CCR RULE COMPLIANCE

2022 CCR ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT

January 31, 2023

Jason A. Yonts, P.G. Environmental Scientist

Richard A. Mayer Jr., P. Project Hydrogeologist

TRC Environmental Corporation | Dominion Energy South Carolina Williams Station New FGD Pond 2022 Annual Groundwater Monitoring and Corrective Action Report

\GREENVILLE-FP1\WPGVL\PJT2\416559\0006 WILLIAMS\R4165590006-018 WILLIAMS FGD POND 2022 CCR DETECTION ANNUAL RPT.DOCX

Table of Contents

Exe	cutive S	Summary	/	1						
1.	Intro	duction		1-4						
	1.1	Site Lo	ocation	1-4						
	1.2	1-4								
	1.3	Key Ac	ctions	1-5						
	1.4	Monito	oring Program Concerns	1-5						
2.	Site	Informat	tion	2-1						
	2.1	Monito	oring Well Network	2-1						
	2.2	Monite	oring Well Installation and Decommissioning Activities	2-1						
	2.3	Groun	dwater Potentiometric Surface Evaluation	2-1						
		2.3.1	First Semiannual 2022 Detection Monitoring Program	2-2						
		2.3.2	Second Semiannual 2022 Detection Monitoring Program	2-2						
3.	Field	l Activitie	es	3-1						
	3.1	Compl	liance Monitoring Program Sampling Activities	3-1						
4.	Labo	ratory A	nalytical Results	4-1						
	4.1	First Se	emiannual 2022 Detection Monitoring Program Event	4-1						
	4.2	Second	d Semiannual 2022 Detection Monitoring Program Event	4-1						
5.	Data	Quality	Validation	5-1						
	5.1	First Se	emiannual 2022 Compliance Event Findings	5-1						
	5.2		d Semiannual 2022 Compliance Event Findings							
6.	Stati	stical Eva	aluation of Groundwater Data	6-1						
	6.1	Site-Sp	pecific Background Evaluations	6-1						
		6.1.1	First Semiannual 2022 Compliance Event							
		6.1.2	Second Semiannual 2022 Compliance Event	6-1						
7.	Cond	clusions.		7-1						
	7.1	7.1 Findings								
	7.2	7-1								

TRC Environmental Corporation | Dominion Energy South Carolina Williams Station New FGD Pond

8.	Reference	es
9.	Signature	Page9-1
List o	f Tables	
Table	1	Summary of Historical CCR Static Water Level Data
Table	2	Summary of First Semiannual 2022 Detection Monitoring Program Sampling Event Data
Table	3	Summary of Second Semiannual 2022 Detection Monitoring Program Sampling Event Data
List o	f Figures	
Figure	1	Site Location Map
Figure	2	CCR Rule Compliance Monitoring Well Network
Figure	3	Groundwater Potentiometric Surface Map – March 21, 2022
Figure	4	Groundwater Potentiometric Surface Map – September 19, 2022
List o	f Appendi	ices
Apper	ndix A	March 2022 Alternate Source Demonstration
Apper	ndix B	First Semiannual 2022 Detection Monitoring Program Event Field Data Sheets, Laboratory Reports, and Data Validation Forms
Apper	ndix C	Second Semiannual 2022 Detection Monitoring Program Event Field Data Sheets, Laboratory Reports, and Data Validation Forms
Apper	ndix D	First Semiannual 2022 Detection Monitoring Statistical Evaluation
Apper	ndix E	Second Semiannual 2022 Detection Monitoring Statistical Evaluation

Executive Summary

Dominion Energy South Carolina, Inc. (DESC) operates a New Flue Gas Desulfurization (FGD) Wastewater Pond (New FGD Pond) (Unit) for the management of coal combustion residuals (CCR) at the Williams Generating Station (Station) located in Goose Creek, Berkeley County, South Carolina. The Unit receives CCR generated from an air quality control system that produces FGD wastewater blowdown waste stream. Management of the CCR at the Unit is performed pursuant to national criteria established in Title 40 of the Code of Federal Regulations (40 CFR), Part 257 (CCR Rule), effective April 19, 2015, and subsequent revisions to the CCR Rule.

The Station conducted two semiannual detection monitoring program (DMP) events in 2022 for the CCR Unit monitoring well network per 40 CFR §257.94. The first semiannual 2022 DMP compliance sampling event was conducted on March 21-23, 2022, with sample analyses completed on April 4, 2022. The second semiannual 2022 DMP compliance sampling event was conducted on September 19-21, 2022, with sample analyses completed on October 5, 2022. These groundwater sampling and analysis activities were conducted in general accordance with the requirements of the Unit's Groundwater Monitoring Plan (GWMP) for the CCR network.

Evaluation of the monitoring results from the first semiannual 2022 event identified exceedances above background values for boron, calcium, chloride, fluoride, pH, sulfate, and total dissolved solids (TDS). A successful Alternate Source Demonstration (ASD) was completed for the potential Statistically Significant Increases (SSIs) during the first semiannual 2022 detection monitoring event. The ASD was certified by a South Carolina-registered professional engineer and is presented in this Report. Monitoring results from the second semiannual 2022 event identified exceedances above background values for boron, calcium, chloride, pH, sulfate, and TDS. An ASD evaluation is being conducted in accordance with the applicable CCR Rule timeframe.

In accordance with 40 CFR Part 257.90(e)(6), the following information is being provided as an overview of the current status of groundwater monitoring and corrective action for the Unit:

- i. At the start of the current annual reporting period, indicate whether the CCR unit was operating under the detection monitoring program in §257.94 or the assessment monitoring program in §257.95.
 - At the start of 2022, the Unit was operating under the detection monitoring program in accordance with §257.94.

- ii. At the end of the current annual reporting period, indicate whether the CCR unit was operating under the detection monitoring program in §257.94 or the assessment monitoring program in §257.95.
 - At the end of 2022, the Unit was operating under the detection monitoring program in accordance with §257.94.
- iii. If it was determined that there was a statistically significant increase over background for one or more constituents listed in Appendix III to this part pursuant to §257.94(e).
 - a. Identify those constituents listed in Appendix III to this part and the names of the monitoring wells associated with such an increase.
 - In 2022, there were SSIs over background for the following Appendix III constituents at the following wells:
 - Boron MW-FGD-17, MW-FGD-18, MW-FGD-19, MW-FGD-19D, and MW FGD-20AR
 - Calcium MW-FGD-17, MW-FGD-18, MW-FGD-19, MW-FGD-19D, and MW-FGD-20AR
 - Chloride MW-FGD-17, MW-FGD-18, MW-FGD-19, MW-FGD-19D, and MW-FGD-20AR
 - Fluoride MW-FGD-19D
 - pH MW-FGD-17, MW-FGD-18, MW-FGD-19D, and MW-FGD-20AR
 - Sulfate MW-FGD-17, MW-FGD-18, and MW-FGD-20AR
 - TDS MW-FGD-17, MW-FGD-18, MW-FGD-19D, and MW FGD-20AR
 - b. Provide the date when the assessment program was initiated for the CCR unit.
 - The Unit is in the detection monitoring program and has not initiated assessment monitoring to date.
- iv. If it was determined that there was a statistically significant level above the groundwater protection standard for one or more constituents listed in Appendix IV to this part pursuant to §257.95(g).
 - a. Identify those constituents listed in Appendix IV to this part and the names of the monitoring wells associated with such an increase.
 - The Unit is in the detection monitoring program and Appendix IV constituents were not evaluated in 2022.

- b. Provide the date when the assessment of corrective measures was initiated for the CCR unit.
 - The Unit has not entered the assessment monitoring program and therefore not applicable.
- c. Provide the date when the public meeting was held for the assessment of corrective measures for the CCR unit.
 - The Unit has not entered the assessment monitoring program and therefore not applicable.
- d. Provide the date when the assessment of corrective measures was completed for the CCR unit.
 - The Unit has not entered the assessment monitoring program and therefore not applicable.
- v. Whether a remedy was selected pursuant to §257.97 during the current annual reporting period, and if so, the date of the remedy selection.
 - The Unit has not entered the assessment monitoring program and therefore not applicable.
- vi. Whether remedial activities were initiated or are ongoing pursuant to §257.98 during the current annual reporting period.
 - Remedial activities were not initiated or are not ongoing during this current annual reporting period.

Section 1 Introduction

This 2022 CCR Annual Groundwater Monitoring and Corrective Action Report (Report) was prepared on behalf of Dominion Energy South Carolina (DESC) for the New Flue Gas Desulfurization (FGD) Wastewater Pond (New FGD Pond) (Unit) at the Williams Generating Station (Station) located in Goose Creek, Berkeley County, South Carolina. The original FGD Pond was closed in April 2021 by removal of CCR in accordance with §257.102(c) and the Closure Plan – Amendment 1 (Closure Plan), dated February 2021. The removed CCR was transported offsite for disposal at the Williams Station Highway 52 Landfill. A Closure by Removal Certificate was prepared by Civil & Environmental Consultants, Inc. and dated May 2021 (CEC 2021).

A new FGD Pond was installed within the boundaries of the original FGD Pond which opened in April 2021 in accordance with the CCR Rule requirements. The Unit is managed as a new CCR unit and in accordance with the national criteria established by the CCR Rule. DESC installed a groundwater monitoring system at the Unit that is subject to the groundwater monitoring and corrective action requirements provided under 40 CFR §257.90 through §257.98. In accordance with 40 CFR §257.90(e), DESC must prepare an annual report no later than January 31st for the preceding year, that provides information regarding the groundwater monitoring and corrective action program at the Unit. This Report provides the monitoring and corrective action data and data evaluations for the semiannual CCR monitoring compliance events performed in March and September 2022.

1.1 Site Location

The Station is operated by DESC and is located at 2242 Bushy Park Road in Berkeley County, South Carolina (**Figure 1**). The Station is located approximately 6 miles northeast of Goose Creek, South Carolina. The Unit is located onsite approximately 2,000 feet north of the generating plant.

1.2 Site History

The Station is an active coal-fired power station located in Berkeley County, South Carolina. The facility began operations in 1973 and operates a single 633-mega-watt coal-fired unit. The Station operates a series of low volume waste treatment ponds in addition to the New FGD Pond. Other CCR materials (solids) are managed at the offsite Highway 52 Landfill. This report addresses the groundwater monitoring activities for the Unit only.

\\GREENVILLE-FP1\WPGVL\PJT2\416559\0006 WILLIAMS\R4165590006-018 WILLIAMS FGD POND 2022 CCR DETECTION ANNUAL RPT.DOCX

1.3 Key Actions

Key actions for the Unit are as follows:

- Initiated the Detection Monitoring Program (DMP) on April 28, 2021, with the collection of eight (8) baseline/background samples and completed the background monitoring activities on September 23, 2021, pursuant to 40 CFR §257.94(b).
- Placed a copy of the New FGD Pond's Groundwater Monitoring Plan (GMP) documenting the design information for the monitoring wells pursuant to 40 CFR §257.91(e)(1) in the Station's operating record on May 7, 2021, pursuant to 40 CFR §257.105(h)(2).
- Certified the groundwater monitoring system pursuant to 40 CFR §257.91(f) and posted the
 Certification in the Station's operating record on May 7, 2021, pursuant to 40 CFR §257.105(h)(3).
- Certified the selection of a statistical method pursuant to 40 CFR §257.93(f)(6) and posted the
 Certification in the Station's operating record on May 7, 2021, pursuant to 40 CFR §257.105(h)(4).
- Conducted the initial DMP compliance sampling event on March 22-23, 2022 and completed the sample analyses on April 4, 2022, pursuant to 40 CFR §257.94(b).
- Completed a successful Alternate Source Demonstration (ASD) per 40 CFR §257.94(e)(2) in response to potential Statistically Significant Increases (SSIs) identified during the statistical evaluation of the data generated from the first semiannual (March 2022) detection monitoring event. The ASD was certified by a South Carolina-registered professional engineer. As required by 40 CFR §257.94(e)(2), a copy of the ASD is included in **Appendix A**. Based on the successful evaluation and the results presented in the ASD, DESC continued with detection monitoring in accordance with 40 CFR §257.94.
- Conducted the second semiannual 2022 detection monitoring between September 19-21, 2022 and completed the sample analysis on October 5, 2022, pursuant to 40 CFR §257.94(b). An ASD evaluation of the data will be performed during the first quarter of 2023 per 40 CFR §257.94(e)(2).
- The Unit remained in detection monitoring for the duration of 2022.

1.4 Monitoring Program Concerns

No problems were encountered during 2022 regarding the detection monitoring system.

2.1 Monitoring Well Network

The Unit utilizes groundwater monitoring wells that were previously installed at the Station for the original FGD Pond. The Compliance Monitoring Well Network currently consists of two upgradient wells (MW-FGD-16 and MW-FGD-21) to monitor background groundwater entering the surficial aquifer of the Unit and five downgradient monitoring wells (MW-FGD-17, MW-FGD-18, MW-FGD-19, MW-FGD-19D, and MW-FGD-20AR) that serve to monitor groundwater quality downgradient of the Unit. The location of the EPA CCR Rule Compliance Monitoring Well Network is presented on **Figure 2**.

2.2 Monitoring Well Installation and Decommissioning Activities

DESC did not install any new wells or decommission any existing wells in the certified groundwater monitoring system during 2022.

2.3 Groundwater Potentiometric Surface Evaluation

Current and historical static water level data for the Station are summarized in **Table 1**. Per requirements of the CCR Rule 40 CFR 257.93(c), the rate and direction of groundwater flow within the uppermost aquifer beneath the Unit must be determined after each sampling event. Groundwater potentiometric surface maps were prepared using water level data obtained from both semiannual sampling events conducted in March and September 2022. Using the groundwater contours from March (**Figure 3**) and September (**Figure 4**), the average horizontal hydraulic gradient was calculated using the following equation:

$$i = (h^1 - h^2)/S$$

Where:

i = horizontal hydraulic gradient (unitless)

 h^1 = water elevation in well 1 (feet)

 h^2 = water elevation in well 2 (feet)

S = horizontal distance between well 1 and well 2 (feet)

The groundwater seepage velocity was calculated using the following formula:

$$Vs = ki/n_e$$

Where:

Vs = Groundwater seepage velocity (feet/day) k = hydraulic conductivity (feet/day) i = horizontal hydraulic gradient (unitless) n_e = effective porosity (percent)

The result for each semiannual event is presented separately in Sections 2.3.1 and 2.3.2. As presented, the estimated groundwater seepage velocity in the uppermost aquifer beneath the Unit is between 19 to 25 ft/year. Furthermore, the overall interpreted data indicates that the groundwater flow direction and velocity remain consistent with previous calculations for the Unit. The groundwater monitoring network continues to monitor the uppermost aquifer in accordance with the CCR Rule.

2.3.1 First Semiannual 2022 Detection Monitoring Program

The groundwater potentiometric surface map for March 2022 is presented in **Figure 3**. Using an estimated effective porosity value of 17% and estimated average hydraulic conductivity value of 4.71 ft/day, the average rate of groundwater flow for the uppermost aquifer beneath the Unit was calculated to be 19.26 ft/year.

Well 1	Well 2	h¹ (ft)	h² (ft)	S (ft)	i	K (ft/day)	n _e	Vs (ft/day)	Vs (ft/yr.)
GW-06R	MW-FGD-19D	4.49	3.45	1,085	0.0010			0.0266	9.69
MW-FGD-17	GW-02R	4.21	3.45	295	0.0026	4.71	0.17	0.0714	26.05
MW-FGD-17	GW-01R	4.21	3.36	390	0.0022			0.0604	22.04
	ductivity and effective por Flow Rate and Direction		Averaç	je	0.0528	19.26			

2.3.2 Second Semiannual 2022 Detection Monitoring Program

The groundwater potentiometric surface map for September 2022 is presented in **Figure 4**. Using an estimated effective porosity value of 17% and estimated average hydraulic conductivity value of 4.71 ft/day, the average rate of groundwater flow for the uppermost aquifer beneath the Unit was calculated to be 24.71 ft/year.

Well 1	Well 2	h¹ (ft)	h² (ft)	S (ft)	i	K (ft/day)	n _e	Vs (ft/day)	Vs (ft/yr.)
GW-06R	MW-FGD-19D	4.99	3.46	1,085	0.0014			0.0391	14.26
MW-FGD-17	GW-02R	4.45	3.46	295	0.0034 4.71 0.17		0.0930	33.94	
MW-FGD-17	GW-01R	4.45	3.45	390	0.0026	0.0026		0.0710	25.93
	ductivity and effective por Flow Rate and Direction	Averaç	је	0.0677	24.71				

Section 3 Field Activities

CCR-related groundwater sampling activities that occurred during 2022 are summarized in the following sections.

3.1 Compliance Monitoring Program Sampling Activities

As per 40 CFR §257.94(c), two semiannual DMP sampling events were completed for the constituents and parameters listed in Appendix III of the CCR Rule. Summaries of the 2022 DMP sampling events are presented below.

2022 Monitoring Event	Sample Dates	Final Laboratory Package Receipt Date
1 st Semiannual Detection Monitoring Program Event	March 21-23, 2022	April 4, 2022
2 nd Semiannual Detection Monitoring Program Event	September 19-21, 2022	October 5, 2022

During each of the DMP sampling events, the compliance monitoring wells were sampled in accordance with the Station's Groundwater Monitoring Program (GWMP).

Samples collected during the semiannual sampling events were submitted to GEL Laboratories (GEL) in Charleston, South Carolina under proper chain-of-custody procedures. GEL is a SCDHEC Environmental Laboratory Certification Program (ELCP) accredited laboratory for analysis of CCR Rule constituents (GEL certification #10120001).

Section 4 Laboratory Analytical Results

Laboratory analytical results from the DMP sampling events conducted in 2022 are summarized in the following sections.

4.1 First Semiannual 2022 Detection Monitoring Program Event

The groundwater samples collected during the first semiannual DMP event were analyzed by GEL for the constituents and parameters listed in Appendix III of the CCR Rule. The laboratory certificates of analysis, chain-of-custody forms, and field notes for the sampling event are presented in **Appendix B**. A summary of the CCR sampling data for the Unit is included in **Table 2**.

4.2 Second Semiannual 2022 Detection Monitoring Program Event

The groundwater samples collected during the second semiannual DMP event were analyzed by GEL for the constituents and parameters listed in Appendix III of the CCR Rule. The laboratory certificates of analysis, chain-of-custody forms, and field notes for the sampling event are presented in **Appendix C**. A summary of the CCR sampling data for the Unit is included in **Table 3**.

\\GREENVILLE-FP1\WPGVL\PJT2\416559\0006 WILLIAMS\R4165590006-018 WILLIAMS FGD POND 2022 CCR DETECTION ANNUAL RPT.DOCX

Section 5 Data Quality Validation

Third-party data validation services were provided by Environmental Standards, Inc. for the DMP sampling events. The reviews were performed with guidance from the US EPA data validation guidelines and in accordance with the Station's GWMP. A discussion of the findings is presented below.

5.1 First Semiannual 2022 Compliance Event Findings

The following field QA/QC samples for this event included:

- One blind duplicate sample was collected from the MW-FGD-19 location on March 23, 2022.
- Additional sample volume was collected at MW-FGD-18 on March 23, 2022, to allow for the laboratory to conduct a matrix spike (MS) and matrix spike duplicate (MSD) quality control check.
- A field blank was collected in the area of MW-FGD-19D on March 23, 2022, using laboratory provided deionized water. The field blank was used to assess for potential contaminants from field conditions during sampling activities.

These QA/QC samples were analyzed for the same constituents as the groundwater samples. Based on review of the laboratory-provided QC data and Environmental Standards recommendations, the data for this sampling event were determined to meet the data quality objectives for the project. A copy of the data validation report is included in **Appendix B**.

5.2 Second Semiannual 2022 Compliance Event Findings

The following field QA/QC samples for this event included:

- One blind duplicate sample was collected from the MW-FGD-18 location on September 19, 2022.
- Additional sample volume was collected at MW-FGD-16 on September 20, 2022, to allow for the laboratory to conduct a MS/MSD quality control check.
- A field blank was collected in the area of MW-FGD-19 on September 19, 2022, using laboratory provided deionized water. The field blank was used to assess for potential contaminants from field conditions during sampling activities.
- A field blank was collected in the area of MW-FGD-21 on September 21, 2022, using laboratory provided deionized water. The field blank was used to assess for potential contaminants from field conditions during sampling activities.

These QA/QC samples were analyzed for the same constituents as the groundwater samples. Based on review of the laboratory-provided QC data and Environmental Standards recommendations, the data for this sampling event were determined to meet the data quality objectives for the project. A copy of the data validation report is included in **Appendix C**.

Section 6 Statistical Evaluation of Groundwater Data

Statistical evaluation of the semiannual DMP data was performed in accordance with the statistical method certified by a qualified South Carolina-registered professional engineer. The certified statistical method has been posted to the Unit's operating record. Statistical evaluations completed in 2022 are summarized in the following sections.

6.1 Site-Specific Background Evaluations

Compliance data from each semiannual event was evaluated against site-specific background values as follows.

6.1.1 First Semiannual 2022 Compliance Event

Pursuant to 40 CFR §257.94, TRC evaluated Appendix III constituent detections against site-specific background values that were established for the DMP (**Appendix D**). Based on that evaluation, the following Appendix III SSIs were identified for the first semiannual 2022 event (**Table 2**):

- Boron (MW-FGD-17, MW-FGD-18, MW-FGD-19, MW-FGD-19D, and MW-FGD-20AR)
- Calcium (MW-FGD-17, MW-FGD-18, MW-FGD-19, MW-FGD-19D, and MW-FGD-20AR)
- Chloride (MW-FGD-17, MW-FGD-18, MW-FGD-19, MW-FGD-19D, and MW-FGD-20AR)
- Fluoride (MW-FGD-19D)
- pH (MW-FGD-17, MW-FGD-18, MW-FGD-19D, and MW-FGD-20AR)
- Sulfate (MW-FGD-17, MW-FGD-18, and MW-FGD-20AR)
- TDS (MW-FGD-17, MW-FGD-18, MW-FGD-19, MW-FGD-19D, and MW-FGD-20AR)

An ASD and certification were prepared for this SSI and is attached as **Appendix A**.

6.1.2 Second Semiannual 2022 Compliance Event

Pursuant to 40 CFR §257.94, TRC evaluated Appendix III constituent detections against site-specific background values that were established for the DMP (**Appendix E**). Based on that evaluation, the following Appendix III SSIs were identified for the second semiannual 2022 event (**Table 3**):

- Boron (MW-FGD-17, MW-FGD-18, MW-FGD-19, MW-FGD-19D, and MW-FGD-20AR)
- Calcium (MW-FGD-17, MW-FGD-18, MW-FGD-19, MW-FGD-19D, and MW-FGD-20AR)

TRC Environmental Corporation | Dominion Energy South Carolina Williams Station New FGD Pond

- Chloride (MW-FGD-17, MW-FGD-18, MW-FGD-19, MW-FGD-19D, and MW-FGD-20AR)
- pH (MW-FGD-17, MW-FGD-18, MW-FGD-19D, and MW-FGD-20AR)
- Sulfate (MW-FGD-18)
- TDS (MW-FGD-17, MW-FGD-18, MW-FGD-19, MW-FGD-19D, and MW-FGD-20AR)

An ASD evaluation of the data from the second semiannual 2022 compliance event will be performed during the first quarter of 2023 per 40 CFR §257.94(e)(2).

7.1 Findings

The first semiannual 2022 DMP compliance sampling event was conducted on March 21-23, 2022, with sample analyses completed on April 4, 2022. The second semiannual 2022 DMP compliance sampling event was conducted on September 19-21, 2022, with sample analyses completed on October 5, 2022. These groundwater sampling and analysis activities were performed in general accordance with the requirements of the Unit's GWMP for the CCR Rule network.

Evaluation of the monitoring results from the first semiannual 2022 event identified exceedances above the background value for boron, calcium, chloride, fluoride, pH, sulfate, and TDS. DESC completed a successful ASD for the potential SSI identified during the first semiannual 2022 detection monitoring event. The ASD was certified by a South Carolina-registered professional engineer and presented in this Report. Monitoring results from the second semiannual 2022 event identified exceedances above the background value for boron, calcium, chloride, pH, sulfate, and TDS. An ASD evaluation is being conducted in accordance with the applicable CCR Rule timeframe.

7.2 Planned Activities

Planned activities for the program during 2023 are listed below:

- An ASD evaluation of the data from the second semiannual 2022 compliance event will be performed during the first quarter of 2023.
- Install observation wells in the vicinity of the Unit to further refine hydrogeologic conditions.
- Conduct semiannual detection monitoring as planned for March and September 2023.

Section 8 References

- Civil & Environmental Consultants, Inc. (CEC) 2021. Closure By Removal Certification, Williams Station FGD Pond, Goose Creek, South Carolina: May 2021.
- Environmental Protection Agency (EPA). 2015. Federal Register. Volume 80. No. 74. Friday April 17, 2015. Part II. Environmental Protection Agency. 40 CFR Parts 257and 261. Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule. [EPA-HQ-RCRA-2009-0640; FRL-9919-44-OSWER]. RIN-2050-AE81.
- EPA. 2016. Federal Register. Volume 81. No. 151. Friday August 5, 2016. Part II. Environmental Protection Agency. 40 CFR Parts 257 and 261. Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule. [EPA-HQ-OLEM-2016-0274; FRL-9949-44-OLEM].
- Garrett and Moore 2017. Groundwater Monitoring System Certification, Williams Station FGD Pond, Berkeley County, South Carolina: Garrett & Moore, Inc.
- Nautilus 2016. Groundwater Sampling and Analysis Plan, Williams Station FGD Pond. Berkeley County, South Carolina: Nautilus Geologic Consulting, PLLC.
- Nautilus 2021. Analysis of Groundwater Flow Rate and Direction: September 2020 Monitoring Data, Cope Station: Class III Landfill, Wateree Station: Class III Landfill, FGD Pond, Ash Pond, Williams Station: FGD Pond, Highway 52 Class III Landfill: Nautilus Geologic Consulting, PLLC. February 2021.

January 31, 2023

Section 9 Signature Page

This 2022 CCR Annual Groundwater Monitoring and Corrective Action Report (Report) has been prepared by a qualified groundwater scientist on behalf of Dominion Energy South Carolina (DESC) for the Williams Generating Station New FGD Pond. This Report satisfied the reporting requirements specified in Title 40 CFR §257.90(e) et seq. [Disposal of Coal Combustion Residuals (CCR) from Electric Utilities (CCR Rule; Federal Register Vol. 80, No. 74, 21302-21501 on April 17, 2015, as amended)].

Name: Richard A. Mayer Jr., P.G.	Expiration Date: June 30, 2023
Company: TRC Environmental Corporation	Date: January 31, 2023

(SEAL)

Tables

Table 1 Summary of Historical CCR Static Water Level Data Dominion Energy South Carolina - Williams Station New FGD Pond Goose Creek, Berkeley County, South Carolina

Monitoring Well ID	Top of Casing Elevation (ft. AMSL)	Date	Depth to Water (feet)	Static Water Level Elevation (ft. AMSL)			
	(4/28/2021	9.11	3.59			
		5/18/2021	9.21	3.49			
		6/9/2021	8.53	4.17			
		6/30/2021	8.65	4.05			
		7/21/2021	8.40	4.30			
MW-FGD-16	12.70	8/10/2021	8.43	4.27			
		9/2/2021	7.03	5.67			
		9/23/2021	7.61	5.09			
		3/21/2022	9.11	3.59			
		9/19/2022	8.37	4.33			
		4/28/2021	7.56	4.42			
		5/18/2021	7.61	4.37			
		6/9/2021	7.44	4.54			
		6/30/2021	7.40	4.58			
	44.00	7/21/2021	7.45	4.53			
MW-FGD-17	11.98	8/10/2021	7.22	4.76			
		9/2/2021	7.55	4.43			
		9/23/2021	7.05	4.93			
		3/21/2022	7.77	4.21			
		9/19/2022	7.53	4.45			
		3,13,131	7.00				
		4/28/2021	9.48	2.16			
		5/18/2021	8.31	3.33			
		6/9/2021	9.41	2.23			
		6/30/2021	7.75	3.89			
		7/21/2021	9.64	2.00			
MW-FGD-18	11.64	8/10/2021		2.69			
		9/2/2021	8.95 8.23	3.41			
			_	3.41			
		9/23/2021	7.90				
		3/21/2022	9.30	2.34			
		9/19/2022	8.51	3.13			
T		4/20/2024	0.47	2.22			
		4/28/2021	9.17	3.32			
		5/18/2021	9.54	2.95			
		6/9/2021	9.89	2.60			
		6/30/2021	10.39	2.10			
MW-FGD-19	12.49	7/21/2021	11.69	0.80			
		8/10/2021	11.62	0.87			
		9/2/2021	12.19	0.30			
		9/23/2021	11.73	0.76			
		3/21/2022	10.70	1.79			
		9/19/2022	8.37	4.12			
		1		<u> </u>			
		4/28/2021	8.82	3.74			
		5/18/2021	9.31	3.25			
		6/9/2021	9.01	3.55			
		6/30/2021	9.10	3.46			
MW-FGD-19D	12.56	7/21/2021	9.12	3.44			
חבד-חם ו-מאואו	12.30	8/10/2021	8.95	3.61			
		9/2/2021	8.92	3.64			
		9/23/2021	8.45	4.11			
		3/21/2022	9.11	3.45			
		9/19/2022	9.10	3.46			

1) ft AMSL = feet above mean sea level.

Table 1 Summary of Historical CCR Static Water Level Data Dominion Energy South Carolina - Williams Station New FGD Pond Goose Creek, Berkeley County, South Carolina

	Top of Casing			Static Water Level
Monitoring Well ID	Elevation	Date	Depth to Water	Elevation
Widilitoring Well ID	(ft. AMSL)	Date	(feet)	(ft. AMSL)
	(It. AIVISE)	4/28/2021	5.75	3.64
		5/18/2021	6.21	3.18
		6/9/2021	6.12	3.27
		6/30/2021	6.10	3.29
		7/21/2021	6.15	3.24
MW-FGD-20AR	9.39	8/10/2021	5.87	3.52
		9/2/2021	6.19	3.20
		9/23/2021	5.78	3.61
		3/21/2022	6.09	3.30
		9/19/2022	6.07	3.32
		3/13/2022	0.07	3.32
		4/28/2021	10.75	3.05
		5/18/2021	10.46	3.34
		6/9/2021	9.44	4.36
		6/30/2021	9.66	4.14
		7/21/2021	9.41	4.39
MW-FGD-21	13.80	8/10/2021	9.62	4.18
		9/2/2021	9.82	3.98
		9/23/2021	8.46	5.34
		3/21/2022	10.07	3.73
		9/19/2022	9.39	4.41
		3/13/2022	3.33	4.41
		5/18/2021	10.84	3.13
		6/9/2021	10.60	3.37
		6/30/2021	10.60	3.37
		7/21/2021	10.60	3.37
GW-1R	13.97	8/10/2021	10.13	3.84
OW IN	13.57	9/2/2021	10.67	3.30
		9/23/2021	10.29	3.68
		3/21/2022	10.61	3.36
		9/19/2022	10.52	3.45
		3/13/2022	10.52	3.43
		5/18/2021	11.50	3.21
		6/9/2021	11.31	3.40
		6/30/2021	11.28	3.43
		7/21/2021	11.34	3.37
GW-2R	14.71	8/10/2021	10.82	3.89
GVV ZIV	17./I	9/2/2021	11.34	3.37
		9/23/2021	11.38	3.33
		3/21/2022	11.26	3.45
		9/19/2022	11.25	3.46
		3/13/2022	11.23	3.40
		5/18/2021	10.58	4.00
		6/9/2021	10.38	4.37
		6/30/2021	10.27	4.31
		7/21/2021	10.15	4.43
GW-4A	14.58	8/10/2021	10.13	4.54
O * * * * * * * * * * * * * * * * * * *	17.50	9/2/2021	10.35	4.23
		9/23/2021	10.41	4.23
		3/21/2022	10.69	3.89
		9/19/2022	10.11	4.47
Notos		3/ 13/ 2022	10.11	4.47

Notes:

¹⁾ ft AMSL = feet above mean sea level.

Table 1 Summary of Historical CCR Static Water Level Data Dominion Energy South Carolina - Williams Station New FGD Pond Goose Creek, Berkeley County, South Carolina

Monitoring Well ID	Top of Casing Elevation (ft. AMSL)	Date	Depth to Water (feet)	Static Water Level Elevation (ft. AMSL)
		5/18/2021	10.59	4.49
		6/9/2021	10.21	4.87
		6/30/2021	10.28	4.80
		7/21/2021	10.22	4.86
GW-6R	15.08	8/10/2021	10.03	5.05
		9/2/2021	10.40	4.68
		9/23/2021	10.55	4.53
		3/21/2022	10.59	4.49
		9/19/2022	10.09	4.99
		5/18/2021	12.86	2.66
		6/9/2021	11.65	3.87
		6/30/2021	11.94	3.58
		7/21/2021	11.45	4.07
GW-7R	15.52	8/10/2021	11.64	3.88
		9/2/2021	11.93	3.59
		9/23/2021	12.01	3.51
		3/21/2022	12.17	3.35
		9/19/2022	11.50	4.02
		5/18/2021	11.57	3.63
		6/9/2021	11.25	3.95
		6/30/2021	11.34	3.86
		7/21/2021	11.33	3.87
GW-8	15.20	8/10/2021	11.15	4.05
		9/2/2021	11.52	3.68
		9/23/2021	11.39	3.81
		3/21/2022	11.54	3.66
		9/19/2022	11.45	3.75

Notes:

1) ft AMSL = feet above mean sea level.

Table 2
Summary of First Semiannual 2022 Detection Monitoring Program Sampling Event Data
Dominion Energy South Carolina - Williams Station New FGD Pond
Goose Creek, Berkeley County, South Carolina

						Backgrou	und Wells				Downgradient Wells								
		Sample ID:		MW-F	GD-16			MW-F	3D-21			MW-FC	3D-17			MW-F	GD-18		
		Sample Date:	03/22/2022				03/22/2022				03/22/2022				03/23/2022				
Parameter Name Units Background Threshold Values			Result	Qual	MDL	QL	Result	Qual	MDL	QL	Result	Qual	MDL	QL	Result	Qual	MDL	QL	
CCR Appendix III																			
Boron	μg/L	66.7	39.0		4.00	15.0	22.9		4.00	15.0	1250		40.0	150	7240		200	750	
Calcium	μg/L	41700	12800		30.0	100	45200		30.0	100	216000		300	1000	421000		600	2000	
Chloride	mg/L	33.3	29.9		0.335	1.00	3.26		0.0670	0.200	323		3.35	10.0	1950		26.8	80.0	
Fluoride	mg/L	0.646	0.300		0.0330	0.100	0.0767	J	0.0330	0.100	0.423		0.0330	0.100	0.537		0.0330	0.100	
рН	SU	4.67 - 5.82	5.01		0.1	0.1	5.72		0.1	0.1	6.16		0.1	0.1	6.44		0.1	0.1	
Sulfate	mg/L	89.2	41		0.665	2.00	94.2		1.33	4.00	92.6		6.65	20.0	169		53.2	160	
Total Dissolved Solids	mg/L	329	199		3.40	14.3	236		3.40	14.3	1250		3.40	14.3	3850		3.40	14.3	
Field Parameters																			
Conductivity	μS/cm		260.22		0.1	0.1	406.03		0.1	0.1	1945.7		0.1	0.1	6826.3		0.1	0.1	
Dissolved Oxygen	mg/L		0.92		0.01	0.01	0.25		0.01	0.01	0.41		0.01	0.01	0.05		0.01	0.01	
Temperature	С		20.76		0.01	0.01	19.62		0.01	0.01	23.34		0.01	0.01	23.16		0.01	0.01	
Turbidity	NTU		2.04		0.1	0.1	10.82		0.1	0.1	5.09		0.1	0.1	2.31		0.1	0.1	
Depth to Water	ft btoc		9.11		0.01	0.01	10.07		0.01	0.01	7.77		0.01	0.01	9.30		0.01	0.01	
Groundwater Elevation	ft msl		3.59		0.01	0.01	3.73		0.01	0.01	4.21		0.01	0.01	2.34	-	0.01	0.01	
Oxidation Reduction Potential	millivolts		239.3		0.1	0.1	3.0		0.1	0.1	-65.0		0.1	0.1	-70.3		0.1	0.1	

MDL = Method Detection Limit

QL = Quantitation Limit

mg/L = Milligram per liter

μg/L = Microgram per liter

 μ S/cm = MicroSiemen per centimeter

SU = Standard Units

C = Degrees Celsius

NTU = Nephelometric Turbidity Unit

ft btoc = feet below top of casing ft msl = feet above mean sea level

Qualifiers (Qual)

J = Estimated Results

Bold font = Detected constituent

* - Groundwater Elevation data collected on March 21, 2022

= Concentration greater than Background Threshold Values

Table 2
Summary of First Semiannual 2022 Detection Monitoring Program Sampling Event Data
Dominion Energy South Carolina - Williams Station New FGD Pond
Goose Creek, Berkeley County, South Carolina

				Downgradient Wells														
		Sample ID:		MW-F	3D-19		М	W-FGD-19	Duplica	te		MW-FG	D-19D		MW-FGD-20AR			
		Sample Date:	03/23/2022				03/23/2022				03/23/2022				03/22/2022			
Parameter Name	Units	Background Threshold Values	Result	Result Qual MDL QL F			Result	Qual	MDL	QL	Result	Qual	MDL	QL	Result	Qual	MDL	QL
CCR Appendix III																		
Boron	μg/L	66.7	194		20.0	75.0	193		20.0	75.0	1340		40.0	150	3430		80.0	300
Calcium	μg/L	41700	132000		150	500	140000		150	500	105000		300	1000	266000		600	2000
Chloride	mg/L	33.3	755		13.4	40.0	818		6.70	20.0	570		6.70	20.0	601		6.70	20.0
Fluoride	mg/L	0.646	0.120		0.0330	0.100	0.170		0.0330	0.100	0.659		0.0330	0.100	0.256		0.0330	0.100
рН	SU	4.67 - 5.82	5.60		0.1	0.1	5.60		0.1	0.1	6.62		0.1	0.1	6.47		0.1	0.1
Sulfate	mg/L	89.2	35.6		1.33	4.00	37.0		1.33	4.00	19.2		1.33	4.00	178		13.3	40.0
Total Dissolved Solids	mg/L	329	1870		3.40	14.3	2010		3.40	14.3	1270		3.40	14.3	1700		3.40	14.3
Field Parameters																		
Conductivity	μS/cm		3083.9		0.1	0.1	3083.9		0.1	0.1	2298.2		0.1	0.1	2685.7		0.1	0.1
Dissolved Oxygen	mg/L		0.11		0.01	0.01	0.11		0.01	0.01	0.15		0.01	0.01	0.11		0.01	0.01
Temperature	С		22.18		0.01	0.01	22.18		0.01	0.01	23.11		0.01	0.01	22.27		0.01	0.01
Turbidity	NTU		1.93		0.1	0.1	1.93		0.1	0.1	11.00		0.1	0.1	3.20		0.1	0.1
Depth to Water	ft btoc		10.70		0.01	0.01	10.70		0.01	0.01	9.11		0.01	0.01	6.09		0.01	0.01
Groundwater Elevation	ft msl		1.79		0.01	0.01	1.79		0.01	0.01	3.45		0.01	0.01	3.30		0.01	0.01
Oxidation Reduction Potential	millivolts		-3.8		0.1	0.1	-3.8		0.1	0.1	-68.8		0.1	0.1	-35.3		0.1	0.1

MDL = Method Detection Limit

QL = Quantitation Limit

mg/L = Milligram per liter

μg/L = Microgram per liter

 μ S/cm = MicroSiemen per centimeter

SU = Standard Units

C = Degrees Celsius

NTU = Nephelometric Turbidity Unit

ft btoc = feet below top of casing

ft msl = feet above mean sea level

Bold font = Detected constituent

* - Groundwater Elevation data collected on March 21, 2022

= Concentration greater than Background Threshold Values

Table 3
Summary of Second Semiannual 2022 Detection Monitoring Program Sampling Event Data
Dominion Energy South Carolina - Williams Station New FGD Pond
Goose Creek, Berkeley County, South Carolina

						Backgrou	ınd Wells							Downgradient Wells				
		Sample ID:		MW-F	GD-16			MW-F	D-21			MW-FC	€D-17			MW-F	D-18	
		Sample Date:	09/20/2022				09/21/2022				09/19/2022				09/19/2022			
		Background																
Parameter Name	Units	Threshold Values	Result	Qual	MDL	QL	Result	Qual	MDL	QL	Result	Qual	MDL	QL	Result	Qual	MDL	QL
CCR Appendix III		values																
Boron	μg/L	66.7	51.4		4.00	15.0	32.8		4.00	15.0	256		20.0	75.0	6980		200	750
Calcium	μg/L	41700	15100		30.0	100	45400		30.0	100	151000		150	500	391000		1500	5000
Chloride	mg/L	33.3	24.5		0.335	1.00	3.01		0.0670	0.200	148		1.68	5.00	1750		26.8	80.0
Fluoride	mg/L	0.646	0.330		0.0330	0.100	0.0470	J	0.0330	0.100	0.511		0.0330	0.100	0.420		0.0330	0.100
рН	SU	4.67 - 5.82	4.80		0.1	0.1	5.32		0.1	0.1	6.18		0.1	0.1	6.11		0.1	0.1
Sulfate	mg/L	89.2	48.9		0.665	2.00	84.8		1.33	4.00	15.9		0.133	0.400	175		53.2	160
Total Dissolved Solids	mg/L	329	193		2.38	10.0	243		2.38	10.0	948		2.38	10.0	3720		2.38	10.0
Field Parameters																		
Conductivity	μS/cm		293.07		0.1	0.1	453.15		0.1	0.1	1596		0.1	0.1	6687		0.1	0.1
Dissolved Oxygen	mg/L		0.98		0.01	0.01	0.40		0.01	0.01	0.18		0.01	0.01	0.20		0.01	0.01
Temperature	С		25.48		0.01	0.01	24.17		0.01	0.01	25.68		0.01	0.01	25.11		0.01	0.01
Turbidity	NTU		3.26		0.1	0.1	3.91		0.1	0.1	3.49		0.1	0.1	3.25		0.1	0.1
Depth to Water	ft btoc		8.37		0.01	0.01	9.39		0.01	0.01	7.53		0.01	0.01	8.51		0.01	0.01
Groundwater Elevation	ft msl		4.33	-	0.01	0.01	4.41	•	0.01	0.01	4.45		0.01	0.01	3.13		0.01	0.01
Oxidation Reduction Potential	millivolts		104.1		0.1	0.1	45.5		0.1	0.1	-18.0		0.1	0.1	-76.7		0.1	0.1

MDL = Method Detection Limit

QL = Quantitation Limit

mg/L = Milligram per liter

μg/L = Microgram per liter

 μ S/cm = MicroSiemen per centimeter

SU = Standard Units

C = Degrees Celsius

NTU = Nephelometric Turbidity Unit

ft btoc = feet below top of casing ft msl = feet above mean sea level

Qualifiers (Qual)

J = Estimated Results

Bold font = Detected constituent

- * Groundwater Elevation data collected on September 19, 2022
 - = Concentration greater than Background Threshold Values

Table 3
Summary of Second Semiannual 2022 Detection Monitoring Program Sampling Event Data
Dominion Energy South Carolina - Williams Station New FGD Pond
Goose Creek, Berkeley County, South Carolina

			Downgradient Wells															
		Sample ID:	М	W-FGD-18	3 Duplica	te		MW-F	3D-19			MW-FG	D-19D			MW-FG)-20AR	
		Sample Date:		09/19/	/2022			09/19/	2022			09/19/	2022			09/20/	2022	
Parameter Name	Units	Background Threshold Values	Result	Qual	MDL	QL	Result	Qual	MDL	QL	Result	Qual	MDL	QL	Result	Qual	MDL	QL
CCR Appendix III																		
Boron	μg/L	66.7	6930		200	750	172		20.0	75.0	1610		40.0	150	1710		40.0	150
Calcium	μg/L	41700	391000		1500	5000	163000		150	500	112000		300	1000	172000		300	1000
Chloride	mg/L	33.3	1800		26.8	80.0	704		6.70	20.0	600		6.70	20.0	383		6.70	20.0
Fluoride	mg/L	0.646	0.411		0.0330	0.100	0.0963	J	0.0330	0.100	0.640		0.0330	0.100	0.184		0.0330	0.100
рН	SU	4.67 - 5.82	6.11		0.1	0.1	5.47		0.1	0.1	6.85		0.1	0.1	6.49		0.1	0.10
Sulfate	mg/L	89.2	177		53.2	160	58.2		13.3	40.000	26.4		0.665	2.00	10.5		0.133	0.400
Total Dissolved Solids	mg/L	329	3790		2.38	10.0	1550		2.38	10.0	1320		2.38	10.0	1270		2.38	10.0
Field Parameters																		
Conductivity	μS/cm		6687		0.1	0.1	3449.9		0.1	0.1	2894.7		0.1	0.1	3380.3		0.1	0.1
Dissolved Oxygen	mg/L		0.20		0.01	0.01	0.15		0.01	0.01	0.16		0.01	0.01	0.12		0.01	0.01
Temperature	С		25.01		0.01	0.01	26.03		0.01	0.01	25.55		0.01	0.01	27.67		0.01	0.01
Turbidity	NTU		3.25		0.1	0.1	2.08		0.1	0.1	1.88		0.1	0.1	1.87		0.1	0.1
Depth to Water	ft btoc		8.51		0.01	0.01	8.37		0.01	0.01	9.10		0.01	0.01	6.07		0.01	0.01
Groundwater Elevation	ft msl		3.13		0.01	0.01	4.12	•	0.01	0.01	3.46	•	0.01	0.01	3.32		0.01	0.01
Oxidation Reduction Potential	millivolts		-76.7		0.1	0.1	-6.8		0.1	0.1	-127.3		0.1	0.1	-43.8		0.1	0.1

MDL = Method Detection Limit

QL = Quantitation Limit

mg/L = Milligram per liter

μg/L = Microgram per liter

 μ S/cm = MicroSiemen per centimeter

SU = Standard Units

C = Degrees Celsius

NTU = Nephelometric Turbidity Unit

ft btoc = feet below top of casing ft msl = feet above mean sea level

Qualifiers (Qual)

J = Estimated Results

Bold font = Detected constituent

* - Groundwater Elevation data collected on September 19, 2022

= Concentration greater than Background Threshold Values

Figures

 $\label{thm:linear_formula_formula} $$ \GREENVILLE-FP1\WPGVL\PIT2\416559\0006\ WILLIAMS\R416559\0006-018\ WILLIAMS\FGD\ POND\ 2022\ CCR\ DETECTION\ ANNUAL\ RPT.DOCX $$ \GREENVILLE-FP1\WPGVL\PIT2\A16559\0006\ WILLIAMS\R416559\0006-018\ WILLIAMS\FGD\ POND\ 2022\ CCR\ DETECTION\ ANNUAL\ RPT.DOCX $$ \GREENVILLE-FP1\WPGVL\PIT2\A16559\0006\ WILLIAMS\R416559\0006-018\ WILLIAMS\R416559\A1655$

50 International Drive, Suite 150 Patewood Plaza Three Greenville, SC 29615 Phone: 864.281.0030

WILLIAMS STATION 2242 BUSHY PARK ROAD **GOOSE CREEK, SOUTH CAROLINA 29445**

FIGURE 1	
SITE LOCATION	МΔР

DRAWN BY:		J. YONTS
APPROVED E	Y:	R. MAYER
PROJECT NO	:	416559.0006.0000
FILE NO.	Figure1_Site_Locati	on_Map_CCR.mxd
DATE:		JANUARY 2023

CCR Downgradient Monitoring Well

New FGD Pond Boundary

0	200	400	1 " = 200 '
		Feet	1:2,400

CCR RULE COMPLIANCE MONITORING WELL NETWORK

DRAWN BY:	J. YONTS	PR
CHECKED BY:	D. SZYNAL	
APPROVED BY:	R. MAYER	
DATE:	IANITA DV 2023	

416559.0006.0000 FIGURE 2

♦TRC

50 International Drive, Suite 150
Patewood Plaza Three
Greenville, SC 29615
Phone: 864.281.0030
www.TRCcompanies.com
Figure2_Williams_Station_FGD_CCR_Well_Network.mxd

NOTE: Aerial Image from ESRI World Imagery dated March 2022.

CCR Downgradient Monitoring Well

Event Piezometer

New FGD Pond Boundary

Water Elevation (FT MSL) 3.89

Approximate Groundwater Flow Direction

400

GROUNDWATER POTENTIOMETRIC SURFACE MAP - MARCH 22, 2022

DRAWN BY:	J. YONTS
CHECKED BY:	J. BRADLEY
APPROVED BY:	R. MAYER
DATE:	JANUARY 2023

ROJ. NO.: FIGURE 3

TRC

50 International Drive, Suite 150 Patewood Plaza Three Greenville, SC 29615 Phone: 864.281.0030 www.TRCcompanies.com Figure3_Williams_FGD_CCR_WT_2022Q1.mxd

NOTE:

1) Aerial Image from ESRI World Imagery dated March 2022.

2) *Water level not used for contouring

CCR Downgradient Monitoring Well

Event Piezometer

New FGD Pond Boundary

Water Elevation (FT MSL) 4.33

Approximate Groundwater Flow Direction

NOTE:

- 1) Aerial Image from ESRI World Imagery dated March 2022.
- 2) *Water level not used for contouring

400

GROUNDWATER POTENTIOMETRIC SURFACE MAP - SEPTEMBER 19, 2022

AWN BY:	J. YONTS	PROJ. NO.:	416
ECKED BY:	J. BRADLEY		
PROVED BY:	R. MAYER		FIGURE 4
ΓE:	JANUARY 2023		
		50 Interna	ational Drive, Suite

Patewood Plaza Three Greenville, SC 29615 Phone: 864.281.0030 www.TRCcompanies.com Figure4_Williams_FGD_CCR_WT_2022Q3.mxd

Appendix A March 2022 Alternate Source Demonstration

DOMINION ENERGY SOUTH CAROLINA

WILLIAMS STATION NEW FGD POND

BERKELEY COUNTY, SOUTH CAROLINA

EPA CCR RULE COMPLIANCE

ALTERNATE SOURCE DEMONSTRATION REPORT

First Semiannual 2022 Detection Monitoring Event

September 2022

Nakia W. Addison, P.E. Senior Engineer

Project Hydrogeologist

TRC Environmental Corporation | Dominion Energy South Carolina Williams Station New FGD Pond Alternate Source Demonstration

© 2022 TRC All Rights Reserved

Table of Contents

Execu	tive Su	ummary	ii					
1.	Introd	duction	1-1					
	1.1 Background							
	1.2	Groundwater Monitoring and Statistical Analysis	1-1					
	1.3	1.3 Purpose						
	1.4 Site Hydrogeology							
	1.5	General Groundwater Quality	1-3					
2.	Alterr	nate Source Demonstration	2-1					
	2.1	Improper Well Screen Placement for MW-FGD-19	2-1					
	2.2	Boron at MW-FGD-17, MW-FGD-18, MW-FGD-19D, and MW-FGD-20AR	2-2					
	2.3	Calcium at MW-FGD-17, MW-FGD-18, MW-FGD-19D, and MW-FGD-20AR	2-2					
	2.4	Chloride at MW-FGD-17, MW-FGD-18, MW-FGD-19D, and MW-FGD-20AR	2-2					
	2.5	Fluoride at MW-FGD-19D	2-3					
	2.6	pH at MW-FGD-17, MW-FGD-18, MW-FGD-19D, and MW-FGD-20AR	2-3					
	2.7 Sulfate at MW-17, MW-FGD-18, and MW-FGD-20AR2-4							
	2.8	Total Dissolved Solids MW-FGD-17, MW-FGD-18, MW-FGD-19D, and MW-FGD-20A	R 2-4					
3.	Concl	clusions	3-1					
4.	Certif	fication	4-1					
5.	Refer	rences	5-1					
List o	f Figu	ures						
Figure	1	Site Location Map						
Figure		CCR Rule Compliance Monitoring Well Network						
Figure		Groundwater Potentiometric Surface Map March 2022						
Figure 4		Piper Diagram May 2022						
List o	f Tabl	les						
Table	1	Summary of First Semiannual 2022 Detection Monitoring Program Sampli Data	ng Event					
Table	2	Summary of Alternate Source Demonstration Parameters						

Executive Summary

Dominion Energy South Carolina (DESC) completed the most recent semiannual detection monitoring sampling (first semiannual 2022 sampling event) in March 2022 for the Williams Generating Station (Station) Flue Gas Desulfurization (FGD) Wastewater Pond (New FGD Pond) (Unit) pursuant to the *Criteria for Classification of Solid Waste Disposal Facilities and Practices; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule,* 40 CFR Part 257 (CCR Rule). The Unit constitutes a coal combustion residuals (CCR) Unit per the CCR Rule. Per 40 CFR §257.94, the samples were analyzed for the Appendix III detection monitoring parameters. Upon receipt of the laboratory analytical results, statistical analysis was performed and evaluated for potential statistically significant increases (SSI) above background concentrations.

The following SSIs above background concentrations were identified based on direct comparisons made between the statistically derived background threshold values (95 percent upper prediction limit) and the downgradient monitoring results:

- MW-FGD-17: boron, calcium, chloride, pH, sulfate, and total dissolved solids (TDS)
- MW-FGD-18: boron, calcium, chloride, pH, sulfate, and TDS
- MW-FGD-19: boron, calcium, chloride, and TDS
- MW-FGD-19D: boron, calcium, chloride, fluoride, pH, and TDS
- MW-FGD-20AR: boron, calcium, chloride, pH, sulfate, and TDS

The information provided in this report serves as DESC's Alternate Source Demonstration (ASD) prepared in accordance with 40 CFR §257.94(e)(2) and successfully demonstrates that the SSIs are not due to a release from the Unit to groundwater, but are due to the following:

- Improper well screen placement for MW-FGD-19;
- A potential source located upgradient from the Unit; and/or
- Natural variation in groundwater quality within the area.

The Unit, constructed and installed within the boundaries of the original FGD Pond, opened in April 2021 in accordance with the CCR Rule requirements. The original FGD Pond was closed in April 2021 by removal of CCR in accordance with §257.102(c) and the Closure Plan – Amendment 1 (Closure Plan), dated February 2021 (CEC 2021). The removed CCR was transported offsite for disposal at the Williams Station Highway 52 Landfill for disposal. A Closure by Removal Certificate was prepared by Civil & Environmental Consultants, Inc. and dated May 2021.

Therefore, based on the closure and presence of an existing CCR unit and information provided in this ASD report, DESC will continue to conduct semiannual detection monitoring for Appendix III constituents in accordance with 40 CFR §257.94 at the certified groundwater monitoring well system (Certified Monitoring Well Network) for the Unit.

1.1 Background

Dominion Energy South Carolina (DESC) operates a Flue Gas Desulfurization (FGD) Wastewater Pond (FGD Pond) (Unit) for the management of coal combustion residuals (CCR) at the Williams Generating Station (Station). The Unit is located at 2242 Bushy Park Road, Goose Creek, Berkley County, South Carolina as shown on **Figure 1**.

The Unit, installed within the boundaries of the original FGD Pond, opened in May 2021 in accordance with the CCR Rule requirements. The Unit is comprised of two 700,000-gallon forebays constructed with a composite liner system comprised of, from bottom to top: an 18-inch thick compacted clay soil liner; 60-mil textured HDPE geomembrane liner; 28-ounce per square yard geotextile cushion; and 6-inch thick fabric formed concrete protection layer (CEC 2021a).

The Unit receives wet FGD blowdown from the FGD system. The FGD blowdown contains residual gypsum solids that are discharged from the secondary hydrocyclone overflows and pumped to the Unit. Each forebay within the Unit allows for solids to settle and provide temporary storage until dewatered, removed, and disposed offsite in the Williams Stations Highway 52 Class III Landfill.

The Unit is considered an existing surface impoundment that contains CCR for disposal in accordance with the federal *Criteria for Classification of Solid Waste Disposal Facilities and Practices; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule* (CCR Rule), effective October 19, 2015, and subsequent Final Rules promulgated by the United States Environmental Protection Agency (USEPA).

1.2 Groundwater Monitoring and Statistical Analysis

In accordance with 40 CFR §257.90 through §257.94, DESC installed a groundwater monitoring system for the Unit and has collected samples from the Certified Monitoring Well Network for laboratory analysis for CCR constituents and performed statistical analysis of the collected samples. DESC installed a Certified Monitoring Well Network for the Unit in accordance with 40 CFR §257.90 and §257.91. The location of the EPA CCR Rule Compliance Monitoring Well Network is presented on **Figure 2**. The Certified Monitoring Well Network consists of 6 wells installed into the subsurface to monitor shallow groundwater as follows:

 Two wells were installed as background monitoring wells and include MW-FGD-16 and MW-FGD-21.

- Five wells were installed as compliance monitoring wells and include MW-FGD-17, MW-FGD-18, MW-FGD-19, MW-FGD-19D, and MW-FGD-20AR.
- Additionally, monitoring wells GW-01R, GW-02R, GW-04A, GW-06R, GW-07R, and GW-08 are used to support ASD evaluations as necessary.

Pursuant to 40 CFR §257.91(f), DESC obtained certification by a qualified South Carolina-registered professional engineer (P.E.) stating that the Certified Monitoring Well Network has been designed and constructed to meet the requirements of 40 CFR §257.91 of the CCR Rule (CEC 2021b).

As discussed above, the Unit is currently being monitored pursuant to the CCR Rule. A groundwater sampling and analysis plan including selection of statistical procedures to evaluate groundwater data was prepared per the CCR Rule (Nautilus 2016). Eight independent baseline/detection monitoring background sample events were performed from April 2021 through September 2021 in accordance with 40 CFR §257.93(d) and §257.94(b). The eight baseline/detection monitoring background samples were analyzed for Appendix III to Part 257 – Constituents for Detection Monitoring and for Appendix IV to Part 257 – Constituents for Assessment Monitoring.

Following completion of background detection monitoring in September 2021, DESC implemented semiannual detection monitoring per 40 CFR §257.94(b) for the Unit. The first semiannual (initial) detection monitoring event was performed in March 2022. Per the CCR Rule, the semiannual detection monitoring event samples were analyzed for Appendix III constituents.

After completion of the semiannual detection monitoring event, the Appendix III laboratory analytical data were statistically evaluated to identify potential statistically significant increases (SSIs) for Appendix III constituents above background levels. In accordance with 40 CFR §257.93(f)(6), DESC obtained certification by a qualified South Carolina-registered P.E. stating that the selected statistical method is appropriate for evaluating the groundwater monitoring data for the CCR Unit (CEC 2021c).

Pursuant to 40 CFR §257.93(h), statistical analysis of the laboratory analytical data was performed to identify potential SSIs for the first semiannual 2022 detection monitoring event. Data from the first semiannual 2022 detection monitoring event is presented in **Table 1**. A total of 28 SSIs were identified for seven Appendix III constituents: boron, calcium, chloride, fluoride, pH, sulfate, and total dissolved solids (TDS).

1.3 Purpose

Pursuant to 40 CFR §257.94(e)(2), DESC may demonstrate that a source other than the Unit caused the SSIs identified or that the SSIs resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. The purpose of this report is to provide written documentation of the

successful ASD for the SSIs identified for the first semiannual 2022 detection monitoring event, pursuant to 40 CFR §257.94(e)(2) of the CCR Rule.

1.4 Site Hydrogeology

The Station is located in the outer Coastal Plain of South Carolina. The uppermost aquifer in the Coastal Plain of South Carolina is the unconfined surficial aquifer. In most areas, the surficial aquifer consists of discontinuous layers of sand, clay and locally occurring beds of shell and limestone.

The Unit is located within the Ashley-Cooper River Subbasin (Ashley-Combahee-Edisto (ACE) Basin watershed) of the Coastal Plain physiographic province. Aquifers and confining units in the South Carolina portion of the Coastal Plain are composed of crystalline carbonate rocks, sand, clay, silt, and gravel that contain large volumes of high-quality groundwater (SAWSC 2016). The Unit groundwater monitoring wells are within the surficial aquifer of the Cooper geologic formation. The Cooper formation (or Cooper Marl) underlies most of the area south of the Santee River. According to *State of South Carolina Resources Commission Report Number 139* (1985), the Cooper formation is approximately 130 feet thick beneath the site. This unit functions as a confining layer beneath the overlying surficial aquifer. At least three of the hydrogeologic logs for wells installed around the Unit identify the top of Cooper Marl at depths of 19.5 to 28 feet below ground surface, making the surficial aquifer beneath the Unit less than 20 feet in thickness. Groundwater flow beneath the Unit is generally to the east as depicted on **Figure 3**. Hydraulic conductivity values in the surficial aquifer at the Unit range from 4.47 x 10⁻⁵ cm/s to 1.08 x 10⁻² cm/s with an estimated groundwater flow velocities of between 0.002 to 2.85 feet/day (Nautilus 2021).

1.5 General Groundwater Quality

Regionally, groundwater quality in the Ashley-Cooper River Subbasin consists of a sodium bicarbonate water type grading to a sodium chloride water type with depth and proximity to the coast (SCDNR 2009). The USEPA has established National Primary Drinking Water Regulations that define a permitted maximum contaminant level (MCL) for specific constituents in drinking water. The primary MCLs are legally enforceable standards that were established to protect public health by limiting the levels of contaminants in drinking water. Additionally, the USEPA has established non-enforceable secondary MCLs for guidelines to assist public water systems in managing their drinking water for aesthetic consideration such as taste, color, and odor. Reported water quality concentrations for select secondary drinking water contaminants compared to USEPA secondary MCLs are provided in the table below.

\\greenville-fp1\WPGVL\PJT2\416559\0006 Williams\R4165590006-012 WMS_FGDPond_ASD Report_1st Semiannual 2022.docx

Ashley-Cooper River Subbasin Groundwater Water Quality

	Concentrat	ion Range	USEPA			
Constituent	Low	High	MCL			
Fluoride (mg/L)	0.1	5.0	4.0 (Primary)			
pH (s.u.)	4.8	7.2	6.5 – 8.5 (Secondary)			
Sulfate (mg/L)	1.0	1,000	250 (Secondary)			

Note: mg/L = milligram per liter, s.u. = standard units

As noted in the table above, the natural range of groundwater quality within the Ashley-Cooper River Subbasin exceeds the primary drinking water MCL for fluoride and the secondary drinking water MCLs for pH and sulfate (SCDNR 2009).

Section 2 Alternate Source Demonstration

Pursuant to 40 CFR §257.94(e)(2), DESC may demonstrate that a source other than the Unit caused the SSI or that the SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. As discussed previously, the first semiannual 2022 detection monitoring event was performed in March 2022. Statistical analysis of the first semiannual 2022 detection monitoring data was performed pursuant to 40 CFR §257.93(f) and (g) and in accordance with the Statistical Methods Certification (SCE&G 2017) and the Statistical Analysis Plan. Based on either increasing trends at 95% confidence levels using Thiel-Sen's trend test and/or interwell prediction limits statistical analyses, the following SSIs were identified:

- MW-FGD-17: boron, calcium, chloride, pH, sulfate, and TDS
- MW-FGD-18: boron, calcium, chloride, pH, sulfate, and TDS
- MW-FGD-19: boron, calcium, chloride, and TDS
- MW-FGD-19D: boron, calcium, chloride, fluoride, pH, and TDS
- MW-FGD-20AR: boron, calcium, chloride, pH, sulfate, and TDS

All other Appendix III constituent concentrations were within their trends at 95% confidence levels using Thiel-Sen's trend and/or interwell prediction limits in all the CCR Rule groundwater monitoring system wells.

A discussion for each of the individual SSIs and associated evidence demonstrating that the SSIs were not caused by a release from the Unit is provided in the subsections below.

2.1 Improper Well Screen Placement for MW-FGD-19

The boron, calcium, chloride, and TDS SSIs identified at MW-FGD-19 are the result of an improperly set monitoring well screen interval. The following evidence supports this determination

- During review of the CCR monitoring well network for the New FGD Pond, it was discovered that the screened interval for MW-FGD-19 was improperly set to intercept fill material close to the surface. Review of the soil boring log for the well indicated that fill material was noted from the ground surface to a depth of 7.5 feet below ground surface (bgs). The top of the sand filter pack was set at 6 feet bgs with the well screen interval set approximately 8 to 18 feet bgs.
- The New FGD Pond is tidally influenced and the potential for surface water and groundwater interaction within the fill material is likely at times. As such, MW-FGD-19 does not monitor groundwater flowing from beneath the Unit.

 Monitoring well MW-FGD-19D was installed with the surface seal and filter pack/screened interval set below the fill material and is more appropriate for monitoring groundwater in the MW-FGD-19 area.

2.2 Boron at MW-FGD-17, MW-FGD-18, MW-FGD-19D, and MW-FGD-20AR

The boron SSIs identified at MW-FGD-17, MW-FGD-18, MW-FGD-19D, and MW-FGD-20AR are the result of a potential source upgradient from the Unit. The following evidence supports this determination:

Boron was detected at concentrations greater than the background threshold value of 66.7 μg/L in MW-FGD-17 (1,250 μg/L), MW-FGD-18 (7,240 μg/L), MW-FGD-19D (1,340 μg/L), and MW-FGD-20AR (3,430 μg/L) during the March 2022 sampling event. Based on review of potentiometric surface mapping (**Figure 3**), the locations of MW-FGD-17, MW-FGD-18, MW-FGD-19D, and MW-FGD-20AR are hydraulically downgradient from Pond D. Monitoring wells that are part of the NPDES program were sampled in May 2022 for boron concentrations in support of the ASD evaluation. The boron concentration detected in upgradient monitoring well GW-04A as depicted on **Figure 4** was 20,100 μg/L suggesting that a potential source of boron upgradient from the Unit may exist.

2.3 Calcium at MW-FGD-17, MW-FGD-18, MW-FGD-19D, and MW-FGD-20AR

The calcium SSIs identified at MW-FGD-17, MW-FGD-18, MW-FGD-19D, and MW-FGD-20AR are the result of a potential source upgradient from the Unit. The following evidence supports this determination:

■ Calcium was detected at concentrations greater than the background threshold value of 41.7 mg/L in MW-FGD-17 (216 mg/L), MW-FGD-18 (421 mg/L), MW-FGD-19D (105 mg/L), and MW-FGD-20AR (266 mg/L) during the March 2022 sampling event. Based on review of potentiometric surface mapping (Figure 3), the locations of MW-FGD-17, MW-FGD-18, MW-FGD-19D, and MW-FGD-20AR are hydraulically downgradient from Pond D. Monitoring wells that are part of the NPDES program were sampled in May 2022 for calcium concentrations in support of the ASD evaluation. The calcium concentrations detected in upgradient monitoring wells GW-04A (1,290 mg/L) and GW-06R (491 mg/L) as depicted on Figure 5 suggests that a potential source of calcium upgradient from the Unit may exist.

2.4 Chloride at MW-FGD-17, MW-FGD-18, MW-FGD-19D, and MW-FGD-20AR

The chloride SSIs identified at MW-FGD-17, MW-FGD-18, MW-FGD-19D, and MW-FGD-20AR are the result of a potential source upgradient from the Unit. The following evidence supports this determination:

■ Chloride was detected at concentrations greater than the background threshold value of 33.3 mg/L in MW-FGD-17 (323 mg/L), MW-FGD-18 (1,950 mg/L), MW-FGD-19D (570 mg/L), and MW-FGD-20AR (601 mg/L) during the March 2022 sampling event. Based on review of potentiometric surface mapping (Figure 3), the locations of MW-FGD-17, MW-FGD-18, MW-FGD-19D, and MW-FGD-20AR are hydraulically downgradient from Pond D. Monitoring wells that are part of the NPDES program were sampled in May 2022 for chloride concentrations in support of the ASD evaluation. The chloride concentration detected in upgradient monitoring well GW-04A as depicted on Figure 6 was 2,820 mg/L suggesting that a potential source of chloride upgradient from the Unit may exist.

2.5 Fluoride at MW-FGD-19D

The fluoride SSI identified at MW-FGD-19D is the result of natural variation in groundwater quality from areas upgradient from the Unit and/or a potential upgradient source. The following evidence supports this determination:

- Fluoride was detected at a concentration greater than the background threshold value of 0.646 mg/L at MW-FGD-19D at 0.659 mg/L during the March 2022 sampling event. Reported regional fluoride concentrations for the groundwater in the Unit area range between 0.1 mg/L to 5.0 mg/L (SCDNR 2009). The detected fluoride concentration for MW-FGD-19D is within the range of natural variation in area groundwater quality.
- Based on review of potentiometric surface mapping (Figure 3), the location of MW-FGD-19D is hydraulically downgradient from Pond D. Monitoring wells that are part of the NPDES program were sampled in May 2022 for fluoride concentrations in support of the ASD evaluation. The fluoride concentration detected in upgradient monitoring well GW-04A was 304 mg/L suggesting that a potential source of fluoride upgradient from the Unit may exist.

2.6 pH at MW-FGD-17, MW-FGD-18, MW-FGD-19D, and MW-FGD-20AR

The pH SSIs identified at MW-FGD-17, MW-FGD-18, MW-FGD-19D, and MW-FGD-20AR are the result of natural variation in groundwater quality from areas upgradient from the Unit. The following evidence supports this:

■ The pH levels were detected at levels greater than the background threshold range for pH of 4.67 to 5.82 at MW-FGD-17 (6.16), MW-FGD-18 (6.44), MW-FGD-19D (6.62), and MW-FGD-20AR (6.47) during the March 2022 sampling event. Reported regional pH levels for groundwater in the Unit area range between 4.8 and 7.2 (SCDNR 2009). The pH levels within MW-FGD-17, MW-FGD-18, MW-FGD-19D, and MW-FGD-20AR from March 2022 all fall within the range of natural variation in area groundwater quality.

2.7 Sulfate at MW-17, MW-FGD-18, and MW-FGD-20AR

The sulfate SSIs identified at MW-FGD-17, MW-FGD-18, and MW-FGD-20AR are the result of natural variation in groundwater quality from areas upgradient from the Unit. The following evidence supports this determination:

- Sulfate was detected at concentrations greater than the background threshold value of 89.2 mg/L at MW-FGD-17 (92.6 mg/L), MW-FGD-18 (169 mg/L), and MW-FGD-20AR (178 mg/L) during the March 2022 sampling event. Reported regional sulfate concentrations for the groundwater in the Unit area range between 1 mg/L to 1,000 mg/L (SCDNR 2009). The detected sulfate concentrations for MW-FGD-17, MW-FGD-18, and MW-FGD-20AR fall within the range of natural variation in are groundwater quality.
- The sulfate concentration in background well MW-FGD-21 was detected above the background threshold value of 89.2 mg/L at a concentration of 94.2 mg/L. This observation further suggests that the sulfate SSIs for MW-FGD-17, MW-FGD-18, and MW-FGD-20AR are the result of natural variation in groundwater quality from upgradient areas.

2.8 Total Dissolved Solids MW-FGD-17, MW-FGD-18, MW-FGD-19D, and MW-FGD-20AR

The TDS SSIs identified at MW-FGD-17, MW-FGD-18, MW-FGD-19D, and MW-FGD-20AR are the result of a potential source upgradient from the Unit. The following evidence supports this determination:

■ TDS was detected at concentrations greater than the background threshold value of 329 mg/L in MW-FGD-17 (1,250 mg/L), MW-FGD-18 (3,850 mg/L), MW-FGD-19D (1,270 mg/L), and MW-FGD-20AR (1,700 mg/L) during the March 2022 sampling event. Based on review of potentiometric surface mapping (**Figure 3**), the locations of MW-FGD-17, MW-FGD-18, MW-FGD-19D, and MW-FGD-20AR are hydraulically downgradient from Pond D. Monitoring wells that are part of the NPDES program were sampled in May 2022 for TDS concentrations in support of the ASD evaluation. The TDS concentrations detected in upgradient monitoring wells GW-04A (4,990 mg/L) and GW-06R (4,340 mg/L) as depicted on **Figure 7** suggests that a potential source of TDS upgradient from the Unit may exist.

Section 3 Conclusions

The information provided in this report serves as the ASD prepared in accordance with 40 CFR §257.94(e)(2) of the CCR Rule and demonstrates that the SSIs determined based on statistical analysis of the first semiannual 2022 detection monitoring event performed in March of 2022 was not due to a release from the CCR Unit to the subsurface.

Based on the information provided in this ASD report, DESC will continue to conduct semiannual detection monitoring in accordance with 40 CFR §257.94 at the Certified Monitoring Well Network for the CCR Unit.

Section 4 Certification

I hereby certify that the alternative source demonstration presented within this document for the DESC Williams New FGD Pond CCR Unit has been prepared to meet the requirements of Title 40 CFR §257.94(e)2 of the Federal CCR Rule. This document is accurate and has been prepared in accordance with good engineering practices, including the consideration of applicable industry standards, and with the requirements of Title 40 CFR §257.94(e) 2.

Name: Nakia W. Addison, P.E. Expiration Date: June 30, 2024

Company: TRC Engineers, Inc. Date: September 30, 2022

TRC ENGINEERS, INC.
No. 3330

F. OF AUTHORITI

No 81497 Per College C

(SEAL)

Section 5 References

- CEC 2021a. Closure Plan, Williams Station New FGD Pond, Goose Creek, South Carolina: Civil & Environmental Consultants, Inc.
- CEC 2021b. Groundwater Monitoring System Certification, Williams Station New FGD Pond, Berkeley County, SC: Civil & Environmental Consultants, Inc.
- CEC 2021c. Statistical Analysis Plan Certification, Williams Station New FGD Pond, Berkeley County, SC. Civil & Environmental Consultants, Inc.
- Nautilus 2016. Groundwater Sampling and Analysis Plan, Williams Station Landfill. Berkeley County, SC: Nautilus Geologic Consulting, PLLC.
- Nautilus 2021. Alternate Source Demonstration Report, Williams Station Class Three Landfill. Berkeley County, SC: Nautilus Geologic Consulting, PLLC.
- South Atlantic Water Science Center (SAWC), 2016. Atlantic Coastal Plain Physiographic Provinces. https://www.usgs.gov/media/images/atlantic-coastal-plain-physiographic-provinces.
- South Carolina Electric & Gas (SCE&G). 2017. Groundwater Monitoring Data Statistical Analysis Plan Certification, SCE&G Williams Station Hwy 52 Class III Landfill. Goose Creek, SC.
- South Carolina Department of Natural Resources (SCDNR), 2009, South Carolina State Water Assessment, 2nd Edition. 408 pp.
- United States Environmental Protection Agency. 2017. Secondary Drinking Water Standards: Guidance for Nuisance Chemicals, March 8, 2017
- U.S. Geological Survey (USGS) Professional Paper: 1410-E, Hydrology of the Southeastern Coastal Plain Aquifer System in South Carolina and Parts of Georgia and North Carolina, 1996.

Figures

NOTE: Aerial Image from ESRI World Imagery dated March 2022.

Figure2_Williams_Station_FGD_CCR_Well_Network.mxd

Other Program Monitoring Well

New FGD Pond

ote:

- 1) Aerial Image from ESRI World Imagery dated March 2022.
- 2) Background threshold value for Boron = 66.7 μg/L.
- 3) Concentrations in parentheses collected in May 2022 during ASD evaluation and are used as reference values.

BORON ISOCONCENTRATION MAP MARCH 23 & 23, 2022

DRAWN BY:	J. YONTS	PROJ. NO.:	416
CHECKED BY:	J. BRADLEY		
APPROVED BY:	R. MAYER		FIGURE 4
DATE:	SEPTEMBER 2022		

50 International Drive, Suite 150 Patewood Plaza Three Greenville, SC 29615 Phone: 864.281.0030 www.TRCcompanies.com

416559.0006.0000

Figure4_Williams_FGD_CCR_Boron_2022Q1.mxc

Other Program Monitoring Well

New FGD Pond

- 1) Aerial Image from ESRI World Imagery dated March 2022.
- 2) Background threshold value for Calcium = 41.7 mg/L.

MAY 25 & 26, 2022

DRAWN BY:	J. YONTS	PROJ. NO.:	416
CHECKED BY:	D. SZYNAL		
APPROVED BY:	R. MAYER		FIGURE 5
DATE:	SEPTEMBER 2022		

TRC

50 International Drive, Suite 150 Patewood Plaza Three Greenville, SC 29615 Phone: 864.281.0030 www.TRCcompanies.com

416559.0006.0000

Figure5_Williams_FGD_CCR_Calcium_2022Q2.mxc

Monitoring Well

Other Program Monitoring Well

New FGD Pond

Approximate Chloride Isoconcentration Line Dashed where Inferred; mg/L

Concentration Considered an Estimate Biased Low Based on Data Validation

- 1) Aerial Image from ESRI World Imagery dated March 2022.
- 2) Background threshold value for Chloride = 33.3 mg/L.

GOOSE CREEK, SOUTH CAROLINA

CHLORIDE ISOCONCENTRATION MAP MAY 25 & 26, 2022

DRAWN BY:	J. YONTS	ΡF
CHECKED BY:	D. SZYNAL	
APPROVED BY:	R. MAYER	
DATE:	SEPTEMBER 2022	

416559.0006.0000

TRC

50 International Drive, Suite 150 Patewood Plaza Three Greenville, SC 29615 Phone: 864.281.0030 www.TRCcompanies.com

Figure6_Williams_FGD_CCR_Chloride_2022Q2.mxd

FIGURE 6

400 Feet

Other Program Monitoring Well

New FGD Pond

Line Dashed where Inferred; mg/L

- 1) Aerial Image from ESRI World Imagery dated March 2022.
- 2) Background threshold value for TDS = 329 mg/L.

TOTAL DISSOLVED SOLIDS ISOCONCENTRATION
MAP - MARCH 22 & 23, 2022

RAWN BY:	J. YONTS	PROJ. NO.:	416559.0006.
HECKED BY:	D. SZYNAL		
PPROVED BY:	R. MAYER		FIGURE 7
ATE:	SEPTEMBER 2022		

50 International Drive, Suite 150 Patewood Plaza Three Greenville, SC 29615 Phone: 864.281.0030 www.TRCcompanies.com Figure7_Williams_FGD_CCR_TDS_2022Q1.mxd

Table

Table 1

Summary of First Semiannual 2022 Detection Monitoring Program Sampling Event Data Dominion Energy South Carolina - Williams Station New FGD Pond Goose Creek, Berkeley County, South Carolina

		[Backgrou	und Wells											ı	Downgrad	ient Wells								
		Sample ID:	MW	/-FGD-16			MW-	FGD-21			MW-	FGD-17			MW-FGD-18			MW-F	GD-19			MW-FGD-19D			MW-FG	D-20AR	
		Sample Date:	03/	22/2022			03/2	2/2022			03/2	2/2022			03/23/2022			03/23	/2022			03/23/2022			03/22	/2022	
Parameter Name	Units	Background Threshold	Result Qua	I MDL	QL	Result	Qual	MDL	QL	Result	Qual	MDL	QL	Result	Qual MDL	QL	Result	Qual	MDL	QL	Result	Qual MDL	QL	Result	Qual	MDL	QL
		Values																									
CCR Appendix III																											
Boron	μg/L	0.0667	39.9	4.0	15.0	22.9		4.0	15.0	1250		40.0	150	7240	200	750	194		20.0	75.0	1340	40.0	150	3430		80.0	300
Calcium	μg/L	41700	12800	30.0	100	45200		30.0	100	216000		300	1000	421000	600	2000	132000		150	500	105000	300	1000	266000		600	2000
Chloride	mg/L	33.3	29.9	0.335	1.00	3.26		0.0670	0.200	323		3.35	10.0	1950	26.8	80.0	755		13.4	40.0	570	6.70	20.0	601		6.70	20.0
Fluoride	mg/L	0.646	0.300	0.0330	0.100	0.0767	J	0.0330	0.100	0.423		0.0330	0.100	0.537	0.0330	0.100	0.120		0.0330	0.100	0.659	0.033	0.100	0.256		0.0330	0.100
pH	SU	4.67 - 5.82	5.01	0.01	0.01	5.72		0.01	0.01	6.16		0.01	0.01	6.44	0.01	0.01	5.60		0.01	0.01	6.62	0.01	0.01	6.47		0.01	0.01
Sulfate	mg/L	89.2	41.0	0.665	2.00	94.2		1.33	4.00	92.6		6.65	20.0	169	53.2	160	35.6		1.33	4.00	19.2	1.33	4.00	178		13.3	40.0
Total Dissolved Solids	mg/L	329	199	3.40	14.3	236		3.40	14.3	1250		3.40	14.3	3850	3.40	14.3	1870		3.40	14.3	1270	3.40	14.3	1700		3.40	14.3
Field Parameters																											
Conductivity	μS/cm		260.22	0.1	0.1	406.03		0.1	0.1	1945.7		0.1	0.1	6826.3	0.1	0.1	3083.9		0.1	0.1	2298.2	0.1	0.1	2685.7		0.1	0.1
Dissolved Oxygen	mg/L		0.92	0.01	0.01	0.25		0.01	0.01	0.41		0.01	0.01	0.05	0.01	0.01	0.11		0.01	0.01	0.15	0.01	0.01	0.11		0.01	0.01
Temperature	С		20.76	0.01	0.01	19.62		0.01	0.01	23.34		0.01	0.01	23.16	0.01	0.01	22.18		0.01	0.01	23.11	0.01	0.01	22.27		0.01	0.01
Turbidity	NTU		2.04	0.1	0.1	10.82		0.1	0.1	5.09		0.1	0.1	2.31	0.1	0.1	1.93		0.1	0.1	11.00	0.1	0.1	3.20		0.1	0.1
Depth to Water	ft btoc		9.11	0.01	0.01	10.09		0.01	0.01	7.79		0.01	0.01	8.81	0.01	0.01	10.70		0.01	0.01	9.37	0.01	0.01	6.09		0.01	0.01
Groundwater Elevation (*)	ft msl		3.59	0.01	0.01	3.71		0.01	0.01	4.19		0.01	0.01	2.83	0.01	0.01	1.79		0.01	0.01	3.19	0.01	0.01	0.90		0.01	0.01
Oxidation Reduction Potential	millivolts		239.3	0.1	0.1	3.0		0.1	0.1	-65.0		0.1	0.1	-70.3	0.1	0.1	-3.8		0.1	0.1	-68.8	0.1	0.1	-35.3		0.1	0.1

Notes:

MDL = Method Detection Limit

QL = Quantitation Limit

mg/L = Milligram per liter

μg/L = Microgram per liter μ S/cm = MicroSiemen per centimeter

SU = Standard Units C = Degrees Celsius

NTU = Nephelometric Turbidity Unit

ft btoc = feet below top of casing

ft msl = feet above mean sea level

-- = Not applicable.

Qualifiers (Qual)

J = Estimated Results

U = Samples reported below their respective MDL

= Concentration greater than Background Threshold Values

Bold font = Detected constituent

* - Groundwater Elevation data collected on March 8, 2022

Appendix B First Semiannual 2022 Detection Monitoring Program Event Field Data Sheets, Laboratory Reports, and Data Validation Forms

WILLIAMS STATION NEW FGD POND CCR - S1-2022

Date(s) Measured: 3.21.22

Well ID	Well Diameter (inches)	Well Total Depth (ft BTOC)	Well Completion	Screen length (ft)	Depth to Water (ft below TOC)	Pump
MW-FGD-16	2	18.39	Stickup	10	9.11	peristaltic
MW-FGD-17	2	17.53	Flushmount	10	7.77	peristaltic
MW-FGD-18	2	18.30	Flushmount	10	9.30	peristaltic
MW-FGD-19	2	18.58	Flushmount	10	10.70	peristaltic
MW-FGD-19D	2	28.20	Flushmount	10	9.11	peristaltic
MW-FGD-20AR	2	22.70	Stickup	10	6.09	peristaltic
MW-FGD-21	2	21.17	Stickup	10	10.07	peristaltic
GW-1R	2	28.18	Stickup	10	10.61	WL Only
GW-2R	2	31.72	Stickup	5	11.26	WL Only
GW-4A	2	32.96	Stickup	15	10.69	WL Only
GW-6R	2	28.08	Stickup	10	10.59	WL Only
GW-7R	2	26.71	Stickup	5	12.17	WL Only
GW-8	2	29.39	Stickup	10	11.54	WL Only

^{*}Need 15/16" and 9/16" sockets for opening flushmount wells

	1
PAGE	OF

	TOC
₹	IRC

PROJECT	NAME:	Williar	ns Station		PREPARED				CHECKED			
PROJECT	NUMBER	R: 41655	9.0006.0000	ВУ	:3.22.2	2 DATE: 8.	BY:	RY	7M	DATE: 3. 28-2		
SAMPLE ID: MW-FGD-16 WELL DIAMETER: 2" 4" 6" OTHER												
WELL MAT	ERIAL:	☑ PVC	ss =	IRON G	ALVANIZE	O STEEL	☐ o ⁻	THER				
SAMPLE T	/PE:	☑ GW	□ww □	SW 🔲 DI	[LEACHATE	_ o	THER				
PURC	SING	TIME: 15	510	ATE: 3.22.2	22	SAMPLE	TIME: 1	610	, D	ATE: 3.22.22		
PURGE METHOD		PUMP BAILER	PERISTALTIC I	PUMP	PH: ORI	5.01 s			1TY: 26	0.22 umhos/cm		
DEPTH TO	WATER:	9.11	T/ PVC		TUF	BIDITY: 2.0	t NTU					
DEPTH TO	воттом:	18.39	T/ PVC		<u>P</u>	IONE SL	IGHT [] мо	DERATE	☐ VERY		
WELL VOL	UME:	1.5	LITERS	☑ GALLONS	TEM	PERATURE: 2	0.76 °C	ОТН				
VOLUME F	REMOVED:	1.8	LITERS	☑ GALLONS	COL	.OR: <u>Clear</u>		ODO	OR: _	none		
COLOR:	Cla	· · · ·	OD	OR: 101	FILT	RATE (0.45 um)	YES	7	NO			
		TUR	BIDITY		FILT	RATE COLOR:		FIL	TRATE OD	OR:		
NONE	SLI	GНТ 🗌	MODERATE	VERY	QC	SAMPLE: MS	s/MSD		DUP-			
DISPOSAL	METHOD:	GROU	ND DRUM	☑ OTHER	COL	MENTS: Po	st turi	ာ ်	2.20	@ 1615		
TIME	PURGE RATE	PH	CONDUCTIVITY	ORP	D.O.	TURBIDITY	TEMPERA	TURE	WATER LEVEL	CUMULATIVE PURGE VOLUME		
	(ML/MIN)	(SU)	(umhos/cm)	(mV)	(mg/L)	(NTU)	(°C)		(FEET)	(GALLONS)		
1515	125	5.24	310.26	92.5	1.75	19.3	22.3	3	9.12	INITIAL		
1520]	5.13	308.51	127.5	1.53	11.4	21.05	5		1		
1525		5.06	285.31	151.3	1.32	9.58	20.9	8				
1530		5.06	288.06	175.1	1.61	9.42	20.8	8		\ \{`		
1535		5.05	281.62	206.7	1.35	6.73	21.0)				
1540		5.N	271.78	221.5	1.22	6.31	20.90					
1545		5.04	280.31	238.0	1.13	6.61	20.90)				
1600		5.03	267.63	243.4	1.06	4.86	20.84					
1605		5.03	265.33	245.5	0.95	1.11	20.8	 				
1610	V	5.01	260.22	· ·	0.92		20.70			1.8		
	TE: STABI	LIZATION 1	EST IS COMPL	ETE WHEN 3	SUCCESS	IVE READINGS			FOLLOWII	NG LIMITS:		
pH: +/-	0.1	COND.: +/-	3% ORP:	+/-	D.O.: +/-	TURB: +/-	10 % or	=</td <td>5</td> <td>TEMP.: +/-</td>	5	TEMP.: +/-		
BOTTLES		PRESERV	ATIVE CODES		B - HNC	г		OH	E - H(CL F		
NUMBER	SIZE	TYPE	PRESERVATI	VE FILTER	ED NU	MBER SIZE	TYPE	PR	RESERVAT	IVE FILTERED		
1	250 mL	PLASTIC	В] N					□ Y □ N		
1	250 mL	PLASTIC	Α	□ Y] N					☐ Y ☐ N		
1	125 mL	PLASTIC	PLASTIC A Y							☐ Y ☐ N		
□ Y [] N					☐ Y ☐ N		
] N					□ У □ И		
SHIPPING	METHOD:		DA	ATE SHIPPED:			AIRBIL	L NUM	BER:			
COC NUME	COC NUMBER: SIGNATURE: DATE SIGNED:											
REVISED 06/2011												

1	l	•
PAGE	OF	

	TOC
₹	-1

REVISED 06/2011

	PROJECT	Γ NAME:		ns Station			PR	EPARED		CHECKED			
	PROJECT	r Numbei	R: 41655	9.0006.0000		BY: A	GM .	DATE:3.3	プ-9岁 _{BA:\(}	2A.		DATE:3.28-27	
	SAMPLE	ID: M\	N-FGD-1	7	WELL	DIAME	TER: 🗸	2" 4"		_			
	WELL MAT	ERIAL:	✓ PVC	ss [IRON	GALV	VANIZED STEEL OTHER						
	SAMPLE T	YPE:	☑ GW	□ww □	sw 🗀		LEACHATE	□ от⊦	IER				
	PUR	GING	TIME: 13	35 D	ATE: 3.90	ر -92	S	SAMPLE TIME:			DA	LE:3.59-Gラ	
	PURGE METHOD	_	PUMP BAILER	PERISTALTIC	PUMP			<u>6.16</u> s		CTIVI	TY: 1945 1) mg/		
	DEPTH TO) WATER:	1.79	T/ PVC			TURBI	DITY: 5,69	NTU				
	DEPTH TO	ВОТТОМ	: 17.53	T/ PVC			▼ NO	NE 🗌 SLI	GНТ 🔲	MOE	DERATE	☐ VERY	
	WELL VOL	.UME:	1.7	LITERS	✓ GALLO	NS	TEMPE	RATURE: 23	3.34 °c	ОТН	IER:		
	VOLUME I	REMOVED:	1.1	LITERS	☑ GALLO	NS	COLO	R: <u>Clea</u>	<u>. (</u>	ODC	DR:	IONR	
	COLOR:	<u>sh</u>	htly cla	orga or	OOR:	one	FILTRA	TE (0.45 um)		<u></u>			
			TUR	BIDITY			FILTRA	TE COLOR:		FILT	TRATE ODO	R:	
	MONE	SLI	<u> Gнт</u> □	MODERATE	☐ VEI	RY		QC SAMPLE: MS/MSD			DUP-		
	DISPOSAL	_ METHOD	: GROUI	ND 🗌 DRUM	☑ OTHER	₹	COMM	ENTS: Post }	<u> </u>				
	TIME	PURGE RATE	PH	CONDUCTIVITY	ORP		D.O.	TURBIDITY	TEMPERATU	JRE	WATER LEVEL	CUMULATIVE PURGE VOLUME	
		(ML/MIN)	(SU)	(umhos/cm)	(mV)		(mg/L)	(NTU)	(°C)		(FEET)	(GALLONS)	
	1340	140	6.20	1788.6	39.8		0.54	16.8	ಎ6.ಎ4		7.85	INITIAL	
	1345	1	6.13	1904.1	-13.0		0.38	8.37	2 a.75)	7.89		
	1350		6.14	1908.4	-290		5.37	6.61	23.07 23.07		\		
	1355		6.16	1932.7	-51.7	1 (3.39	683					
	1400		6.16	1930,3	-53.1		0.41	5.95	23.02				
	1405		d1. 2	1927.5	-58.3	(0.41	521	ವ್ಯಾಖ				
	1410		6.16	1940.6	-628		5.41	5.38	23,47		1		
	1415		6.16	1945.7	~65.0		1.41	5.09	23.34		V	1.1	
٠ ١	,							EDF ACTUAL STREET					
705t	1420	140						4.34			7.89	,	
	NO pH: +/-		LIZATION 1 COND.: +/-				CCESSIV .: +/-	E READINGS A TURB: +/-		ΓΗΕ F ≃</td <td></td> <td>G LIMITS: TEMP.: +/-</td>		G LIMITS: TEMP.: +/-	
	BOTTLES	S FILLED	PRESERV	ATIVE CODES	A - NONE	В	- HNO3	C - H2SO4	D - NaOl	Н	E-HC	L F	
	NUMBER	SIZE	TYPE	PRESERVAT	IVE FILT	ERED	NUMB	ER SIZE	TYPE	PR	ESERVA T I	VE FILTERED	
	1	250 mL	PLASTIC	В	□Y	N E						□Y □N	
	1	250 mL	PLASTIC	Α '	□ Y	IJ N						□ Y □ N	
	1	125 mL	PLASTIC	A	☐ Y	V N						☐Y ☐N	
			,		ПΑ	□ N						☐Y ☐N	
					☐ Y	N					t ~1	N Y N	
	SHIPPING	METHOD:		D.	ATE SHIPPE	ED:			AIRBILL	NUMI	BER:		
	COC NUMI	BER:		s	IGNATURE:		DATE SIGNED:						

TAC

PROJEC1	ΓNAME:	Willian	ns Station		PREPARED				CHECKED			
PROJEC1	T NUMBEI	R: 41655	9.0006.0000		вү: Д	MB	DATE:3-7	13-202	3Y: RA	M	DATE:3	-28-22
SAMPLE	ID: M\	N-FGD-1	8	WELL	DIAMET	ER: 🗸	2" 4"	6"	OTHER			
WELL MAT	ERIAL:	☑ PVC	ss [IRON 🔲	GALVA	NIZED S	STEEL		OTHER		·	
SAMPLE T	YPE:	☑ GW	□ww □	sw 🗌	DI		LEACHATE		OTHER			
PUR	GING	TIME: OS	359 D	ATE: 3-2 3	-2022	S	AMPLE	TIME:	1002	D,	ATE: 3- 2	23-2023
PURGE METHOD		PUMP BAILER	PERISTALTIC	PUMP			6.44 s	U COI		ITY: <u>682</u> 0 5 mg		mhos/cm
DEPTH TO	WATER:		T/ PVC			TURBI				<u> </u>	j, <u> </u>	
	ВОТТОМ:		T/ PVC			Ж ио		 GHT		DERATE	□ v	ERY
WELL VOL	UME:	116	LITERS	☑ GALLC	NS	TEMPE	RATURE: 2	3.16	с отн	HER:		
VOLUME F	REMOVED:	3.3	LITERS	☑ GALLO	NS	COLO	R: <u>clea</u>	<u></u>	ODG	OR:	none	
COLOR:		lear	O[OOR: <u>1,61</u>	re	FILTRA	TE (0.45 um)	YES	V	NO		
			BIDITY				TE COLOR:		FIL	TRATE OD	DR:	
NONE SLIGHT MODERATE VERY QC SAMPLE: X MS/MSD DUP-												
DISPOSAL	METHOD:	: GROU	ND DRUM	OTHEF	₹	СОММ	ENTS:	M.	/m50	Collec	ted	
TIME	PURGE RATE	PH	CONDUCTIVITY	ORP		D.O.	TURBIDITY	TEMPE	RATURE	WATER LEVEL		LATIVE VOLUME
	(ML/MIN)	(SU)	(umhos/cm)	(mV)	. (mg/L)	(NTU)	((°C) (FI			
0901	150	6.38	4,758.0	97.4	0	.21	4.55	22.	58	8.82	INI [*]	TIAL
0915	(6.52	4,938.1	40.3	0	,05	2.81	22.5	33	8.82)
0920		6.50	5,493.8	40.0		.06	2.52	22.	49	8-82		
0925		6.47	5,983.0	34,4	1 0	.06	1.85	22.0	62	8.82		
0930		6.46	6,104.4	1		.06	1.70	22.	70	8.82		
0935		6.45	6,371.6	t		05	1.68	22.		8.82		
0938		6.45	6,391.8	1	0	.05	1.61	22.		8.82		
0941			6,609.4		1 -	.05	1.69	22.	94	8.82		
0944	/		6,586.4		1		1.59	22.		8.82)	
0947	V	_	6.658.6			05	1.53	22.		8.82	1	
NO	TE: STABI		• •				E READINGS A				IG LIMITS	 }:
pH: +/-	0.1	COND.: +/-	3 % ORP	: +/-	D.O.:	+/-	TURB: +/-	10 %	or =</td <td>5</td> <td>TEMP.: +</td> <td>-/-</td>	5	TEMP.: +	-/-
BOTTLES	S FILLED	PRESERV.	ATIVE CODES	A - NONE	В-	HNO3	C - H2SO4	D -	NaOH	E - HO	CL F	
NUMBER	SIZE	TYPE	PRESERVAT	IVE FILT	ERED	NUMB	ER SIZE	TYP	E PR	RESERVAT	IVE FIL	TERED
2	250 mL	PLASTIC	В	Y	N							/ N
D	250 mL	PLASTIC	А	ΠY	✓ N							/ <u></u> N
2	125 mL	PLASTIC	Α	Y	N							/ N
				ΠY	N							/ <u> </u> N
				Y	□ N							/ N
SHIPPING	METHOD:		D	ATE SHIPPE				AIR	BILL NUM	BER:		
COC NUMI	BER:		s	GNA T URE:				DAT	E SIGNE			
REVISED 06						,						

WATER SAMPLE LOG (CONTINUED FROM PREVIOUS PAGE)

PROJECT NAME:	Williams Station	PREPARED	CHECKED			
PROJECT NUMBER:	416559.0006.0000	BY: (JB / BM / ANDATE: 3-23-202	BY: CAN	DATE3-28-27		

SAMPLE ID: MW-FGO ~ 18 PURGE WATER CUMULATIVE CONDUCTIVITY TIME ORP D.O. TURBIDITY TEMPERATURE RATE LEVEL PURGE VOLUME (SU) (umhos/cm) (NTU) (GAL OR L) (ML/MIN) (mV) (mg/L) (°C) (FEET) 6.44 6742.4 -47.1 0950 150 0.05 1.55 23.03 8.82 0953 6.44 6736.9 -55.0 0.05 1.96 23.07 8.82 6.44 6825.3 -63.1 0956 23.08 0.05 1.94 8.82 23.12 6.43 6883.0 - 67.8 0.05 1.97 0959 8.82 6.44 6826.3 -70.3 1002 0.05 2.31 23.16 8.82 2.57 8.87 1014

SIGNATURE:	DATE SIGNED:	

TRC

REVISED 06/2011

[PROJECT		·	ns Station		[·	PR	EPARED		CHECKED			
	PROJECT	Г NUMBEI	R: 41655	9.0006.0000)	BY: 1	35M	DATE: 3 • 6	23.22	BY: C/1	4V	DATE: 3-28-27	
	SAMPLE WELL MAT		W-FGD-1 9	9 □ss [WELL IRON		TER: 🗸	2"	6" 🗌	OTHER OTHER			
	SAMPLE T	YPE:	☑ GW	□ww [sw 🗆	DI LEACHATE OTHER							
	PURGING TIME: 0900 DATE: 3 · 23 · 23						SAMPLE TIME: 0935 DATE					TE: 3.23.22	
	PURGE METHOD		PUMP BAILER	Alexis p			U COI		ITY: <u>30</u>	83.9 umhos/cn /L			
	DEPTH TO WATER: 10.70 T/ PVC						TURBI	DITY: 1.9	3 NTU				
	DEPTH TO	ВОТТОМ	: 18.58	T/ PVC	Mone ☐ s				GHT	П МОГ	DERATE	VERY	
	WELL VOL	.UME:	1.3	LITERS	✓ GALLO	NS	ТЕМРЕ	RATURE: _2	2.14 .	C OTH	IER:		
	VOLUME I	REMOVED:	0.6	LITERS	✓ GALLO	NS	COLO	R: <u>clear</u>		ODO		none	
	COLOR:		clear	. (DDOR:	<u> </u>	FILTRA	TE (0.45 um)	YES	V	NO		
				BIDITY	_			TE COLOR:			TRATE ODC		
	NONE			MODERATE	VE		1	QC SAMPLE: MS/MSD				13-FGD-22101	
ļ	DISPOSAL	_ METHOD	ND DRU	M 🗸 OTHEF	₹	COMM	ENTS: Post	tur.	b : 2,0.	3	Doplicate		
	TIME	PURGE RATE	PH	CONDUCTIVIT			D.O.	TURBIDITY	TEMPERATURE		WATER LEVEL	CUMULATIVE PURGE VOLUME	
		(ML/MIN)	(SU)	(umhos/cm)	(mV)		(mg/L)	(NTU)	(°	C)	(FEET)	(GALLONS)	
	0905	75	5.60	3067.2	- 24.7		5.13	4.22	22.	44	10.78	INITIAL	
	0910		5.62	3136.8	5.1	0	0.09	3.40	22.	.22	10.95		
	0915		5.62	3128.8	-1.0	U	0.10	2.46	21.	82	11.01		
	0920		5.62	3113.4	-2.4	C	0.10	2.61	21.88		11.05		
	0925		5.61	3099.8	-2.9	٥	.10	2.54	21.88		11.17		
	0930		5.61	3105.2	-3.9	c	2.1(1.94	21.	98	11.29		
	0935	1	5.60	30 .8 3.9	- 3.8		0.11	1.93	22.	18	11.39	.6	
- -	0945	75						2.03			11.48		
	NO pH: +/-		LIZATION 1		PLETE WHEN	N 3 SUC		E READINGS A		HIN THE I		IG LIMITS: TEMP.: +/-	
	BOTTLES	SFILLED	PRESERV	ATIVE CODE	S A - NONE	В-	- HNO3	C - H2SO4	1 - D	NaOH	E - HC	L F	
	NUMBER	SIZE	TYPE	PRESERVA	TIVE FILT	ERED	NUMB	ER SIZE	TYPI	E PR	ESERVATI	VE FILTERED	
	1	250 mL	PLASTIC	В	_ Y	N						Y N	
	1	250 mL	PLASTIC	А	□ Y	N						□ Y □ N	
	1	125 mL	PLASTIC	А	□Y	N						YN	
					□ Y □ Y	□ N□ N						□ Y □ N	
i	SHIDDING	METHOD:			DATE SHIPPI	-D·	1	1	AIDE	AIRBILL NUMBER:			
	COC NUMI	DEK:			SIGNATURE:				JUAT	E SIGNE	υ:		

		^
PAGE	OF	_d

TRC

PROJEC	T NAME:	Willia	ms Station		PREPARED				CHECKED				
PROJEC	T NUMBE	R: 41655	59.0006.0000)	BY: 🗛	GW.	DATE:3.	93.59	BY: Ry	7M		DATE 32	8-27
SAMPLE	ID: M	W-FGD-1	9D	WELL	DIAMET	ΓER: 🗸] 2" 🔲 4" 📋	6" [OTHER				
WELL MA	ΓERIAL:	✓ PVC	□ss [] IRON [GALVA	NIZED	STEEL		OTHER				
SAMPLE T	YPE:	☑ GW	□ww []sw 🔲	DI		LEACHATE		OTHER				
PUR	GING	TIME:04	10	DATE: 3·23	·33	S	SAMPLE	TIME:	TIME: 1020 DA			™:3.93	.50
PURGE ☑ PUMP PERISTALTIC PUMP METHOD: ☐ BAILER							7	SU CC	NDUCTIV	′ITY: <u>₹</u>		7 98	
DEPTH TO	DEPTH TO WATER: <u>Q9.37</u> T/ PVC					┪───	IDITY: <u>\\</u> ,0(9		
DEPTH TO	DEPTH TO BOTTOM: 28.20 T/ PVC					□ NO	NE 🔽 SL	.IGHT	□ мо	DERAT	ΓΕ	U VE	ERY
WELL VOL	UME:	3.2	LITERS	✓ GALLO	NS	TEMPE	RATURE: _a	13.11	°C ОТІ	HER:			
VOLUME	REMOVED		LITERS	✓ GALLO	NS	COLO	R: stightl	y cloud	y OD	OR:	N	ne.	
COLOR:	<u>_c/o/</u>	<u> 197</u>		DOR: nun		FILTRA	ATE (0.45 um)	YES	3 🗸	NO			
	5 7 au		BIDITY				TE COLOR:		FIL	TRATE	ODO	₹: —	
NONE	SLI METHOD	: GROU	MODERATE	VEI	<u> </u>		MPLE: MS			DUP-			
DISPOSAL		: GROU	ND DRUI	M 🔽 OTHER	`	COMM	MENTS: FBL	WMS	- FGD-23				
TIME	PURGE RATE	PH .	CONDUCTIVIT	Y ORP		D.O.	TURBIDITY	TEMPI	ERATURE	WAT LEV		CUMUL PURGE V	
	(ML/MIN)	(SU)	(umhos/cm)	(mV)	(mg/L)	(NTU)		(°C)	(FEI	- 1	(GALL	
0915	60	6.07	2210.5	124.7		.85	17.7	23	,67	۹.۱	40	INIT	IAL
0420	\rightarrow	6.29	a 304.5	9 11.0	c	.aa	13.1	ာ	.00	9.5	٥		
0925		6.43	2305.7	68.5	٥	aq	9.87	99	.04	م٠	19		
0930		6.48	23092	5a.8	0	.25	10,56	ə	5.13)			
0935		6.51	9310.9	40.0	٥	.99	15.37	ಎ	·33				
0940		6.5a	2311.4	_ 28.5	٥	.21	10.61	a	9.3)				
0945		6.54	2310.8	8.3	c	.20	10.03	99	.46				
1005		6.60	2301.7	-55,2	C	21.0	11.95	ಎ	.58				
1010		6.61	22967	-60.3	(2.16	10.07	29	43				
1015		6.63	2301.3	-64.2		3.15	10.41	99	.93			/	
NO pH: +/-		LIZATION 1 COND.: +/-		PLETE WHEN P: +/-	D.O.:		E READINGS A		or =</td <td></td> <td></td> <td>S LIMITS: EMP.: +/-</td> <td></td>			S LIMITS: EMP.: +/-	
BOTTLES	FILLED	PRESERV	ATIVE CODES	A - NONE	В-	HNO3	C - H2SO4	D -	NaOH	E.	- HCL	. F	
NUMBER	SIZE	TYPE	PRESERVA [*]	TIVE FILTE	ERED	NUMB	ER SIZE	TYF	E PR	ESER	√ATIV	E FILT	ERED
1	250 mL	PLASTIC	В	ΠY	√ N							Y	N
1	250 mL	PLASTIC	A	Y	N							□ Y	N
1	125 mL	PLASTIC	Α	□ Y	✓ N							Y	□N
				□ Y	□ N							□ Y	□ N
SHIPPING	METHOD:		<u> </u>			<u> </u>		L	DILL NUMBER	DED:			
OCCUMENTS.													
REVISED 06				SIGNATURE:				DAT	E SIGNEI);			

WATER SAMPLE LOG (CONTINUED FROM PREVIOUS PAGE)

PROJECT NAME:	Williams Station		PREPARED	CHECKED			
PROJECT NUMBER:	416559.0006.0000	BY:	IB / BM PDATE:3.23.23	BY: RAM	DATE: 3-78-27		

SAMPLE ID: MW-FGD-19D

TIME	PURGE RATE	PH	CONDUCTIVITY	ORP	D.O.	TURBIDITY	TEMPERATURE	WATER LEVEL	CUMULATIVE PURGE VOLUME
	(ML/MIN)	(SU)	(umhos/cm)	(mV)	(mg/L)	(NTU)	(°C)	(FEET)	((CAL) OR L)
1020	60	69.2	2298.2	-63.8	0.15	11.00	23.11	9.49	1.3
1072	<i>(</i>					11.18		ava	
1033	60					1148		9,49	
		-							
-									
							1		
								,	
			,						
							:		
			<u> </u>		1	L	l	L	<u> </u>

Post	_

SIGNATURE:	DATE SIGNED:	

PAGE	OF	l
		-

TRC

PROJECT NAME: Williams Station				PREPARED				CHECKED			
PROJECT NUMBER: 416559.0006.0000					BY:	BIM	DATE: 3.3	22.22	BYRAL	1	DATE: 3-78-27
SAMPLE	ID: M\	N-FGD-2	0AR	WELL	DIAME	ETER: 🗸	2" 4"] 6" [OTHER		
WELL MAT	ERIAL:	✓ PVC	ss	IRON	GALV	/ANIZED S	STEEL		OTHER		
SAMPLE TYPE:											
PUR	SING	TIME: 13	340 D	ATE: 3.22	.22	s	AMPLE	TIME:	1420	,	DATE: 3.22.22
PURGE METHOD): 	PUMP BAILER	PERISTALTIC	PUMP		PH: ORP:		SU CO			mg/L umhos/cm
DEPTH TO	WATER:	6.09	T/ PVC				DITY: 3.20	NT	U		
DEPTH TO	воттом	22.70	T/ PVC			MNO	NE 🗌 SL	IGHT	□ мо	DERATE	☐ VERY
WELL VOL	UME:	2.7	LITERS	☑ GALLC	NS	TEMPE	RATURE:	22.27	°C OTH	HER:	
VOLUME F			LITERS	☑ GALLO		COLO	R: <u>Clear</u>		ODO	OR:	none
COLOR:	<u>Cle</u>	ar w/ Blx	floaters Of	OR:	ne_	FILTRA	TE (0.45 um)	YE	s 🗸	NO	
			BIDITY			FILTRA	TE COLOR:		FIL	TRATE O	DOR:
MONE			MODERATE	☐ VE				MSD		DUP	
DISPOSAL	METHOD:	: GROU	ND DRUM	☑ OTHE	₹	COMM	IENTS: Pos	t tur	b: 3.4	7	
TIME	PURGE RATE	PH	CONDUCTIVITY	ORP		D.O.	TURBIDITY	TEMP	ERATURE	WATER LEVEL	
	(ML/MIN)	(SU)	(umhos/cm)	(mV)		(mg/L)	(NTU)		(°C)	(FEET)) (GALLONS)
1345	135	6.33	2618.7	33.7		1.55	7.31	22	.82	6.11	INITIAL
1350		6.39	26906	10.2	.	0.32	6.51	22	2.21	6.14	
1355		6.43	2677.4	-12.2	-	0.19	6.12	22	.22		
1400		6.45	2679.1	- 20.1		0.16	5.76	27	2.21		
1405		6.46	2681.6	-24.9		0.14	5.46	2	2.20		
1410		6.45	2679.5	-27.3	,	0.12	5.00	22	.37		
1415	.	6.46	2676.3	-32.4		0.12	4.73	22.	47		
1420		6.47	2685.7	- 35.3		0.11.	3.20		.27		1.2
	\mathcal{U}										
1425	135						3.47			6.1	1
NO	TE: STABI	LIZATION 1	TEST IS COMP	LETE WHE	N 3 SU	JCCESSIV	E READINGS	ARE WI	THIN THE	FOLLOW	ING LIMITS:
pH: +/-	0.1	COND.: +/-	3 % ORP	: +/-	D.C	O.: +/-	TURB: +/-	10 %	or =</td <td>5</td> <td>TEMP.: +/-</td>	5	TEMP.: +/-
BOTTLES	S FILLED	PRESERV	ATIVE CODES	A - NONE	E	B - HNO3	C - H2SO4	1 D-	NaOH	E - H	HCL F
NUMBER	SIZE	TYPE	PRESERVAT	IVE FILT	ERED	NUMB	ER SIZE	TY	PE PF	RESERVA	TIVE FILTERED
1	250 mL	PLASTIC	В	□ Y	☑	N .					Y N N
1	250 mL	PLASTIC	А	□ Y	<u></u>	N					□ Y □ N
1	125 mL	PLASTIC	Α	□ Y	<u> </u>	N					□ Y □ N
				□ Y		N					□Y □N
				ΠY		N					□ Y □ N
SHIPPING	METHOD:		D.	ATE SHIPPI	ED:			AIF	RBILL NUM	IBER:	
COC NUMI			-	IGNATURE:				-	TE SIGNE		
REVISED 06					-			.			

	1		
PAGE	ı	OF	1

1	TAC
₹	IRC

REVISED 06/2011

PROJECT	PROJECT NAME: Williams Station					PREPARED			CHECKED		
PROJECT NUMBER: 416559.0006.0000 B						617	DATE: 3.	99-99	BY: RA	M	DATE:3-28-22
SAMPLE	SAMPLE ID: MW-FGD-21 WELL DIAMETER: 2" 4" 6" OTHER										
WELL MAT	WELL MATERIAL: PVC SS IRON GALVANIZED STEEL OTHER										
SAMPLE T	YPE:	☑ GW	□ww □]sw 🔲	DI .		LEACHATE		OTHER		
PUR	GING	TIME: 15	33	оате .3-3 2-	.3 <i>3</i>		AMPLE		1725		^{4⊥E:} 3·3 3·9 3
PURGE METHOE		PUMP BAILER	PERISTALTIC	PUMP		—		SU CO		1TY: 406	umhos/cm
DEPTH TO	O WATER:		T/ PVC		·		DITY: \0.82				, –
	воттом	-	T/ PVC			М МО	NE 🔀 SL	IGHT	□ мо	DERATE	☐ VERY
WELL VOL	.UME:	1.9	LITERS	✓ GALLO	NS	TEMPE	RATURE: 19	.62	°С ОТН	HER:	
VOLUME I	REMOVED:	2,6	LITERS	☑ GALLO	NS	COLO	R: <u>clear</u>		ODO	OR: <u>h</u>	ione
COLOR:	<u> </u>	کام		DOR: none		FILTRA	TE (0.45 um)	YES	· 🔽	NO	
		_	BIDITY			FILTRA	TE COLOR:		FIL	TRATE ODG	OR:
NONE	🔀 SLI	IGHT 🗌	MODERATE	U VEI	RY	QC SA	MPLE: MS	/MSD		DUP-	
DISPOSAL	METHOD	: GROUI	ND DRUM	√ OTHER	₹	COMM	іЕИТЅ: Р «ナ)	mrb, s	\$.7 <i>5</i>		·
TIME	PURGE RATE	PH	CONDUCTIVIT	Y ORP		D.O.	TURBIDITY	ТЕМРЕ	ERATURE	WATER LEVEL	CUMULATIVE PURGE VOLUME
	(ML/MIN)	(SU)	(umhos/cm)	(mV)	,	(mg/L)	(NTU)	((°C)	(FEET)	(GALLONS)
1530	85	5.93	411.44	-14.3	L	1.63	74.1	24.17		10.30	INITIAL
1535	<u> </u>	5.86	432.78	-6.6	0	ره.	48,9	al	.19	10.35	
1540		5,85	435.54	-4.4	c	14.0	36.5	ಎಂ	.67		
1765		5.73	405.04	1.7	4	.23	21.4	20.	30)	
1710		5.73	408.60	۵.۵	0	66.	13.2	۵٥.	03		
1715	(5.73	409.65	2.4	6	٠, عو	ורי.וו	19.	73		
סבנו		5.73	408.14	3.0	c	1.24	11.32	19,0			
1725	0	5.12	406.03	3.0		ر کے،د	10.82	١٩.		d	2.6
<i></i>											
1731	85						8.75			10.35	
NO pH: +/-		LIZATION T		PLETE WHEN P: +/-	1 3 SUC D.O.		E READINGS A		THIN THE		IG LIMITS: TEMP.: +/-
BOTTLES	S FILLED	PRESERV	ATIVE CODES	A - NONE	В	- HNO3	C - H2SO4	D -	NaOH	E - HO	CL F
NUMBER	SIZE	TYPE	PRESERVA	TIVE FILT	ERED	NUMB	ER SIZE	TYF	PE PR	ESERVAT	
1	250 mL	PLASTIC	В	□Y	IJ N						Y N
1	250 mL	PLASTIC	А	Y	IJ N						
1	125 mL	PLASTIC	Α	Y	✓ N						Y N
				Y	N						□Y □N
					 						Y L N
SHIPPING	METHOD:			DATE SHIPPE	ED:			AIR	BILL NUM	BER:	
сос иим	COC NUMBER: DATE SIGNED:										

1)	
PAGE	OF	L_

REVISED 06/2011

WATER QUALITY METER CALIBRATION LOG

			O, (L.)			(LID)() (
	PROJECT NAME:	Williams Station			MODEL:	AQUA TRO	LL 400	SAMPLER:	(ЈВ) вм /	AM
	PROJECT NO.:	416559.0006.0000			SERIAL	#: 72850	66	DATE: 3-23-	2033	
	PH (CALIBRATION CHECK	<u>.</u>			SPE	CIFIC CONDU	CTIVITY CALIBR	RATION C	HECK
	pH 7	pH 4 / 10	Ì		1		READING	TEMPERATURE		
	(LOT #): 21010066	(LOT #): 21080189	CAL.			(LOT #): 21470	032		CAL.	
	(EXP. DATE): 08/2022	(EXP. DATE): 06/2022	RANGE	TIME		(EXP. DATE): 0		(°CELSIUS)	RANGE	TIME
	PRE-CAL, READING / STANDARD	PRE-CAL. READING / STANDARD	1			ľ	ADING / STANDARD			
pre	6.83 / 7,00	9.76 / 10.00	WITHIN RANGE	0829	pre	4464	1 4490	20.34	WITHIN	0836
pre	1	4.56 / 4.00	WITHIN RANGE	0833	post	4487	1 4496	20.40	WITHIN RANGE	0838
post	7.02 / 7.00	10.05 / 10.00	WITHIN RANGE	0831	1.		1		WITHIN RANGE	
post	1	3.98 / 4.00	WITHIN RANGE	683 4			1		WITHIN RANGE	
1	ORP	CALIBRATION CHECK		-	•		D.O. CAL	IBRATION CHEC	CK .	
	CAL. READING	TEMPERATURE]	С	ALIBRATION R	EADING		-
	(LOT #): 21140143	(00E) 01/10	CAL.	T18.4F					CAL.	
	(EXP. DATE): 04/2023	(°CELSIUS)	RANGE	TIME			(mg/L)		RANGE	TIME
	PRE-CAL. READING / STANDARD		1							
pre	218 / 228	20,26	WITHIN RANGE	0838		Baros 7	62.60 mm	149	WITHIN RANGE	O820
post	328 / 328	20.29	WITHIN RANGE	0839			8,37 0 C		WITHIN RANGE	
`	1	·	☐ WITHIN RANGE				.40 mg/C	-	☐ WITHIN RANGE	
	1		WITHIN RANGE			Act: 9.	H ms/L	•	WITHIN RANGE	
	TURBID	ITY CALIBRATION CHEC	K		•			COMMENTS	·	
	CALIBRATION	READING (NTU)			1	✓ AUTOCA	AL SOLUTION	STANDARD	SOLUTION (S)
	(LOT #): 20480085 (0.0 NTU)	(LOT #): 20510114 (1.00) NTU	CAL.	T18.4E		(LOT #): 21470	032	LIST LOT NUMBER	RS AND EXPIR	RATION
	(EXP. DATE): June 2022	(EXP. DATE): June 2022	RANGE	TIME		(EXP. DATE): 0	14/2022	DATES UNDER CA		
	PRE-CAL, READING / STANDARD	POST-CAL. READING / STANDARD	1			CALIBRATE	D PARAMETERS	CALIBRATIO	ON RANGES (1)
	0.06 / 0.00	0.00 / 0.00	WITHIN RANGE	0839		√ pl	4	pH: , +/- 0.2 S.U	J.	
	0.97 / 1.00	1.01 / 1.00	WITHIN RANGE	0840		☑ c	OND	COND: +/- 1% OF	CAL. STAN	DARD
	9.51 / 10.00	9.71 / 10.00	WITHIN RANGE	0842		□ o	RP	ORP: +/- 25 mV		
	1	1	WITHIN RANGE			D.	.0.	D.O.: VARIES		
	· · · · · · · · · · · · · · · · · · ·	NOTES				П т	JRB	TURB: +/- 5% OF	CAL. STAN	DARD
	LaMotte 2020t turbid	imeter						(1) CALIBRATION RAN		
	Lot # for 10.00 NTU	cal standard = 20500°	177 exp	6/22				THE MODEL OF T	HE WATER Q ETER	UALITY
		· ·								
• •	P	ROBLEMS ENCOUNTERED		<u></u> -			CORRECT	IVE ACTIONS		
		NONE			ļ		1/01	119		
		<i>1001</i>	· ·				, , , , ,	<u>, </u>		
	11/1/	/ 2	78 -	3 c		· ·	7 1	-	2/22	/2022
	ALCA/	<u> </u>	28-7	02-	2		Yonts		3/28	/2022
	SIGNED /		DATE			CHECK	ED R.I.			DATE

DATE

CHECKED BY

DATE

	- 1		- 1	
PAGE_	<u>, </u>	OF _	\perp	

Post

Post

PROJECT NAME: Williams Station				MODEL: AQUA TROLL 400	SAMPLER: JB/BM/	AM		
ROJECT NO.: 416559.0006.0000				SERIAL#: 728550	DATE: 3 .23.22			
PH	CALIBRATION CHECK			SPECIFIC CONDU	CTIVITY CALIBRATION C	HECK		
pH 7 (LOT #): 21010066 (EXP. DATE): 08/2022 PRE-CAL. READING / STANDARD	pH 4 / 10 (LOT #): 21080189 (EXP. DATE): 06/2022 PRE-CAL. READING / STANDARD	CAL. RANGE	TIME	CAL. READING (LOT #): 21470032 (EXP. DATE): 04/2022	TEMPERATURE CAL. (*CELSIUS) RANGE	TIME		
6.78 / 7.00	4.20 / 4.00	WITHIN RANGE	0810/	PRE-CAL READING / STANDARD 4.55 / 4.49	21.05 WITHIN	0815		
7.00 / 7.00	4.00 / 4.00	 	0812/	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	21.28 RANGE 21.53 RANGE	0820		
/	1	☐ WITHIN RANGE] /	WITHIN RANGE			
1	1	WITHIN RANGE] /	WITHIN			
ORP	CALIBRATION CHECK	<u> </u>		D.O. CAL	IBRATION CHECK			
CAL. READING	TEMPERATURE			CALIBRATION R	EADING			
(LOT #): 21140143 (EXP. DATE): 04/2023 PRE-CAL. READING / STANDARD	(°CELSIUS)	CAL. RANGE	TIME	(mg/L)	CAL. RANGE	TIME		
219 / 228	21.78	WITHIN	0830	Baro: 763mm	Ka WITHIN RANGE	0825		
228 / 228	21.86	WITHIN RANGE	0835	Temp: 21.55	within Range			
1		☐ WITHIN RANGE		Calc: 8.9 mg	// WITHIN RANGE			
1		WITHIN		Actual: 8.89 m				
TURBID	ITY CALIBRATION CHEC		1	J	COMMENTS			
CALIBRATION	READING (NTU)			✓ AUTOCAL SOLUTION	STANDARD SOLUTION (S)		
(LOT #): 20480085 (0.0 NTU)	(LOT #): 20510114 (1.00) NTU	CAL.		(LOT#): 21470032	LIST LOT NUMBERS AND EXPIR	RATION		
(EXP. DATE): June 2022	(EXP. DATE): June 2022	RANGE	TIME	(EXP. DATE): 04/2022	DATES UNDER CALIBRATION C	CHECK		
PRE-CAL. READING / STANDARD	POST-CAL, READING / STANDARD	F-76 340=1111		CALIBRATED PARAMETERS	CALIBRATION RANGES (1	1)		
0.72 / 0	0.03 / 0	WITHIN RANGE	סאציי	Hq	pH: +/- 0.2 S.U.			
1.68 / 1	1.08	WITHIN RANGE		COND	COND: +/- 1% OF CAL. STAN	DARD		
10.03 / 10	9.95 / 10	WITHIN RANGE		ORP	ORP: +/- 25 mV			
/	1	WITHIN RANGE		D.O.	D.O.: VARIES			
	NOTES			TURB	TURB: +/- 5% OF CAL. STAN	DARD		
LaMotte 2020t turbio	limeter				(1) CALIBRATION RANGES ARE SPI THE MODEL OF THE WATER QU			
Lot # for 10.00 NTU	cal standard = 20500	177 exp	6/22		METER			
Р	ROBLEMS ENCOUNTERED			CORRECTIVE ACTIONS				
	NONE	ĝ_		NON	9			
					·-			
	7 3.	-Z8-	-202	J. Yonts	3/28	8/2022		
SIGNED		DATE	_	CHECKED BY		DATE		

REVISED 06/2011

	1		1
PAGE		OF	

REVISED 06/2011

40 F

Post

WATER QUALITY METER CALIBRATION LOG

PROJECT NAME:	Williams Station			MODEL: AQUA TROLL 400			SAMPLER: JB / BM / AM		
PROJECT NO.:	416559.0006.0000			SERIAL#: 851425			DATE: 3.23.22		
· PH	CALIBRATION CHECK	1			SPE	CIFIC CONDU	ICTIVITY CALIB	RATION C	HECK
pH 7 (LOT #): 21010066 (EXP. DATE): 08/2022 PRE-CAL. READING / STANDARD	pH 4 / 10 (LOT #): 21080189 (EXP. DATE): 06/2022 PRE-CAL. READING / STANDARD	CAL. RANGE	TIME		(LOT #): 214700 (EXP. DATE): 04		TEMPERATURE	CAL. RANGE	TIME
6.59 / 7.00	4.23 / 4.00	☐ WITHIN RANGE	0819		4.30	14.49	21.37	WITHIN RANGE	6824
7.00 / 7.00	4.00 / 4.00	WITHIN RANGE WITHIN RANGE	0821	Post	4.48	/ 4.49 /		WITHIN RANGE WITHIN RANGE	
1	1	WITHIN RANGE				1		WITHIN RANGE	
ORP CALIBRATION CHECK		-1.		_	D.O. CA		IBRATION CHECK		
CAL. READING (LOT #): 21140143 (EXP. DATE): 04/2023 PRE-CAL. READING / STANDARD	TEMPERATURE (°CELSIUS)	CAL. RANGE TIME	TIME		CALIBRATION READING (mg/L)			CAL. RANGE	TIME
216.1 / 228	⊇ 2.58	!	0832			63 mmHg		WITHIN	۵830
<u> </u>	22.44	WITHIN RANGE WITHIN RANGE	०८३५		Temp! a Actual:	8.73		WITHIN RANGE WITHIN RANGE	
1		WITHIN RANGE			calc: 8	3.9		WITHIN RANGE	
TURBID	ITY CALIBRATION CHEC	K	•	_			COMMENTS		
CALIBRATION	CALIBRATION READING (NTU)				AUTOCAL SOLUTION		STANDARD SOLUTION (S)		
(LOT #): 20480085 (0.0 NTU) (EXP. DATE): June 2022	(LOT #): 20510114 (1.00) NTU (EXP. DATE): June 2022	RANGE	TIME		(LOT #): 21470032 (EXP. DATE): 04/2022		LIST LOT NUMBERS AND EXPIRATION DATES UNDER CALIBRATION CHECK		
PRE-CAL. READING / STANDARD	POST-CAL, READING / STANDARD				CALIBRATE	ED PARAMETERS CALIBRATION RA		ION RANGES	RANGES (1)
0 / 69.1	0 / 0	WITHIN RANGE		-	IJ pH ☑ CC)ND	pH: +/- 0.2 S COND: +/- 1% O		JDARD
<u>2.87 / 1</u> 11.52 / 10	9.81 / 10	RANGE WITHIN RANGE		-			COND: +/- 1% OF CAL. STANDARD ORP: +/- 25 mV		
/ /	7.81 /	WITHIN				D.	D.O.: VARIES		
NOTES			<u> </u>]	│	RB	TURB: +/- 5% C	F CAL. STAN	NDARD
LaMotte 2020t turbidimeter]		(1) CALIBRATION RANGES ARE SPECI				
Lot # for 10.00 NTU cal standard = 20500177 exp 6/22				THE MODEL OF THE WATER QUALITY METER					
710-0711							<u> </u>		
PROBLEMS ENCOUNTERED				CORRECTIVE ACTIONS					
NONE				NONE					

CHECKED BY

DATE

gel.com

March 28, 2022

Kelly Hicks Dominion Energy Services, Inc. 120 Tredegar Street Richmond, Virginia 23219

Re: CCR Groundwater Monitoring - Level 1 Package

Work Order: 574160

Dear Kelly Hicks:

GEL Laboratories, LLC (GEL) appreciates the opportunity to provide the enclosed analytical results for the sample(s) we received on March 23, 2022. This original data report has been prepared and reviewed in accordance with GEL's standard operating procedures.

Test results for NELAP or ISO 17025 accredited tests are verified to meet the requirements of those standards, with any exceptions noted. The results reported relate only to the items tested and to the sample as received by the laboratory. These results may not be reproduced except as full reports without approval by the laboratory. Copies of GEL's accreditations and certifications can be found on our website at www.gel.com.

Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at (843) 556-8171, ext. 1648.

Sincerely,

Meredith Boddiford Project Manager

Meredith Boldiford

Purchase Order: 50149867 Chain of Custody: 204262

Enclosures

Table of Contents

Case Narrative	1
Chain of Custody and Supporting Documentation	4
Laboratory Certifications	7
Metals Analysis	9
Case Narrative	10
Sample Data Summary	14
Quality Control Summary	25
General Chem Analysis	37
Case Narrative	38
Sample Data Summary	44
Quality Control Summary	55

Receipt Narrative for Dominion Energy (50149867) SDG: 574160

March 28, 2022

Laboratory Identification:

GEL Laboratories LLC 2040 Savage Road Charleston, South Carolina 29407 (843) 556-8171

Summary:

Sample receipt: The samples arrived at GEL Laboratories LLC, Charleston, South Carolina on March 23, 2022 for analysis. The samples were delivered with proper chain of custody documentation and signatures. All sample containers arrived without any visible signs of tampering or breakage. There are no additional comments concerning sample receipt.

Sample Identification: The laboratory received the following samples:

<u>Laboratory ID</u>	Client ID
574160001	MW-FGD-16-2022Q1
574160002	MW-FGD-17-2022Q1
574160003	MW-FGD-18-2022Q1
574160004	MW-FGD-19-2022Q1
574160005	MW-FGD-19D-2022Q1
574160006	MW-FGD-20AR-2022Q1
574160007	MW-FGD-21-2022Q1
574160008	FBLK-WMS-FGD-22101
574160009	FBLK-WMS-FGD-22102
574160010	DU-WMS-FGD-22101

Case Narrative:

Sample analyses were conducted using methodology as outlined in GEL's Standard Operating Procedures. Any technical or administrative problems during analysis, data review, and reduction are contained in the analytical case narratives in the enclosed data package.

The enclosed data package contains the following sections: Case Narrative, Chain of Custody, Cooler Receipt Checklist, Data Package Qualifier Definitions and data from the following fractions: General Chemistry and Metals.

Meredith Boddiford Project Manager

Meredith Boldiford

GEL Laboratories, LLC 2040 Savage Road	Charleston, SC 29407	Fax: (843) 766.1178	(Fill in the number of containers for each test)	< Preservative Tyme (K)	(A) After American (A) And (A)	Comments	Note: extra sample is required for sample sometime of the sample specific OC		EPA 200.7 - B, Ca					see attached work	order for details				XRush:Specify:		[X] level 1 [] Level 2 [] Level 3 [] Level 4			[] Central [] Mountain [] Other:		ins is a conf. (A.) Masal			one concerns. (i.e.: Origin of sample(s), type of site collected from, odd matrices, etc.)			
27186	cuemistry i Hadiochemistry i Padiobioassay i Specialty Analytics F Custody and Analytical Request	GEL Project Manager: Meredith Boddiford	Sample Analysis Requested (S) (Fill	IN	onieti O	0 4-EB 522400 04 cou	491 App 11 App 12 App 12 App 13 App 14 App 15 App 16 App 1	od (7)	2		1 -)) ~	2	7		7 4			1A1 Kequested: Normal:	N X	C of A QC Summary	Additional Remarks;	For Lab Receiving Use Only: Custody Seal Intact? [] Yes	Spike Duplicate Sample, G = Grab, C = Composite	SL=Sludge, SS=Solid Waste, O=Oil, F=Filter, P=Wine. U=Urir	/7470.4 - 1). odium Thiosulfate. If no meservativo is addad — loome 1, 1111.	Other Other	OT= Other / Unknown (i.e.: High/low pH, asbestos, beryllium invitants orthon)	misc. health hazards, etc.) Descrintion:			
	2 4 6 Chain of Custody and Analytical Request		2022O1 L	rax #	0	Send Results To: AReed@envstd.com	*Date Collected	3.22.77 1C.10 N N GW N	M N S/h!	N N GW	3.23.22 0935 N N GW N	MD N N 0201	3.22.22 1420 N N GW N	3.22.22 1725 N N GW N	/6/5 FB N AQ	FB N AQ	FD N GW	Se suit de la constant de la constan	Received by (signed) Date Time	Junesa lodius 3/2	10000000000000000000000000000000000000	3		D = Matrix	4.) Matrix Codes: DW=Drinking Water, GW=Groundwater, SW=Surface Water, WW=Water, WE-Water, ML=Misc Liquid, SO=Soil, SD=Sediment, SL=Sludge, SS=Solid Waste, O=Oil, F=Filter, P=Wine, U=Urine, V=Urine, U=Urine, V=Urine, U=Urine, V=Urine, U=Urine, U=	Preservative Type: HA = Hydrochloric Acid, NI = Nitric Acid, SII = Sodium Hydroxide, SA = Sulfuric Acid, HX = Hexane, ST = Sodium Thiosulfate, If no preservative is added = 1500 or 1100 or 1200 or 1	Characteristic Hazards Listed Waste	LW= Listed Waste (F,K,P and U-listed wastes.)	raste code(s);	1 SCA Regulated PCB = Polychlorinated	biphenyls	
Project # 416559.6.0.6.2	2148	Client Name: Dominion Energy	Project/Site Name: Williams Station New FGD CCR 202201	Address: Goose Creek, South Carolina		Collected by: J. Bradley / B. Medlin	Sample ID * For composites - indicate start and stop date/time	MW-FGD-16-2022Q1	MW-FGD-17-2022Q1	MW-FGD-18-2022Q1 / MS/MSD	MW-FGD-19-2022Q1	MW-FGD-19D-2022Q1	MW-FGD-20AR-2022Q1	MIW-FGD-21-2022Q1	FBLK-WMS-FGD-22101	FBLK-WMS-FGD-22102	DU-WMS-FGD-22101		Reimquished By (Signed) Date Time	lacot Eucly 3-23-2022 1552			> For sample shipping and delivery details, see Sample Receipt & Review form (SRR.)	 Chain of Custody Number = Client Determined QC Codes: N = Normal Sample, TB = Trip Blank, FD = Field Duplicate, EB = Equipment Blank, MS = Matrix Spike Sample, MS Field Filtered: For liquid matrices, indicate with a - Y - for yes the sample was field filtered or - N - for some the sample was field filtered or - N - for some the sample was field filtered or - N - for some the sample was field filtered or - N - for some the sample was field filtered or - N - for some the sample was field filtered or - N - for some the sample was field filtered or - N - for some the sample was field filtered or - N - for some the sample was field filtered or - N - for some the sample was field filtered or - N - for some the sample was field filtered or - N - for some the sample was field filtered or - N - for some the sample was field filtered or - N - for some the sample was field filtered or - N - for some the sample was field filtered or - N - for some the sample was filled filtered or - N - for some the sample was filled filtered or - N - for some the sample was filled filtered or - N - for some the sample was filled filtered or - N - for some the sample was filled filtered or - N - for some the sample was filled filtered or - N - for some the sample was filled filtered or - N - for some the sample was filled filtered or - N - for some the sample was filled filtered or - for some the sample was filled filled filtered or - for some the sample was filled filled	.) Matrix Codes: DW=Drinking Water, GW=Groundwater, SW=Sur	Preservative Type: HA = Hydrochloric Acid, NI = Nitric Acid, SII KNOWN OR POSSIBLE HAZARDS	Char	ls Hg= Mercury	Se= Selenium	MR= Misc. RCRA metals		

oţ

rage.

值型 Laboratories	S LLC		CAMPA Waren
Client: DWWN	-		SAMPLE RECEIPT & REVIEW FORM
Received By:			SDG/ARCCOCWORK Order: 574 56
Enter one trucking number per ine below.			Date Received: 3 75 22
Enter courier if applicable and no tracking av-	Lable.		Uncorrected temperature resultings are to the a transfer of the action o
- Courter			
Courier	··········		Circurrected Temps: IR Correction Factor: +/- Final Recorded Temps: O State on Com (C)
			Uncorrected Temp: () IR Correction Factors (
		·	Uncorrected Tenin: In Co
			Within 0.0-6.0C? V/N
			Final Recorded Temp: Within 0.0-6.0C? Y/N
			Final Recorded Temp: Within 6.0.6.007 Vol.
uspected Hazard Information	×:	ĝ	Shedricted Temp: IR Correction Factor: 4/6 Plants
	 _ _	z	A real Counts > (Ocepin on samples not marked "radioactive", contact the Radiation Safety Group for further investigation
AShipped as a DOT Hazardous?		0	Hazanf Class Shipped: UN#: If UN2910, Is the Radioactive Shipment Survey Compliant? YesNo
) Did the client designate the samples are to be ecrived as radioactive?			OC Holation of explanation of the state of t
	1		OC notation or radioactive attackers on containers equal effent designation.
Did the RSO classify the samples as radioactive	7	U c	Assistant Net Counts Observed* (Observed Counts - Area Background Counts):
Did the client designate samples are hazardous?	1 1	- 1	OC notation or hazard tabels on containers equal elient designation.
Did the RSO identify possible hazards?	1	136	O or E is yes, select Hazarta balance
	+ +	L I'v	CB's Flammable Foreign Soil RCRA Asbestos Beryllium Other:
Sample Receipt Criteria	z z	N.	C
Shipping containers received intact and sealed?			Circle Applicable: Seals broken Damaged container Leafting
Chain of custody documents included with	1		Coating container Other (describe)
Subtrem?			Circle Applicable: Client contacted and provided COC COC created upon receipt
Sample containers intact and sealed?	1		Circle Applicable: Seals broken Damaged container Leaking container Other (describe)
Samples requiring cold preservation were			Uncorrected Temps
ampaiexed differly into cold storage			Correction Factor: +/- Final Recorded Temp: Within 0.0-6.0C? YN
Samples requiring chemical preservation at proper pH?	V		Sample IO's and Containers Affected:
	1	203	If Preservation added, Lora:
Do any samples require Volatile Analysis?	Ž		If Yes, are Encores or Soil Kits present for soilds? Yes No NA (If yes, take to VOA Freezer) Are limit VOA viols contain acid preservation? Yes No NA (If untroops of the NA)
		関し	Are liquid VOA viols free of headspace? YesNoNA(If unknown, select No) Sample ID's and containers affected:
imples received within holding time?		% —	ID's and tests affected:
ample ID's on COC match ID's on bottles?		9	ID's and containers affected:
ate & time on COC match data & since		32	
Alles,	1		Circle Applicable: No dates on containers No times on containers COC missing info Other (describe)
umber of containers received match umber indicated on COC?		d	Circle Applicable: No container count on COC Other (describe)
e sample containers identificate or			Other (describe)
X form is properly signed in		1	
inquished/received environment	レ	1	Circle Applicable: Not relinquished Other (describe)
nts (Use Continuation Form if needed):	BOOT AND	4	
		····	
PM for the	Atoud t -		AM Date 3/24/22-1 of 1
	· coreview: Init	ыв	7/4V Date 316412 Fage 1 of
			Westerna VI washing

List of current GEL Certifications as of 28 March 2022

State	Certification
Alabama	42200
Alaska	17-018
Alaska Drinking Water	SC00012
Arkansas	88-0651
CLIA	42D0904046
California	2940
Colorado	SC00012
Connecticut	PH-0169
DoD ELAP/ ISO17025 A2LA	2567.01
Florida NELAP	E87156
Foreign Soils Permit	P330-15-00283, P330-15-00253
Georgia	SC00012
Georgia SDWA	967
Hawaii	SC00012
Idaho	SC00012
Illinois NELAP	200029
Indiana	C-SC-01
Kansas NELAP	E-10332
Kentucky SDWA	90129
Kentucky Wastewater	90129
Louisiana Drinking Water	LA024
Louisiana NELAP	03046 (AI33904)
Maine	2019020
Maryland	270
Massachusetts	M-SC012
Massachusetts PFAS Approv	Letter
Michigan	9976
Mississippi	SC00012
Nebraska	NE-OS-26-13
Nevada	SC000122021-1
New Hampshire NELAP	2054
New Jersey NELAP	SC002
New Mexico	SC00012
New York NELAP	11501
North Carolina	233
North Carolina SDWA	45709
North Dakota	R-158
Oklahoma	2019–165
Pennsylvania NELAP	68-00485
Puerto Rico	SC00012
S. Carolina Radiochem	10120002
Sanitation Districts of L	9255651
South Carolina Chemistry	10120001
Tennessee	TN 02934
Texas NELAP	T104704235-21-19
Utah NELAP	SC000122021–36
Vermont	VT87156
Virginia NELAP	460202
Washington	C780
asimgion	2.00

Metals Technical Case Narrative Dominion Energy SDG #: 574160

<u>Product:</u> Determination of Metals by ICP-MS <u>Analytical Method:</u> EPA 200.8 SC_NPDES <u>Analytical Procedure:</u> GL-MA-E-014 REV# 35

Analytical Batch: 2244931

Preparation Method: EPA 200.2

Preparation Procedure: GL-MA-E-016 REV# 18

Preparation Batch: 2244930

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
574160001	MW-FGD-16-2022Q1
574160002	MW-FGD-17-2022Q1
574160003	MW-FGD-18-2022Q1
574160004	MW-FGD-19-2022Q1
574160005	MW-FGD-19D-2022Q1
574160006	MW-FGD-20AR-2022Q1
574160007	MW-FGD-21-2022Q1
574160008	FBLK-WMS-FGD-22101
574160009	FBLK-WMS-FGD-22102
574160010	DU-WMS-FGD-22101
1205048656	Method Blank (MB) ICP-MS
1205048657	Laboratory Control Sample (LCS)
1205048660	574160003(MW-FGD-18-2022Q1L) Serial Dilution (SD)
1205048658	574160003(MW-FGD-18-2022Q1D) Sample Duplicate (DUP)
1205048659	574160003(MW-FGD-18-2022Q1S) Matrix Spike (MS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Calibration Information

ICSA/ICSAB Statement

For the ICP-MS analysis, the ICSA solution contains analyte concentrations which are verified trace impurities indigenous to the purchased standard.

Technical Information

Sample Dilutions

Page 11 of 58 SDG: 574160

Dilutions may be required for many reasons, including to minimize matrix interferences or to bring over range target analyte concentrations into the linear calibration range. Samples 574160002 (MW-FGD-17-2022Q1), 574160003 (MW-FGD-18-2022Q1), 574160004 (MW-FGD-19-2022Q1), 574160005 (MW-FGD-19D-2022Q1), 574160006 (MW-FGD-20AR-2022Q1) and 574160010 (DU-WMS-FGD-22101) were diluted to ensure that the analyte concentrations were within the linear calibration range of the instrument.

A 1		574160												
Analyte	002	003	004	005	006	010								
Boron	10X	50X	5X	10X	20X	5X								
Calcium	10X	20X	5X	10X	20X	5X								

Miscellaneous Information

Additional Comments

All method-driven specifications are followed for these analyses except where client-specific SOW requirements are required to be met.

Certification Statement

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Page 12 of 58 SDG: 574160

GEL LABORATORIES LLC

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Qualifier Definition Report for

DMNN001 Dominion Energy (50149867) Client SDG: 574160 GEL Work Order: 574160

The Qualifiers in this report are defined as follows:

- * A quality control analyte recovery is outside of specified acceptance criteria
- B Either presence of analyte detected in the associated blank, or MDL/IDL < sample value < PQL
- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

Review/Validation

GEL requires all analytical data to be verified by a qualified data reviewer. In addition, all CLP-like deliverables receive a third level review of the fractional data package.

The following data validator verified the information presented in this data report:

Signature: Edmund Frampton

Date: 04 APR 2022 Title: Group Leader

Page 13 of 58 SDG: 574160

-1-

INORGANICS ANALYSIS DATA PACKAGE

SDG No: 574160 CONTRACT: DMNN00101 METHOD TYPE: EPA

SAMPLE ID: 574160001 BASIS: As Received DATE COLLECTED 22-MAR-22

CLIENT ID: MW-FGD-16-2022Q1 LEVEL: Low DATE RECEIVED 23-MAR-22

MATRIX: GW %SOLIDS: 0

CAS	Analyte	Result	Units	Qual	MDL	PQL	CRDL	DF	M*	Analyst	Run Date	Analytical Run	Analytical Batch
7440-42-8	Boron	39.0	ug/L		4.00	15.0	15.0	1	MS	SKJ	03/30/22 20:04	220330-1	2244931
7440-70-2	Calcium	12800	ug/L		30.0	100	100	1	MS	SKJ	03/30/22 20:04	220330-1	2244931

Prep Information:

Analytical Batch	Prep Batch	Prep Method	Initial wt./vol.	Units	Final wt./vol.	Units	Date	Analyst
2244931	2244930	EPA 200.2	50	mL	50	mL	03/24/22	LG2

*Analytical Methods:

-1-

INORGANICS ANALYSIS DATA PACKAGE

SDG No: 574160 CONTRACT: DMNN00101 METHOD TYPE: EPA

SAMPLE ID: 574160002 BASIS: As Received DATE COLLECTED 22-MAR-22

CLIENT ID: MW-FGD-17-2022Q1 LEVEL: Low DATE RECEIVED 23-MAR-22

MATRIX: GW %SOLIDS: 0

CAS	Analyte	Result	Units	Qual	MDL	PQL	CRDL	DF	M*	Analyst	Run Date	Analytical Run	Analytical Batch
7440-42-8	Boron	1250	ug/L		40.0	150	150	10	MS	SKJ	03/30/22 20:06	220330-1	2244931
7440-70-2	Calcium	216000	ug/L		300	1000	1000	10	MS	SKJ	03/30/22 20:06	220330-1	2244931

Prep Information:

Analytical Batch	Prep Batch	Prep Method	Initial wt./vol.	Units	Final wt./vol.	Units	Date	Analyst
2244931	2244930	EPA 200.2	50	mL	50	mL	03/24/22	LG2

*Analytical Methods:

-1-

INORGANICS ANALYSIS DATA PACKAGE

SDG No: 574160 CONTRACT: DMNN00101 METHOD TYPE: EPA

SAMPLE ID: 574160003 BASIS: As Received DATE COLLECTED 23-MAR-22

CLIENT ID: MW-FGD-18-2022Q1 LEVEL: Low DATE RECEIVED 23-MAR-22

MATRIX: GW %SOLIDS: 0

CAS	Analyte	Result	Units	Qual	MDL	PQL	CRDL	DF	M*	Analyst	Run Date	Analytical Run	Analytical Batch
7440-42-8	Boron	7240	ug/L		200	750	750	50	MS	SKJ	03/30/22 20:12	220330-1	2244931
7440-70-2	Calcium	421000	ug/L		600	2000	2000	20	MS	SKJ	03/30/22 20:30	220330-1	2244931

Prep Information:

Analytical Batch	Prep Batch	Prep Method	Initial wt./vol.	Units	Final wt./vol.	Units	Date	Analyst
2244931	2244930	EPA 200.2	50	mL	50	mL	03/24/22	LG2

*Analytical Methods:

-1-

INORGANICS ANALYSIS DATA PACKAGE

SDG No: 574160 CONTRACT: DMNN00101 METHOD TYPE: EPA

SAMPLE ID: 574160004 BASIS: As Received DATE COLLECTED 23-MAR-22

CLIENT ID: MW-FGD-19-2022Q1 LEVEL: Low DATE RECEIVED 23-MAR-22

MATRIX: GW %SOLIDS: 0

CAS	Analyte	Result	Units	Qual	MDL	PQL	CRDL	DF	M*	Analyst	Run Date	Analytical Run	Analytical Batch
7440-42-8	Boron	194	ug/L		20.0	75.0	75.0	5	MS	SKJ	03/31/22 13:35	220330	2244931
7440-70-2	Calcium	132000	ug/L		150	500	500	5	MS	SKJ	03/30/22 20:38	220330-1	2244931

Prep Information:

Analytical Batch	Prep Batch	Prep Method	Initial wt./vol.	Units	Final wt./vol.	Units	Date	Analyst
2244931	2244930	EPA 200.2	50	mL	50	mL	03/24/22	LG2

*Analytical Methods:

-1-

INORGANICS ANALYSIS DATA PACKAGE

SDG No: 574160 CONTRACT: DMNN00101 METHOD TYPE: EPA

SAMPLE ID: 574160005 BASIS: As Received DATE COLLECTED 23-MAR-22

CLIENT ID: MW-FGD-19D-2022Q1 LEVEL: Low DATE RECEIVED 23-MAR-22

MATRIX: GW %SOLIDS: 0

CAS	Analyte	Result	Units	Qual	MDL	PQL	CRDL	DF	M*	Analyst	Run Date	Analytical Run	Analytical Batch
7440-42-8	Boron	1340	ug/L		40.0	150	150	10	MS	SKJ	03/31/22 13:37	220330	2244931
7440-70-2	Calcium	105000	ug/L		300	1000	1000	10	MS	SKJ	03/30/22 20:40	220330-1	2244931

Prep Information:

Analytical Batch	Prep Batch	Prep Method	Initial wt./vol.	Units	Final wt./vol.	Units	Date	Analyst
2244931	2244930	EPA 200.2	50	mL	50	mL	03/24/22	LG2

^{*}Analytical Methods:

-1-

INORGANICS ANALYSIS DATA PACKAGE

SDG No: 574160 CONTRACT: DMNN00101 METHOD TYPE: EPA

SAMPLE ID: 574160006 BASIS: As Received DATE COLLECTED 22–MAR–22

CLIENT ID: MW-FGD-20AR-2022Q1 LEVEL: Low DATE RECEIVED 23-MAR-22

MATRIX: GW %SOLIDS: 0

CAS	Analyte	Result	Units	Qual	MDL	PQL	CRDL	DF	M*	Analyst	Run Date	Analytical Run	Analytical Batch
7440-42-8	Boron	3430	ug/L		80.0	300	300	20	MS	SKJ	03/31/22 13:39	220330	2244931
7440-70-2	Calcium	266000	ug/L		600	2000	2000	20	MS	SKJ	03/30/22 20:42	220330-1	2244931

Prep Information:

Analytical Batch	Prep Batch	Prep Method	Initial wt./vol.	Units	Final wt./vol.	Units	Date	Analyst
2244931	2244930	EPA 200.2	50	mL	50	mL	03/24/22	LG2

*Analytical Methods:

-1-

INORGANICS ANALYSIS DATA PACKAGE

SDG No: 574160 CONTRACT: DMNN00101 METHOD TYPE: EPA

SAMPLE ID: 574160007 BASIS: As Received DATE COLLECTED 22–MAR–22

CLIENT ID: MW-FGD-21-2022Q1 LEVEL: Low DATE RECEIVED 23-MAR-22

MATRIX: GW %SOLIDS: 0

CAS	Analyte	Result	Units	Qual	MDL	PQL	CRDL	DF	M*	Analyst	Run Date	Analytical Run	Analytical Batch
7440-42-8	Boron	22.9	ug/L		4.00	15.0	15.0	1	MS	SKJ	03/31/22 13:44	220330	2244931
7440-70-2	Calcium	45200	ug/L		30.0	100	100	1	MS	SKJ	03/30/22 20:48	220330-1	2244931

Prep Information:

Analytical Batch	Prep Batch	Prep Method	Initial wt./vol.	Units	Final wt./vol.	Units	Date	Analyst
2244931	2244930	EPA 200.2	50	mL	50	mL	03/24/22	LG2

^{*}Analytical Methods:

-1-

INORGANICS ANALYSIS DATA PACKAGE

SDG No: 574160 CONTRACT: DMNN00101 METHOD TYPE: EPA

SAMPLE ID: 574160008 BASIS: As Received DATE COLLECTED 22-MAR-22

CLIENT ID: FBLK-WMS-FGD-22101 LEVEL: Low DATE RECEIVED 23-MAR-22

MATRIX: AQ %SOLIDS: 0

CAS	Analyte	Result	Units	Qual	MDL	PQL	CRDL	DF	M*	Analyst	Run Date	Analytical Run	Analytical Batch
7440-42-8	Boron	4.00	ug/L	U	4.00	15.0	15.0	1	MS	SKJ	03/31/22 13:46	220330	2244931
7440-70-2	Calcium	30.0	ug/L	U	30.0	100	100	1	MS	SKJ	03/30/22 20:51	220330-1	2244931

Prep Information:

Analytical Batch	Prep Batch	Prep Method	Initial wt./vol.	Units	Final wt./vol.	Units	Date	Analyst
2244931	2244930	EPA 200.2	50	mL	50	mL	03/24/22	LG2

^{*}Analytical Methods:

-1-

INORGANICS ANALYSIS DATA PACKAGE

SDG No: 574160 CONTRACT: DMNN00101 METHOD TYPE: EPA

SAMPLE ID:574160009 BASIS: As Received DATE COLLECTED 23-MAR-22

CLIENT ID: FBLK-WMS-FGD-22102 LEVEL: Low DATE RECEIVED 23-MAR-22

MATRIX: AQ %SOLIDS: 0

CAS	Analyte	Result	Units	Qual	MDL	PQL	CRDL	DF	M*	Analyst	Run Date	Analytical Run	Analytical Batch
7440-42-8	Boron	4.00	ug/L	U	4.00	15.0	15.0	1	MS	SKJ	03/31/22 13:48	220330	2244931
7440-70-2	Calcium	30.0	ug/L	U	30.0	100	100	1	MS	SKJ	03/30/22 20:53	220330-1	2244931

Prep Information:

Analytical Batch	Prep Batch	Prep Method	Initial wt./vol.	Units	Final wt./vol.	Units	Date	Analyst
2244931	2244930	EPA 200.2	50	mL	50	mL	03/24/22	LG2

^{*}Analytical Methods:

-1-

INORGANICS ANALYSIS DATA PACKAGE

SDG No: 574160 CONTRACT: DMNN00101 METHOD TYPE: EPA

SAMPLE ID: 574160010 BASIS: As Received DATE COLLECTED 22-MAR-22

CLIENT ID: DU-WMS-FGD-22101 LEVEL: Low DATE RECEIVED 23-MAR-22

MATRIX: GW %SOLIDS: 0

CAS	Analyte	Result	Units	Qual	MDL	PQL	CRDL	DF	M*	Analyst	Run Date	Analytical Run	Analytical Batch
7440-42-8	Boron	193	ug/L		20.0	75.0	75.0	5	MS	SKJ	03/31/22 13:50	220330	2244931
7440-70-2	Calcium	140000	ug/L		150	500	500	5	MS	SKJ	03/30/22 20:55	220330-1	2244931

Prep Information:

Analytical Batch	Prep Batch	Prep Method	Initial wt./vol.	Units	Final wt./vol.	Units	Date	Analyst
2244931	2244930	EPA 200.2	50	mL	50	mL	03/24/22	LG2

^{*}Analytical Methods:

$\begin{array}{c} {\bf METALS} \\ -2a- \\ \\ {\bf Initial\ and\ Continuing\ Calibration\ Verification} \end{array}$

SDG No: 574160

Contract: DMNN00101 Lab Code: GEL

Instrument ID: ICPMS11

Sample ID	<u>Analyte</u>	Result	<u>Units</u>	<u>True</u> <u>Value</u>	<u>Units</u>	<u>%</u> Recovery	Acceptance Window (%R)	<u>M*</u>	Analysis Date/Time	<u>Run</u> Number
ICV01										
	Boron	99.8	ug/L	100	ug/L	99.8	90.0 - 110.0	MS	30-MAR-22 18:05	220330-1
	Calcium	4870	ug/L	5000	ug/L	97.3	90.0 - 110.0	MS	30-MAR-22 18:05	220330-1
CCV01										
	Boron	96.9	ug/L	100	ug/L	96.9	90.0 - 110.0	MS	30-MAR-22 18:15	220330-1
	Calcium	5070	ug/L	5000	ug/L	101.3	90.0 - 110.0	MS	30-MAR-22 18:15	220330-1
CCV02										
	Boron	101	ug/L	100	ug/L	100.8	90.0 - 110.0	MS	30-MAR-22 18:21	220330-1
	Calcium	5030	ug/L	5000	ug/L	100.5	90.0 - 110.0	MS	30-MAR-22 18:21	220330-1
CCV03										
	Boron	93.6	ug/L	100	ug/L	93.6	90.0 - 110.0	MS	30-MAR-22 19:56	220330-1
	Calcium	4950	ug/L	5000	ug/L	99.1	90.0 - 110.0	MS	30-MAR-22 19:56	220330-1
CCV04										
	Boron	95	ug/L	100	ug/L	95	90.0 - 110.0	MS	30-MAR-22 20:08	220330-1
	Calcium	4880	ug/L	5000	ug/L	97.6	90.0 - 110.0	MS	30-MAR-22 20:08	220330-1
CCV05										
	Boron	95.7	ug/L	100	ug/L	95.7	90.0 - 110.0	MS	30-MAR-22 20:26	220330-1
	Calcium	4840	ug/L	5000	ug/L	96.7	90.0 - 110.0	MS	30-MAR-22 20:26	220330-1
CCV06										
	Boron	103	ug/L	100	ug/L	103.4	90.0 - 110.0	MS	30-MAR-22 20:44	220330-1
	Calcium	4900	ug/L	5000	ug/L	98	90.0 - 110.0	MS	30-MAR-22 20:44	220330-1
CCV07										
	Boron	94.3	ug/L	100	ug/L	94.3	90.0 - 110.0	MS	30-MAR-22 21:03	220330-1
	Calcium	4770	ug/L	5000	ug/L	95.4	90.0 - 110.0	MS	30-MAR-22 21:03	220330-1

^{*}Analytical Methods:

METALS -2bCRDL Standard for ICP & ICPMS

SDG No: 574160

Contract: DMNN00101 Lab Code: GEL

Instrument ID: ICPMS11

Sample ID	<u>Analyte</u>	Result	<u>Units</u>	<u>True</u> <u>Value</u>	<u>Units</u>	% Recovery	Advisory Limits (%R)	<u>M*</u>	Analysis Date/Time	<u>Run</u> <u>Number</u>
CRDL01										
	Boron	16.3	ug/L	15	ug/L	108.6	70.0 - 130.0	MS	30-MAR-22 18:09	220330-1
	Calcium	223	ug/L	200	ug/L	111.6	70.0 - 130.0	MS	30-MAR-22 18:09	220330-1
CRDL02										
	Boron	12.4	ug/L	15	ug/L	82.5	70.0 - 130.0	MS	30-MAR-22 19:50	220330-1
	Calcium	227	ug/L	200	ug/L	113.3	70.0 – 130.0	MS	30-MAR-22 19:50	220330-1
CRDL03										
	Boron	16.6	ug/L	15	ug/L	110.3	70.0 - 130.0	MS	30-MAR-22 20:20	220330-1
	Calcium	238	ug/L	200	ug/L	119.2	70.0 - 130.0	MS	30-MAR-22 20:20	220330-1
CRDL04										
	Boron	14.4	ug/L	15	ug/L	96.3	70.0 - 130.0	MS	30-MAR-22 20:57	220330-1
	Calcium	218	ug/L	200	ug/L	108.9	70.0 - 130.0	MS	30-MAR-22 20:57	220330-1

^{*}Analytical Methods:

Metals
-3aInitial and Continuing Calibration Blank Summary

SDG No.: 574160

Contract: DMNN00101

Lab Code: GEL

Sample ID	<u>Analyte</u>	Result ug/L	Acceptance	Conc Qual	MDL	RDL	Matrix	<u>M*</u>	Analysis Date/Time	Run
ICB01										
	Boron	4.78	+/-7.5	В	4.0	15.0	LIQ	MS	30-MAR-22 18:07	220330-1
	Calcium	30.0	+/-50	U	30.0	100	LIQ	MS	30-MAR-22 18:07	220330-1
CCB01										
	Boron	4.0	+/-7.5	U	4.0	15.0	LIQ	MS	30-MAR-22 18:17	220330-1
	Calcium	30.0	+/-50	U	30.0	100	LIQ	MS	30-MAR-22 18:17	220330-1
CCB02										
	Boron	4.0	+/-7.5	U	4.0	15.0	LIQ	MS	30-MAR-22 18:23	220330-1
	Calcium	30.0	+/-50	U	30.0	100	LIQ	MS	30-MAR-22 18:23	220330-1
CCB03										
	Boron	4.0	+/-7.5	U	4.0	15.0	LIQ	MS	30-MAR-22 19:58	220330-1
	Calcium	30.0	+/-50	U	30.0	100	LIQ	MS	30-MAR-22 19:58	220330-1
CCB04										
	Boron	4.0	+/-7.5	U	4.0	15.0	LIQ	MS	30-MAR-22 20:10	220330-1
	Calcium	30.0	+/-50	U	30.0	100	LIQ	MS	30-MAR-22 20:10	220330-1
CCB05										
	Boron	4.0	+/-7.5	U	4.0	15.0	LIQ	MS	30-MAR-22 20:28	220330-1
	Calcium	30.0	+/-50	U	30.0	100	LIQ	MS	30-MAR-22 20:28	220330-1
CCB06										
00200	Boron	9.27	+/-7.5	В	4.0	15.0	LIQ	MS	30-MAR-22 20:46	220330-1
	Calcium	30.0	+/-50	U	30.0	100	LIQ	MS	30-MAR-22 20:46	220330-1
CCB07										
CCDU.	Boron	4.0	+/-7.5	U	4.0	15.0	LIQ	MS	30-MAR-22 21:05	220330-1
	Calcium	30.0	+/-50	U	30.0	100	LIQ	MS	30-MAR-22 21:05	220330-1

*Analytical Methods:

METALS -3bPREPARATION BLANK SUMMARY

SDG NO. 574160

Contract: DMNN00101

Matrix: GW

Sample ID	<u>Analyte</u>	Result	Units	Acceptance Window	Conc Qual	<u>M*</u>	MDL	RDL
1205048656								
	Boron	4.00	ug/L	+/-7.5	U	MS	4.00	15.0
	Calcium	30.0	ug/L	+/-50	U	MS	30.0	100

^{*}Analytical Methods:

METALS -4Interference Check Sample

SDG No: 574160

Contract: DMNN00101 Lab Code: GEL

Instrument: ICPMS11

Sample ID	Analyte	Result	<u>Units</u>	<u>True</u> <u>Value</u>	<u>Units</u>	% Recovery	Acceptance Window (%R)	<u>Analysis</u> <u>Date/Time</u>	<u>Run</u> <u>Number</u>
ICSA01									
	Boron	3.41	ug/L					30-MAR-22 18:11	220330-1
	Calcium	102000	ug/L	100000	ug/L	102	80.0 - 120.0	30-MAR-22 18:11	220330-1
ICSAB01									
	Boron	22.1	ug/L	20	ug/L	111	80.0 - 120.0	30-MAR-22 18:13	220330-1
	Calcium	102000	ug/L	100000	ug/L	102	80.0 - 120.0	30-MAR-22 18:13	220330-1
ICSA02									
	Boron	0.763	ug/L					30-MAR-22 18:52	220330-1
	Calcium	99300	ug/L	100000	ug/L	99.3	80.0 - 120.0	30-MAR-22 18:52	220330-1
ICSAB02									
	Boron	20.2	ug/L	20	ug/L	101	80.0 - 120.0	30-MAR-22 18:54	220330-1
	Calcium	98700	ug/L	100000	ug/L	98.7	80.0 - 120.0	30-MAR-22 18:54	220330-1
ICSA03									
	Boron	0.949	ug/L					30-MAR-22 19:30	220330-1
	Calcium	99000	ug/L	100000	ug/L	99	80.0 - 120.0	30-MAR-22 19:30	220330-1
ICSAB03									
	Boron	20.4	ug/L	20	ug/L	102	80.0 - 120.0	30-MAR-22 19:32	220330-1
	Calcium	96600	ug/L	100000	ug/L	96.6	80.0 - 120.0	30-MAR-22 19:32	220330-1
ICSA04									
	Boron	0.112	ug/L					30-MAR-22 19:52	220330-1
	Calcium	99100	ug/L	100000	ug/L	99.1	80.0 - 120.0	30-MAR-22 19:52	220330-1
ICSAB04									
	Boron	19.9	ug/L	20	ug/L	99.5	80.0 - 120.0	30-MAR-22 19:54	220330-1
	Calcium	101000	ug/L	100000	ug/L	101	80.0 - 120.0	30-MAR-22 19:54	220330-1
ICSA05									
2001100	Boron	3.12	ug/L					30-MAR-22 20:22	220330-1
	Calcium	98100	ug/L	100000	ug/L	98.1	80.0 - 120.0	30-MAR-22 20:22	220330-1
ICSAB05									
ICDADUS	Boron	23.4	ug/L	20	ug/L	117	80.0 - 120.0	30-MAR-22 20:24	220330-1
			3		٠				

METALS -4-

Interference Check Sample

SDG No: 574160

Contract: DMNN00101 Lab Code: GEL

Sample ID	<u>Analyte</u>	Result	<u>Units</u>	<u>True</u> <u>Value</u>	<u>Units</u>	% Recovery	Acceptance Window (%R)	Analysis Date/Time	<u>Run</u> <u>Number</u>
	Calcium	98200	ug/L	100000	ug/L	98.2	80.0 - 120.0	30-MAR-22 20:24	220330-1
ICSA06									
	Boron	1.73	ug/L					30-MAR-22 20:59	220330-1
	Calcium	98300	ug/L	100000	ug/L	98.3	80.0 - 120.0	30-MAR-22 20:59	220330-1
ICSAB06									
	Boron	21.2	ug/L	20	ug/L	106	80.0 - 120.0	30-MAR-22 21:01	220330-1
	Calcium	100000	ug/L	100000	ug/L	100	80.0 - 120.0	30-MAR-22 21:01	220330-1

METALS -5a-

Matrix Spike Summary

SDG NO. 574160 **Client ID** MW–FGD–18–2022Q1S

Contract: DMNN00101 Level: Low

Matrix: GROUND WATER % Solids:

Sample ID: 574160003 **Spike ID:** 1205048659

<u>Analyte</u>	<u>Units</u>	Acceptance Limit	<u>Spiked</u> <u>Result</u>	<u>C</u>	Sample Result	<u>C</u>	<u>Spike</u> Added	% Recovery	Qual	<u>M*</u>
Boron	ug/L		7290		7240		100	52	N/A	MS
Calcium	ug/L		409000		421000		2000	-573	N/A	MS

^{*}Analytical Methods:

Metals -6Duplicate Sample Summary

SDG No.: 574160

Lab Code: GEL

Contract: DMNN00101

Client ID: MW-FGD-18-2022Q1D

Matrix:

GROUND WATER

Level: Low

Sample ID: 574160003

Duplicate ID: 1205048658

Percent Solids for Dup: N/A

Analyte	Units	Acceptance Limit	Sample Result C	Duplicate Result	С	RPD	Qual	M*
Boron	ug/L	+/-20%	7240	7470		3.16		MS
Calcium	ug/L	+/-20%	421000	421000		.0817		MS

^{*}Analytical Methods:

-7-

Laboratory Control Sample Summary

SDG NO. 574160

Contract: DMNN00101

Aqueous LCS Source: Environmental Express

Solid LCS Source:

Sample ID 1205048657	<u>Analyte</u>	<u>Units</u>	<u>True</u> <u>Value</u>	Result	<u>C</u>	% Recovery	Acceptance Limit	<u>M*</u>
	Boron Calcium	ug/L ug/L	100 2000	95.6 2210		95.6 111	85–115 85–115	MS MS

^{*}Analytical Methods:

METALS -9-

Serial Dilution Sample Summary

574160 Client ID MW-FGD-18-2022Q1LSDG NO.

DMNN00101 **Contract:**

Matrix: LIQUID Level: Low

Sample ID: 574160003 Serial Dilution ID: 1205048660

Analyte	Initial <u>C</u> Value <u>C</u> ug/L	Serial Value <u>C</u> ug/L	<u>%</u> <u>Difference</u> <u>Qual</u>	Acceptance Limit	<u>M*</u>
Boron	145	167	15.365		MS
Calcium	21000	21400	1.752	10	MS

^{*}Analytical Methods:

METALS -13SAMPLE PREPARATION SUMMARY

SDG No: 574160 Method Type MS

Contract: DMNN00101 Lab Code: GEL

Sample ID	Client ID	<u>Sample</u> Type	<u>Matrix</u>	<u>Prep</u> <u>Date</u>	<u>Initial</u> <u>Sample</u> <u>Size</u>	Final Sample Volume Solids
Batch Number	er 2244930					
1205048656	MB for batch 2244930	MB	G	24-MAR-22	50mL	50mL
1205048657	LCS for batch 2244930	LCS	G	24-MAR-22	50mL	50mL
1205048659	MW-FGD-18-2022Q1S	MS	G	24-MAR-22	50mL	50mL
1205048658	MW-FGD-18-2022Q1D	DUP	G	24-MAR-22	50mL	50mL
574160001	MW-FGD-16-2022Q1	SAMPLE	G	24-MAR-22	50mL	50mL
574160002	MW-FGD-17-2022Q1	SAMPLE	G	24-MAR-22	50mL	50mL
574160003	MW-FGD-18-2022Q1	SAMPLE	G	24-MAR-22	50mL	50mL
574160004	MW-FGD-19-2022Q1	SAMPLE	G	24-MAR-22	50mL	50mL
574160005	MW-FGD-19D-2022Q1	SAMPLE	G	24-MAR-22	50mL	50mL
574160006	MW-FGD-20AR-2022Q1	SAMPLE	G	24-MAR-22	50mL	50mL
574160007	MW-FGD-21-2022Q1	SAMPLE	G	24-MAR-22	50mL	50mL
574160008	FBLK-WMS-FGD-22101	SAMPLE	G	24-MAR-22	50mL	50mL
574160009	FBLK-WMS-FGD-22102	SAMPLE	G	24-MAR-22	50mL	50mL
574160010	DU-WMS-FGD-22101	SAMPLE	G	24-MAR-22	50mL	50mL

General Chemistry Technical Case Narrative Dominion Energy SDG #: 574160

Product: Ion Chromatography Analytical Method: EPA 300.0

Analytical Procedure: GL-GC-E-086 REV# 30

Analytical Batch: 2245252

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
574160001	MW-FGD-16-2022Q1
574160002	MW-FGD-17-2022Q1
574160003	MW-FGD-18-2022Q1
574160004	MW-FGD-19-2022Q1
574160005	MW-FGD-19D-2022Q1
574160006	MW-FGD-20AR-2022Q1
574160007	MW-FGD-21-2022Q1
574160008	FBLK-WMS-FGD-22101
574160009	FBLK-WMS-FGD-22102
574160010	DU-WMS-FGD-22101
1205049364	Method Blank (MB)
1205049365	Laboratory Control Sample (LCS)
1205049366	574156011(NonSDG) Sample Duplicate (DUP)
1205049367	574160003(MW-FGD-18-2022Q1) Sample Duplicate (DUP)
1205049368	574156011(NonSDG) Post Spike (PS)
1205049369	574160003(MW-FGD-18-2022Q1) Post Spike (PS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Quality Control (QC) Information

Matrix Spike (MS)/Post Spike (PS) Recovery Statement

The percent recoveries (%R) obtained from the spike analyses are evaluated when the sample concentration is less than four times (4X) the spike concentration added. The matrix spike recovered outside of the established acceptance limits due to matrix interference and/or non-homogeneity.

Analyte	Sample	Value
Chloride	1205049369 (MW-FGD-18-2022Q1PS)	119* (90%-110%)
Sulfate	1205049368 (Non SDG 574156011PS)	117* (90%-110%)

Page 39 of 58 SDG: 574160

Technical Information

Sample Dilutions

The following samples 1205049366 (Non SDG 574156011DUP), 1205049367 (MW-FGD-18-2022Q1DUP), 1205049368 (Non SDG 574156011PS), 1205049369 (MW-FGD-18-2022Q1PS), 574160001 (MW-FGD-16-2022Q1), 574160002 (MW-FGD-17-2022Q1), 574160003 (MW-FGD-18-2022Q1), 574160004 (MW-FGD-19-2022Q1), 574160005 (MW-FGD-19D-2022Q1), 574160006 (MW-FGD-20AR-2022Q1), 574160007 (MW-FGD-21-2022Q1) and 574160010 (DU-WMS-FGD-22101) were diluted because target analyte concentrations exceeded the calibration range. Dilutions may be required for many reasons, including to minimize matrix interferences or to bring over range target analyte concentrations into the linear calibration range.

A 1	574160										
Analyte	001	002	003	004	005	006	007	010			
Chloride	5X	50X	400X	200X	100X	100X	1X	100X			
Sulfate	5X	50X	400X	10X	10X	100X	10X	10X			

Miscellaneous Information

Additional Comments

All method-driven specifications are followed for these analyses except where client-specific SOW requirements are required to be met.

Page 40 of 58 SDG: 574160

Product: Solids, Total Dissolved **Analytical Method:** SM 2540C

Analytical Procedure: GL-GC-E-001 REV# 19

Analytical Batch: 2246766

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
574160001	MW-FGD-16-2022Q1
574160002	MW-FGD-17-2022Q1
574160003	MW-FGD-18-2022Q1
574160004	MW-FGD-19-2022Q1
574160005	MW-FGD-19D-2022Q1
574160006	MW-FGD-20AR-2022Q1
574160007	MW-FGD-21-2022Q1
574160008	FBLK-WMS-FGD-22101
574160009	FBLK-WMS-FGD-22102
574160010	DU-WMS-FGD-22101
1205052495	Method Blank (MB)
1205052496	Laboratory Control Sample (LCS)
1205052497	574160003(MW-FGD-18-2022Q1) Sample Duplicate (DUP)
1205052498	574243005(NonSDG) Sample Duplicate (DUP)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Quality Control (QC) Information

Duplicate Relative Percent Difference (RPD) Statement

The Relative Percent Difference (RPD) between the sample and duplicate falls outside of the established acceptance limits because of the heterogeneous matrix of the sample:

Analyte	Sample	Value
Total Dissolved Solids	1205052497 (MW-FGD-18-2022Q1DUP)	14.3* (0%-5%)

Miscellaneous Information

Additional Comments

All method-driven specifications are followed for these analyses except where client-specific SOW requirements are required to be met.

Certification Statement

Page 41 of 58 SDG: 574160

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Page 42 of 58 SDG: 574160

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Qualifier Definition Report for

DMNN001 Dominion Energy (50149867) Client SDG: 574160 GEL Work Order: 574160

The Qualifiers in this report are defined as follows:

- * A quality control analyte recovery is outside of specified acceptance criteria
- J Value is estimated
- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

Review/Validation

GEL requires all analytical data to be verified by a qualified data reviewer. In addition, all CLP-like deliverables receive a third level review of the fractional data package.

The following data validator verified the information presented in this data report:

Signature: Küsten Muyell Name: Kristen Mizzell

Date: 06 APR 2022 Title: Group Leader

Page 43 of 58 SDG: 574160

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Analyst Comments

Report Date: April 6, 2022

DMNN00101

DMNN001

Company: Dominion Energy Services, Inc.

Address: 120 Tredegar Street

Richmond, Virginia 23219

Contact: Kelly Hicks

Project: CCR Groundwater Monitoring - Level 1 Package

Client Sample ID: MW-FGD-16-2022Q1

Sample ID: 574160001

Matrix: GW

Collect Date: 22-MAR-22 16:10
Receive Date: 23-MAR-22
Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF Anal	yst Date	Time Batch	Method
Ion Chromatograp	hy									
EPA 300.0 Anions	s Liquid "As Recei	ved"								
Fluoride	_	0.300	0.0330	0.100	mg/L		1 HXC	03/24/22	1600 2245252	1
Chloride		29.9	0.335	1.00	mg/L		5 HXC	03/25/22	0552 2245252	2
Sulfate		41.0	0.665	2.00	mg/L		5			
Solids Analysis										
SM2540C TDS "A	As Received"									
Total Dissolved Solids		199	3.40	14.3	mg/L		KLP1	03/29/22	1518 2246766	3
The following An	alytical Methods v	vere performed:								

Method	Description	
1	EPA 300.0	
2	EPA 300.0	
3	SM 2540C	

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 45 of 58 SDG: 574160

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Analyst Comments

Report Date: April 6, 2022

DMNN00101

DMNN001

Company: Dominion Energy Services, Inc.

Address: 120 Tredegar Street

Richmond, Virginia 23219

Contact: Kelly Hicks

Project: CCR Groundwater Monitoring - Level 1 Package

Client Sample ID: MW-FGD-17-2022Q1

Sample ID: 574160002

Matrix: GW

Collect Date: 22-MAR-22 14:15
Receive Date: 23-MAR-22
Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF Anal	yst Date	Time Batch	Method
Ion Chromatography										
EPA 300.0 Anions Li	quid "As Recei	ved"								
Fluoride		0.423	0.0330	0.100	mg/L		1 HXC	03/24/22	1631 2245252	1
Chloride		323	3.35	10.0	mg/L		50 HXC	03/25/22	0623 2245252	2
Sulfate		92.6	6.65	20.0	mg/L		50			
Solids Analysis										
SM2540C TDS "As F	Received"									
Total Dissolved Solids		1250	3.40	14.3	mg/L		KLP1	03/29/22	1518 2246766	3
The following Analytical Methods were performed:										

Method	Description	
1	EPA 300.0	
2	EPA 300.0	

3 SM 2540C

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 46 of 58 SDG: 574160

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: April 6, 2022

DMNN00101

DMNN001

Company: Dominion Energy Services, Inc.

Address: 120 Tredegar Street

Richmond, Virginia 23219

Contact: Kelly Hicks

Project: CCR Groundwater Monitoring - Level 1 Package

Client Sample ID: MW-FGD-18-2022Q1

Sample ID: 574160003

Matrix: GW

Collect Date: 23-MAR-22 10:02
Receive Date: 23-MAR-22
Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF Analyst Date	Time Batch	Method
Ion Chromatography									
EPA 300.0 Anions Li	quid "As Recei	ved"							
Fluoride	•	0.537	0.0330	0.100	mg/L		1 HXC1 03/24/2	2 1701 2245252	. 1
Chloride		1950	26.8	80.0	mg/L		400 HXC1 03/25/2	2 1131 2245252	2
Sulfate		169	53.2	160	mg/L		400		
Solids Analysis									
SM2540C TDS "As F	Received"								
Total Dissolved Solids		3850	3.40	14.3	mg/L		KLP1 03/29/2	2 1518 2246766	3
The following Analy									
Method Description					I	Analys	st Comments		

Method	Description
1	EPA 300.0
2	EPA 300.0
3	SM 2540C

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 47 of 58 SDG: 574160

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: April 6, 2022

KLP1 03/29/22 1518 2246766

DMNN00101

DMNN001

Company: Dominion Energy Services, Inc.

Address: 120 Tredegar Street

Richmond, Virginia 23219

Contact: Kelly Hicks

Project: CCR Groundwater Monitoring - Level 1 Package

Client Sample ID: MW-FGD-19-2022Q1

Sample ID: 574160004

GW Matrix:

Collect Date: 23-MAR-22 09:35 Receive Date: 23-MAR-22 Client Collector:

DL RL **Oualifier** Result Units PF DF Analyst Date Time Batch Method Ion Chromatography EPA 300.0 Anions Liquid "As Received" 0.120 0.0330 0.100 mg/L HXC1 03/24/22 1732 2245252 1

14.3

mg/L

Project:

Client ID:

Fluoride Chloride 755 13.4 40.0 mg/L 200 HXC1 03/25/22 0654 2245252 2 35.6 1.33 4.00 10 HXC1 03/25/22 0725 2245252 Sulfate mg/L 3 Solids Analysis SM2540C TDS "As Received"

3.40

Total Dissolved Solids The following Analytical Methods were performed:

Method Description **Analyst Comments** EPA 300.0 2 EPA 300.0 3

EPA 300.0 SM 2540C

Notes:

Parameter

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 48 of 58 SDG: 574160

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: April 6, 2022

DMNN00101

DMNN001

Dominion Energy Services, Inc. Company:

Address: 120 Tredegar Street

Richmond, Virginia 23219

Contact: Kelly Hicks

Project: CCR Groundwater Monitoring - Level 1 Package

Client Sample ID: MW-FGD-19D-2022Q1

Sample ID: 574160005

GW Matrix:

Collect Date: Receive Date: 23-MAR-22 Collector:

23-MAR-22 10:20 Client

Project:

Client ID:

Parameter	Qualifier	Result	DL	RL	Units	PF	DF Anal	yst Date	Time Batch	Method
Ion Chromatography										
EPA 300.0 Anions Lie	quid "As Recei	ved"								
Fluoride		0.659	0.0330	0.100	mg/L		1 HXC	03/24/22	1803 2245252	1
Chloride		570	6.70	20.0	mg/L		100 HXC	03/25/22	0756 2245252	2
Sulfate		19.2	1.33	4.00	mg/L		10 HXC	03/25/22	0826 2245252	3
Solids Analysis										
SM2540C TDS "As R	eceived"									
Total Dissolved Solids		1270	3.40	14.3	mg/L		KLP1	03/29/22	1518 2246766	4
The following Analyt	The following Analytical Methods were performed:									

Analyst Comments Method Description

1	EPA 300.0
2	EPA 300.0
3	EPA 300.0
4	SM 2540C

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 49 of 58 SDG: 574160

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Analyst Comments

Report Date: April 6, 2022

DMNN00101

DMNN001

Company: Dominion Energy Services, Inc.

Address: 120 Tredegar Street

Richmond, Virginia 23219

Contact: Kelly Hicks

Project: CCR Groundwater Monitoring - Level 1 Package

Client Sample ID: MW-FGD-20AR-2022Q1

Sample ID: 574160006

Matrix: GW

Collect Date: 22-MAR-22 14:20
Receive Date: 23-MAR-22
Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF Analy	yst Date	Time Batch	Method
Ion Chromatography	,									
EPA 300.0 Anions L	iquid "As Recei	ved"								
Fluoride	_	0.256	0.0330	0.100	mg/L		1 HXC1	03/24/22	1834 2245252	1
Chloride		601	6.70	20.0	mg/L		100 HXC1	03/25/22	1030 2245252	2
Sulfate		178	13.3	40.0	mg/L		100			
Solids Analysis										
SM2540C TDS "As	Received"									
Total Dissolved Solids		1700	3.40	14.3	mg/L		KLP1	03/29/22	1518 2246766	3
The following Analy	ytical Methods v	vere performed	l:							

Method	Description	
1	EPA 300.0	
2	EPA 300.0	
3	SM 2540C	

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 50 of 58 SDG: 574160

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: April 6, 2022

DMNN00101

DMNN001

Company: Dominion Energy Services, Inc.

Address: 120 Tredegar Street

Richmond, Virginia 23219

Contact: Kelly Hicks

Project: CCR Groundwater Monitoring - Level 1 Package

Client Sample ID: MW-FGD-21-2022Q1

Sample ID: 574160007

Matrix: GW

Collect Date: 22-MAR-22 17:25
Receive Date: 23-MAR-22
Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF Analyst Da	ate	Time Batch	Method	
Ion Chromatography											
EPA 300.0 Anions Lic	quid "As Recei	ved"									
Chloride		3.26	0.0670	0.200	mg/L		1 HXC1 03/2	4/22	1905 2245252	1	
Fluoride	J	0.0767	0.0330	0.100	mg/L		1				
Sulfate		94.2	1.33	4.00	mg/L		10 HXC1 03/2	5/22	1101 2245252	2	
Solids Analysis											
SM2540C TDS "As R	eceived"										
Total Dissolved Solids		236	3.40	14.3	mg/L		KLP1 03/29	9/22	1518 2246766	3	
The following Analyt	The following Analytical Methods were performed:										

Method	Description	Analyst Comments
1	EPA 300.0	
2	EDA 200.0	

2 EPA 300.0 3 SM 2540C

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 51 of 58 SDG: 574160

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: April 6, 2022

DMNN00101

DMNN001

Dominion Energy Services, Inc. Company:

Address: 120 Tredegar Street

Richmond, Virginia 23219

Contact: Kelly Hicks

Project: CCR Groundwater Monitoring - Level 1 Package

Client Sample ID: FBLK-WMS-FGD-22101

Sample ID: 574160008

Matrix: AQ

Collect Date: 22-MAR-22 16:15 Receive Date: 23-MAR-22 Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF Analyst Date	Time Batch	Method
Ion Chromatography									
EPA 300.0 Anions Lie	quid "As Recei	ved"							
Chloride	J	0.146	0.0670	0.200	mg/L		1 HXC1 03/24/2	2 2108 2245252	. 1
Fluoride	U	ND	0.0330	0.100	mg/L		1		
Sulfate	U	ND	0.133	0.400	mg/L		1		
Solids Analysis									
SM2540C TDS "As R	eceived"								
Total Dissolved Solids	U	ND	3.40	14.3	mg/L		KLP1 03/29/2	2 1518 2246766	2
The following Analyt	The following Analytical Methods were performed:								
Method			1	Analys	st Comments				

EPA 300.0

SM 2540C

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 52 of 58 SDG: 574160

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: April 6, 2022

DMNN00101

DMNN001

Company: Dominion Energy Services, Inc.

Address: 120 Tredegar Street

Richmond, Virginia 23219

Contact: Kelly Hicks

Project: CCR Groundwater Monitoring - Level 1 Package

Client Sample ID: FBLK-WMS-FGD-22102

Sample ID: 574160009

Matrix: AQ

Collect Date: 23-MAR-22 09:30 Receive Date: 23-MAR-22 Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF Analyst Date	Time Batch	Method
Ion Chromatography									
EPA 300.0 Anions Li	iquid "As Recei	ved"							
Chloride	J	0.175	0.0670	0.200	mg/L		1 HXC1 03/24/2	2 2139 2245252	. 1
Fluoride	U	ND	0.0330	0.100	mg/L		1		
Sulfate	U	ND	0.133	0.400	mg/L		1		
Solids Analysis									
SM2540C TDS "As F	Received"								
Total Dissolved Solids	U	ND	3.40	14.3	mg/L		KLP1 03/29/2	2 1518 2246766	2
The following Analy	tical Methods v	vere performed:							
Method			1	Analys	st Comments				

1 EPA 300.0 2 SM 2540C

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 53 of 58 SDG: 574160

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: April 6, 2022

DMNN00101

DMNN001

Company: Dominion Energy Services, Inc.

Address: 120 Tredegar Street

Richmond, Virginia 23219

Contact: Kelly Hicks

Project: CCR Groundwater Monitoring - Level 1 Package

Client Sample ID: DU-WMS-FGD-22101

Sample ID: 574160010

Matrix: GW

Collect Date: 22-MAR-22 12:00
Receive Date: 23-MAR-22
Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF Ana	lyst Date	Time Batch	Method
Ion Chromatography										
EPA 300.0 Anions Li	iquid "As Recei	ved"								
Fluoride	•	0.170	0.0330	0.100	mg/L		1 HXC	1 03/24/22	2210 2245252	1
Chloride		818	6.70	20.0	mg/L		100 HXC	1 03/25/22	1303 2245252	2
Sulfate		37.0	1.33	4.00	mg/L		10 HXC	1 03/25/22	1334 2245252	3
Solids Analysis										
SM2540C TDS "As F	Received"									
Total Dissolved Solids		2010	3.40	14.3	mg/L		KLP	1 03/29/22	1518 2246766	4
The following Analy	rtical Methods v	vere performed:								

Method	Description	Analyst Comments
1	EPA 300.0	

1	LI A 500.0
2	EPA 300.0
3	EPA 300.0
4	SM 2540C

Notes:

Column headers are defined as follows:

DF: Dilution Factor

DL: Detection Limit

MDA: Minimum Detectable Activity

Lc/LC: Critical Level

PF: Prep Factor

RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 54 of 58 SDG: 574160

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Report Date: April 6, 2022

Page 1 of 3

Dominion Energy Services, Inc.

120 Tredegar Street Richmond, Virginia

Contact: Kelly Hicks

Workorder: 574160

Parmname	NOM	Sample Qual	QC	Units	RPD%	REC%	Range Anlst	Date Time
Ion Chromatography								
Batch 2245252 ———————————————————————————————		15.3	14.1	mg/L	8.22 ^		(+/-8) HXC1	03/25/22 03:49
Fluoride		0.139	0.147	mg/L	5.25 ^		(+/2)	03/24/22 23:42
Sulfate		256	256	mg/L	0.276		(0%-20%)	03/25/22 03:49
QC1205049367 574160003 DUP Chloride		1950	2000	mg/L	2.59		(0%-20%)	03/25/22 12:02
Fluoride		0.537	0.581	mg/L	7.86		(0%-20%)	03/25/22 00:44
Sulfate		169	172	mg/L	1.34 ^		(+/-320)	03/25/22 12:02
QC1205049365 LCS Chloride	5.00		4.99	mg/L		99.8	(90%-110%)	03/24/22 23:11
Fluoride	2.50		2.52	mg/L		101	(90%-110%)	
Sulfate	10.0		10.5	mg/L		105	(90%-110%)	
QC1205049364 MB Chloride		U	ND	mg/L				03/24/22 22:41
Fluoride		U	ND	mg/L				
Sulfate		U	ND	mg/L				
QC1205049368 574156011 PS Chloride	5.00	0.763	5.96	mg/L		104	(90%-110%)	03/25/22 04:20

Page 56 of 58 SDG: 574160

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 574160 Page 2 of 3 QC **Parmname NOM** Sample Qual Units RPD% REC% Range Anlst Date Time Ion Chromatography Batch 2245252 Fluoride 2.50 0.139 2.86 mg/L 109 (90%-110%) HXC1 03/25/22 00:13 Sulfate 10.0 12.8 24.5 mg/L 117* (90%-110%) 03/25/22 04:20 QC1205049369 574160003 PS Chloride 5.00 4.87 10.8 03/25/22 12:32 119* (90%-110%) mg/L Fluoride 2.50 0.537 2.91 mg/L 95.1 (90%-110%) 03/25/22 01:15 Sulfate 10.0 0.423 11.4 110 (90%-110%) 03/25/22 12:32 mg/L **Solids Analysis** 2246766 QC1205052497 574160003 DUP 3850 3330 **Total Dissolved Solids** mg/L 14.3* (0%-5%) KLP1 03/29/22 15:18 QC1205052498 574243005 DUP 2640 2580 03/29/22 15:18 **Total Dissolved Solids** mg/L 2.19 (0%-5%)QC1205052496 LCS 300 307 102 03/29/22 15:18 Total Dissolved Solids mg/L (95%-105%) OC1205052495

U

ND

mg/L

03/29/22 15:18

Notes:

Total Dissolved Solids

The Qualifiers in this report are defined as follows:

- < Result is less than value reported
- > Result is greater than value reported
- B The target analyte was detected in the associated blank.
- E General Chemistry--Concentration of the target analyte exceeds the instrument calibration range
- H Analytical holding time was exceeded
- J See case narrative for an explanation

Page 57 of 58 SDG: 574160

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Page 3 of 3 Sample Qual Parmname **NOM** OC Units RPD% REC% Range Anlst Date Time

J Value is estimated

Workorder:

N/A RPD or %Recovery limits do not apply.

574160

- N1 See case narrative
- ND Analyte concentration is not detected above the detection limit
- NJ Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- One or more quality control criteria have not been met. Refer to the applicable narrative or DER. Q
- Per section 9.3.4.1 of Method 1664 Revision B, due to matrix spike recovery issues, this result may not be reported or used for regulatory compliance R purposes.
- R Sample results are rejected
- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Z Paint Filter Test--Particulates passed through the filter, however no free liquids were observed.
- ٨ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL. Qualifier Not Applicable for Radiochemistry.
- 5-day BOD--The 2:1 depletion requirement was not met for this sample d
- 5-day BOD--Test replicates show more than 30% difference between high and low values. The data is qualified per the method and can be used for e reporting purposes
- Preparation or preservation holding time was exceeded h

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more or %RPD not applicable.

^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/- the RL is used to evaluate the DUP result.

* Indicates that a Quality Control parameter was not within specifications.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Page 58 of 58 SDG: 574160

This quality assurance (QA) review is based upon an examination of the data generated from the analyses of the samples collected as part of:

Williams Power Station Groundwater Sampling Samples Collected between: 3/21/2022 and 3/24/2022

This review was performed with guidance from the associated US EPA data validation guidelines and in accordance with the Quality Assurance Program Plan. These validation guidance documents specifically address analyses performed in accordance with the Contract Laboratory Program (CLP) analytical methods and are not completely applicable to the type of analyses and analytical protocols performed for the US EPA, SW-846, and Standard Methods utilized by the laboratory for these samples. Environmental Standards, Inc. (Environmental Standards) used professional judgment to determine the usability of the analytical results and compliance relative to the US EPA, SW-846, and Standard Methods utilized by the laboratory. This QA review was performed on the data associated with Job Number:

574160

The findings offered in this report are based on a review of holding times and preservation, method blank results, field blank results, filter blank results, equipment blank results, tubing blank results, matrix spike/matrix spike duplicate recoveries and precision, laboratory control sample/laboratory control sample duplicate recoveries and precision, laboratory and field duplicate precision, total and dissolved results comparisons, and/or positive results between the method detection limit and quantitation limit.

The following results were qualified based on the data verification effort:

Sample	Location	Sample Type	Method	Anayte	T/D	Result	Qual	Reason Code(s)	MDL	QL	Uncertainty	Unit
MW-FGD-21-2022Q1	MW-FGD- 21	N	EPA 300.0	Fluoride	N	0.0767	J	RL	0.0330	0.100		mg/L
FBLK-WMS-FGD-22101	Field Blank	FB	EPA 300.0	Chloride	N	0.146	J	RL	0.0670	0.200		mg/L
FBLK-WMS-FGD-22102	Field Blank	FB	EPA 300.0	Chloride	N	0.175	J	RL	0.0670	0.200		mg/L

Data Qua	alifiers
U	The analyte was not detected above the level of the sample reporting limit.
J	Quantitation is approximate due to limitations identified during data validation.
J+	The result is an estimated quantity; the result may be biased high.
J-	The result is an estimated quantity; the result may be biased low.
UJ	The analyte was not detected; the reporting limit is approximate and may be inaccurate or imprecise.
R	Unreliable positive result; analyte may or may not be present in sample.
Reason (Codes and Explanations
BE	Equipment blank contamination.
BF	Field blank contamination.
BL	Laboratory blank contamination.
FD	Field duplicate imprecision.
FG	Total versus Dissolved Imprecision.
Н	Holding time exceeded.
L	LCS and LCSD recoveries outside of acceptance limits
LD	Laboratory duplicate imprecision.
LP	LCS/LCSD imprecision.
М	MS and MSD recoveries outside of acceptance limits
MP	MS/MSD imprecision.
Q	Chemical Preservation issue.
RL	Reported Results between the MDL and QL.

S	Radium-226+228 flagged due to reporting protocol for combined results
Т	Temperature preservation issue.
Х	Percent solids < 50%.
Υ	Chemical yield outside of acceptance limits
ZZ	Other

					i										
				Lab Sample ID	574160001										
				Sys Sample Code	MW-FGD-16-2	2022Q1									
				Sample Name	MW-FGD-16-2	2022Q1									
				Sample Date	3/22/2022 4:10	0:00 PM									
				Location	WMS-MW-FG	D-16 / N	W-FGD-16								
				Sample Type	N										
				Matrix	GW										
				Parent Sample											
Analytic Method	Chemical Name	CAS Rn	Fraction	Result Unit	Final Result	Final Qual	Reason code	Uncertainty	Final MDL	Final RL	Final QL	Final Detect	Final Report	DF	Basis
EPA 200.8	Boron	7440-42-8	Т	ug/L	39.0				4.00	4.00	15.0	Υ	Yes	1	NA
	Calcium	7440-70-2	Т	ug/L	12800				30.0	30.0	100	Υ	Yes	1	NA
EPA 300.0	Fluoride	16984-48-8	N	mg/L	0.300				0.0330	0.0330	0.100	Υ	Yes	1	NA
EPA 300.0	Chloride	16887-00-6	N	mg/L	29.9				0.335	0.335	1.00	Υ	Yes	5	NA
	Sulfate	14808-79-8	N	mg/L	41.0				0.665	0.665	2.00	Υ	Yes	5	NA
SM 2540C	Total Dissolved Solids	TDS	N	mg/L	199				3.40	3.40	14.3	Y	Yes	1	NA

Report Generated: 4/8/2022 1:42:13 PM Page: 1 of 10

					i										
				Lab Sample ID	574160002										
				Sys Sample Code	MW-FGD-17-2	2022Q1									
				Sample Name	MW-FGD-17-2	2022Q1									
				Sample Date	3/22/2022 2:15	5:00 PM									
				Location	WMS-MW-FG	D-17 / N	W-FGD-17								
				Sample Type	N										
				Matrix	GW										
				Parent Sample											
Analytic Method	Chemical Name	CAS Rn	Fraction	Result Unit	Final Result	Final Qual	Reason code	Uncertainty	Final MDL	Final RL	Final QL	Final Detect	Final Report	DF	Basis
EPA 200.8	Boron	7440-42-8	Т	ug/L	1250				40.0	40.0	150	Υ	Yes	10	NA
	Calcium	7440-70-2	Т	ug/L	216000				300	300	1000	Υ	Yes	10	NA
EPA 300.0	Fluoride	16984-48-8	N	mg/L	0.423				0.0330	0.0330	0.100	Υ	Yes	1	NA
EPA 300.0	Chloride	16887-00-6	N	mg/L	323				3.35	3.35	10.0	Υ	Yes	50	NA
	Sulfate	14808-79-8	N	mg/L	92.6				6.65	6.65	20.0	Υ	Yes	50	NA
SM 2540C	Total Dissolved Solids	TDS	N	mg/L	1250				3.40	3.40	14.3	Y	Yes	1	NA

Report Generated: 4/8/2022 1:42:13 PM Page: 2 of 10

				Lab Sample ID	574160003										
				Sys Sample Code	MW-FGD-18-2	2022Q1									
				Sample Name	MW-FGD-18-2	2022Q1									
				Sample Date	3/23/2022 10:	02:00 Al	Л								
				Location	WMS-MW-FG	D-18 / N	IW-FGD-18								
				Sample Type	N										
				Matrix	GW										
				Parent Sample											
Analytic Method	Chemical Name	CAS Rn	Fraction	Result Unit	Final Result	Final Qual	Reason code	Uncertainty	Final MDL	Final RL	Final QL	Final Detect	Final Report	DF	Basis
EPA 200.8	Boron	7440-42-8	Т	ug/L	7240				200	200	750	Υ	Yes	50	NA
	Calcium	7440-70-2	Т	ug/L	421000				600	600	2000	Υ	Yes	20	NA
EPA 300.0	Fluoride	16984-48-8	N	mg/L	0.537				0.0330	0.0330	0.100	Υ	Yes	1	NA
EPA 300.0	Chloride	16887-00-6	N	mg/L	1950				26.8	26.8	80.0	Υ	Yes	400	NA
	Sulfate	14808-79-8	N	mg/L	169				53.2	53.2	160	Υ	Yes	400	NA
SM 2540C	Total Dissolved Solids	TDS	N	mg/L	3850				3.40	3.40	14.3	Y	Yes	1	NA

Report Generated: 4/8/2022 1:42:13 PM Page: 3 of 10

				Lab Sample ID	574160004										
				Sys Sample Code	MW-FGD-19-2	2022Q1									
				Sample Name	MW-FGD-19-2	2022Q1									
				Sample Date	3/23/2022 9:3	5:00 AM									
				Location	WMS-MW-FG	D-19 / N	1W-FGD-19								
				Sample Type	N										
				Matrix	GW										
				Parent Sample											
Analytic Method	Chemical Name	CAS Rn	Fraction	Result Unit	Final Result	Final Qual	Reason code	Uncertainty	Final MDL	Final RL	Final QL	Final Detect	Final Report		Basis
EPA 200.8	Boron	7440-42-8	Т	ug/L	194				20.0	20.0	75.0	Υ	Yes	5	NA
	Calcium	7440-70-2	Т	ug/L	132000				150	150	500	Υ	Yes	5	NA
EPA 300.0	Fluoride	16984-48-8	N	mg/L	0.120				0.0330	0.0330	0.100	Υ	Yes	1	NA
EPA 300.0	Chloride	16887-00-6	N	mg/L	755				13.4	13.4	40.0	Υ	Yes	200	NA
	Sulfate	14808-79-8	N	mg/L	35.6				1.33	1.33	4.00	Υ	Yes	10	NA
SM 2540C	Total Dissolved Solids	TDS	N	mg/L	1870				3.40	3.40	14.3	Y	Yes	1	NA

Report Generated: 4/8/2022 1:42:13 PM Page: 4 of 10

				Lab Sample ID	574160005										
				Sys Sample Code	MW-FGD-19D)-2022Q	1								
				Sample Name	MW-FGD-19D)-2022Q	1								
				Sample Date	3/23/2022 10:	20:00 Al	M								
				Location	WMS-MW-FG	iD-19D /	MW-FGD-19D								
				Sample Type	N										
				Matrix	GW										
				Parent Sample											
Analytic Method	Chemical Name	CAS Rn	Fraction	Result Unit	Final Result	Final Qual	Reason code	Uncertainty	Final MDL	Final RL	Final QL	Final Detect	Final Report	DF	Basis
EPA 200.8	Boron	7440-42-8	Т	ug/L	1340				40.0	40.0	150	Υ	Yes	10	NA
	Calcium	7440-70-2	Т	ug/L	105000				300	300	1000	Υ	Yes	10	NA
EPA 300.0	Fluoride	16984-48-8	N	mg/L	0.659				0.0330	0.0330	0.100	Υ	Yes	1	NA
EPA 300.0	Chloride	16887-00-6	N	mg/L	570				6.70	6.70	20.0	Υ	Yes	100	NA
	Sulfate	14808-79-8	N	mg/L	19.2				1.33	1.33	4.00	Υ	Yes	10	NA
SM 2540C	Total Dissolved Solids	TDS	N	mg/L	1270				3.40	3.40	14.3	Y	Yes	1	NA

Report Generated: 4/8/2022 1:42:13 PM Page: 5 of 10

				Lab Sample ID	574160006										
				Sys Sample Code	MW-FGD-20A	R-20220	Q1								
				Sample Name	MW-FGD-20A	R-20220	Q1								
				Sample Date	3/22/2022 2:20	0:00 PM									
				Location	WMS-MW-FG	D-20AR	/ MW-FGD-20)AR							
				Sample Type	N										
				Matrix	GW										
				Parent Sample											
Analytic Method	Chemical Name	CAS Rn	Fraction	Result Unit	Final Result	Final Qual	Reason code	Uncertainty	Final MDL	Final RL	Final QL	Final Detect	Final Report	DF	Basis
EPA 200.8	Boron	7440-42-8	Т	ug/L	3430				80.0	80.0	300	Υ	Yes	20	NA
	Calcium	7440-70-2	Т	ug/L	266000				600	600	2000	Υ	Yes	20	NA
EPA 300.0	Fluoride	16984-48-8	N	mg/L	0.256				0.0330	0.0330	0.100	Υ	Yes	1	NA
EPA 300.0	Chloride	16887-00-6	N	mg/L	601				6.70	6.70	20.0	Υ	Yes	100	NA
	Sulfate	14808-79-8	N	mg/L	178				13.3	13.3	40.0	Υ	Yes	100	NA
SM 2540C	Total Dissolved Solids	TDS	N	mg/L	1700				3.40	3.40	14.3	Y	Yes	1	NA

Report Generated: 4/8/2022 1:42:13 PM Page: 6 of 10

				Lab Sample ID	574160007										
				Sys Sample Code	MW-FGD-21-2	2022Q1									
				Sample Name	MW-FGD-21-2	2022Q1									
				Sample Date	3/22/2022 5:2	5:00 PM									
				Location	WMS-MW-FG	D-21 / N	IW-FGD-21								
				Sample Type	N										
				Matrix	GW										
				Parent Sample											
Analytic Method	Chemical Name	CAS Rn	Fraction	Result Unit	Final Result	Final Qual	Reason code	Uncertainty	Final MDL	Final RL	Final QL	Final Detect	Final Report	DF	Basis
EPA 200.8	Boron	7440-42-8	Т	ug/L	22.9				4.00	4.00	15.0	Υ	Yes	1	NA
	Calcium	7440-70-2	Т	ug/L	45200				30.0	30.0	100	Υ	Yes	1	NA
EPA 300.0	Chloride	16887-00-6	N	mg/L	3.26				0.0670	0.0670	0.200	Y	Yes	1	NA
	Fluoride	16984-48-8	N	mg/L	0.0767	J	RL		0.0330	0.0330	0.100	Υ	Yes	1	NA
EPA 300.0	Sulfate	14808-79-8	N	mg/L	94.2				1.33	1.33	4.00	Υ	Yes	10	NA
SM 2540C	Total Dissolved	TDS	N	mg/L	236				3.40	3.40	14.3	Υ	Yes	1	NA

Report Generated: 4/8/2022 1:42:13 PM Page: 7 of 10

				Lab Sample ID	574160008										
				Sys Sample Code	FBLK-WMS-F	GD-2210	01								
				Sample Name	FBLK-WMS-F	GD-2210)1								
				Sample Date	3/22/2022 4:1	5:00 PM									
				Location	WMS-FB / Fie	ld Blank									
				Sample Type	FB										
				Matrix	AQ										
				Parent Sample											
Analytic Method	Chemical Name	CAS Rn	Fraction	Result Unit	Final Result	Final Qual	Reason code	Uncertainty	Final MDL	Final RL	Final QL	Final Detect	Final Report		Basis
EPA 200.8	Boron	7440-42-8	Т	ug/L		U			4.00	4.00	15.0	N	Yes	1	NA
	Calcium	7440-70-2	Т	ug/L		U			30.0	30.0	100	N	Yes	1	NA
EPA 300.0	Chloride	16887-00-6	N	mg/L	0.146	J	RL		0.0670	0.0670	0.200	Υ	Yes	1	NA
	Fluoride	16984-48-8	N	mg/L		U			0.0330	0.0330	0.100	N	Yes	1	NA
	Sulfate	14808-79-8	N	mg/L		U			0.133	0.133	0.400	N	Yes	1	NA
SM 2540C	Total Dissolved Solids	TDS	N	mg/L		U	-		3.40	3.40	14.3	N	Yes	1	NA

Report Generated: 4/8/2022 1:42:13 PM Page: 8 of 10

				Lab Sample ID	574160009										
				Sys Sample Code	FBLK-WMS-F	GD-221	02								
				Sample Name	FBLK-WMS-F	GD-221	02								
				Sample Date	3/23/2022 9:3	0:00 AM									
				Location	WMS-FB / Fie	eld Blank									
				Sample Type	FB										
				Matrix	AQ										
				Parent Sample											
Analytic Method	Chemical Name	CAS Rn	Fraction	Result Unit	Final Result	Final Qual	Reason code	Uncertainty	Final MDL	Final RL	Final QL	Final Detect	Final Report	DF	Basis
EPA 200.8	Boron	7440-42-8	Т	ug/L		U			4.00	4.00	15.0	N	Yes	1	NA
	Calcium	7440-70-2	Т	ug/L		U			30.0	30.0	100	N	Yes	1	NA
EPA 300.0	Chloride	16887-00-6	N	mg/L	0.175	J	RL		0.0670	0.0670	0.200	Υ	Yes	1	NA
	Fluoride	16984-48-8	N	mg/L		U			0.0330	0.0330	0.100	N	Yes	1	NA
	Sulfate	14808-79-8	N	mg/L		U			0.133	0.133	0.400	N	Yes	1	NA
SM 2540C	Total Dissolved Solids	TDS	N	mg/L		U			3.40	3.40	14.3	N	Yes	1	NA

Report Generated: 4/8/2022 1:42:13 PM Page: 9 of 10

Г.	ah Campia ID	E74160010												
ഥ	ab Sample ID	574160010												
S	ys Sample Code	DU-WMS-FGD-22101												
S	ample Name	DU-WMS-FGD-22101												
S	ample Date	3/22/2022 12:00:00 PM												
L	ocation	WMS-MW-FGD-19 / MW-FGD-19												
S	ample Type	Type FD GW												
М	latrix													
P	arent Sample	MW-FGD-19-2022Q1												
R	esult Unit	Final Result	Final Qual	Reason code	Uncertainty	Final MDL	Final RL	Final QL	Final Detect	Final Report	DF	Basis		
uç	g/L	193				20.0	20.0	75.0	Υ	Yes	5	NA		

Analytic Method	Chemical Name	CAS Rn	Fraction	Result Unit	Final Result	Final Qual	Reason code	Uncertainty	Final MDL	Final RL	Final QL	Final Detect	Final Report		Basis
EPA 200.8	Boron	7440-42-8	Т	ug/L	193				20.0	20.0	75.0	Υ	Yes	5	NA
	Calcium	7440-70-2	Т	ug/L	140000				150	150	500	Υ	Yes	5	NA
EPA 300.0	Fluoride	16984-48-8	N	mg/L	0.170				0.0330	0.0330	0.100	Υ	Yes	1	NA
EPA 300.0	Chloride	16887-00-6	N	mg/L	818				6.70	6.70	20.0	Υ	Yes	100	NA
	Sulfate	14808-79-8	N	mg/L	37.0				1.33	1.33	4.00	Υ	Yes	10	NA
SM 2540C	Total Dissolved Solids	TDS	N	mg/L	2010				3.40	3.40	14.3	Υ	Yes	1	NA

Report Generated: 4/8/2022 1:42:13 PM Page: 10 of 10

Appendix C Second Semiannual 2022 Detection Monitoring Program Event Field Data Sheets, Laboratory Reports, and Data Validation Forms

WILLIAMS STATION NEW FGD POND CCR - S2-2022

Date(s) Measured: 9-19-22

Well ID	Well Diameter (inches)	Well Total Depth (ft BTOC)	Well Completion	Screen length (ft)	Depth to Water (ft below TOC)	Pump
MW-FGD-16	2	18.39	Stickup	10	8.351	peristaltic
MW-FGD-17	2	17.53	Flushmount	10	7.53	peristaltic
MW-FGD-18	2	18.30	Flushmount	10	8.51	peristaltic
MW-FGD-19	2	18.58	Flushmount	10	8.37	peristaltic
MW-FGD-19D	2	28.20	Flushmount	10	9.10	peristaltic
MW-FGD-20AR	2	22.70	Stickup	10	6.07	peristaltic
MW-FGD-21	2	21.17	Stickup	10	9.39	peristaltic
GW-1R	2	28.18	Stickup	10	10.52	WL Only
GW-2R	2	31.72	Stickup	5	11.25	WL Only
GW-4A	2	32.96	Stickup	15	10.11	WL Only
GW-6R	2	28.08	Stickup	10	10.09	WL Only
GW-7R	2	26.71	Stickup	5	11.50	WL Only
GW-8	2	29.39	Stickup	10	11:45	WL Only

^{*}Need 15/16" and 9/16" sockets for opening flushmount wells

1.	TOC
	ITC

PROJECT	NAME:	William	ns Station - CC	R 2022Q3		PR	EPARED		CHECKED				
PROJECT	NUMBER	R: 416559	9.0006.0000		BY: J	18	DATE: 9/	20/22 BY: _	MB	C	DATE: 9	-23	-22
SAMPLE I	D: M\	N-FGD-16	5	WELL D	IAMET	ER: 🗸	2"	6" OTH	ER				
WELL MAT	ERIAL:	✓ PVC	□ss □	IRON 🗌	GALVA	NIZED S	TEEL	ОТН	ER				
SAMPLE T	YPE:	☑ GW	□ w w □	sw 🗌	DI		LEACHATE	ОТН	ER				
PURC	SING	TIME: 15	33 DA	TE: 9 /20,	/2022	S	AMPLE	TIME: 164	Co	DAT	E:9/	20/	22
PURGE METHOD		PUMP BAILER	PERISTALTIC F	PUMP					0.98	243.c mg/L		imho	s/cm
DEPTH TO	WATER:	8.48	T/ PVC			TURBI	DITY: 3.2	Ce NTU					
DEPTH TO	воттом	18.39	T/ PVC			NOI	NE SL	GHT	MODERA1	E		/ERY	(
WELL VOL		1.64	LITERS	☑ GALLON	IS	TEMPE	RATURE: 25	5.48_°C	OTHER:	_			
VOLUME F	REMOVED	2,7	LITERS	✓ GALLON	IS	COLO	R: clear		ODOR:		none	-	
COLOR:	_cle	w	OD	OR: NONE		FILTRA	TE (0.45 um)	YES	✓ NO				
			RBIDITY				TE COLOR:		FILTRATE	ODOR	t:		
NONE	SLI		MODERATE	VEF	RY		MPLE: MS	/MSD	□ DU	_			
DISPOSAL	METHOD	: GROUN	ND DRUM	✓ OTHER	1 - 1	COMM	ENTS:						
TIME	PURGE RATE (ML/MIN)	PH (SU)	CONDUCTIVITY (umhos/cm)	ORP (mV)		D.O.	TURBIDITY (NTU)	TEMPERATU	RE LEV	EL	CUMU PURGE (GAL	VOL	UME
					-	mg/L)				7.7		TIAL	-
1537	90	4.84	397,89	69.4		.71	5.88	27.30		55	1141	2	
1550		4.79	382.69	72.9	The state of the s	1,27		26.18	7.5	56		_	
1555	4-	4,77	365.92	75.1		.13	4,15	26.23		56	-		
1600		4.72	347.32	78.3		.88	4.07	25.98		56			
1605		4.69	333,13	81.7		172	3.98	26.00					
610		4.68	320,44	85.7	1.	53	3.92	25,96		56			
1615		4.68	315.94	89.3	1	.47	3.87	25.94	((,	56			
1620		4.68	307.88	92.8	1.	34	3.83	25.96	11.2	56			
1625		4.69	305.29	95.5	1	29	3.80	25.84	11.	56			
(430		4.70	295.69		- 1	.25	3.65	25.47	111	56			
			TEST IS COMP		2022		TURB: +/-				LIMITS EMP.:		
BOTTLES	FILLED	PRESERV	ATIVE CODES	A - NONE	В	HNO3	C - H2SO4	D - NaOl	i E	- HCL	F		
NUMBER	SIZE	TYPE	PRESERVATI	VE FILTE	ERED	NUMB	ER SIZE	TYPE	PRESER	VATIV	E FI	LTEF	RED
2	250 mL	PLASTIC	В	□ Y	N E		4.1					Υ [N
2	250 mL	PLASTIC	Α	□ Y	✓ N							Υ [N
1	125 mL	PLASTIC	Α	□ Y	√ N							Υ [N
				□ Y □ Y	□ N							Y [□ N
CHIDDING	METHOD		D.			1		AIDDILL	NI IMPED:				100
SHIPPING	7.07	-		ATE SHIPPEI	<i>-</i>			0 1 1 1 1 1 1	NUMBER:	_			_
COC NUMI		S	SI	GNATURE:	-			DATE SI	GNED:	_			

WATER SAMPLE LOG (CONTINUED FROM PREVIOUS PAGE)

	CK allow	حيد			
PROJECT NAME:	Williams Station - NPDES-		PREPARED	CH	IECKED
PROJECT NUMBER:	416559.0006.0000	BY:	JY / B DATE: 9/20/22	BY: JMB	DATE: 9-23-22

1517

SAMPLE ID: MW-FGD-16

TIME	PURGE RATE (ML/MIN)	PH (SU)	CONDUCTIVITY (umhos/cm)	ORP (mV)	D.O. (mg/L)	TURBIDITY (NTU)	TEMPERATURE (°C)	WATER LEVEL (FEET)	CUMULATIVE PURGE VOLUME (GAL OR L)
1635	90	4.74	300.93	100.6	1.18	3.18	25.37	11.56	
1640		4.75	291.22	102.3	1.07	3.21	25.32	11.56	
1643		4.80	297.33		1.03	3,23	25.39	11.56	
1646		4.80		104.1	0,98	3.26	25.48	11.56	2.7
					1				

SIGNATURE:	DATE SIGNED:

1		-
1	K	

PROJECT	NAME:	William	ns Station - CC	R 2022Q3		PR	EPARED			CHEC	KED		
PROJECT	NUMBER	R: 416559	9.0006.0000		BY: 🌙	MB	DATE: 9/	19/22 BY:	JMG	3	DATE:	9-2	3-
SAMPLE	ID: M\	N-FGD-1	7	WELL C	DIAMET	ER: 🗸	2"						
VELL MAT	ERIAL:	✓ PVC	□ss □	IRON 🗌	GALVA	ANIZED S	STEEL	ОТН	IER				
SAMPLE T	YPE:	☑ GW	□ w w □	sw 🗌	DI		LEACHATE	□ отн	IER _				
PURC	GING	TIME: 16	22 DA	TE: 9/19/	22	S	AMPLE	TIME: 170	0	DA	TE: 9	191	22
PURGE METHOD	. =	PUMP BAILER	PERISTALTIC F	PUMP		PH: ORP:		U CONDUC			196 IL	umho	os/cn
DEPTH TO	WATER:	7.47	T/ PVC			TURB	DITY: 3.4	9 NTU					
	воттом		T/ PVC			NO	NE SLI	GHT	MODE	RATE		VERY	Y
VELL VOL	UME:	1.66	LITERS	✓ GALLON	1S	TEMPE	ERATURE: 2	5.68°c	OTHER	R:			
VOLUME F	REMOVED	1.3	LITERS	☑ GALLON	IS	COLO	R: deas		ODOR		nor	e	
COLOR:	d	ear	OD	OR: nor	ne	FILTRA	ATE (0.45 um)	YES	✓ NO	0			
		TUF	RBIDITY			FILTRA	TE COLOR:		FILTR	ATE ODO	R:		
NONE	SLI	GHT 🗌	MODERATE	☐ VEF	ΥY	QC SA	MPLE: MS	/MSD		DU-			
DISPOSAL	METHOD	GROUN	ND DRUM	✓ OTHER		COM	MENTS:						
TIME	PURGE	PH	CONDUCTIVITY	ORP		D.O.	TURBIDITY	TEMPERATU		WATER		ULATI	
	RATE (ML/MIN)	(SU)	(umhos/cm)	(mV)		(mg/L)	(NTU)	(°C)		(FEET)	PURG (GA	LLON	
1627	110	4.32	1,572	-26.2	0	3.14	5.81	26,17	- 7	1.62	II	NITIAL	
640		1.00 TO 100 V	1,595	-22.2		5.16	4.01	25,73	2 6	7.63			
1645		6.21	1,594	-21,2		0.15	3.83	25,70		1.43			
650		100 mm	1,594	-19.2		.20	3.57	25.62		1.63			
655		6.19	1,595	-16,7		0.19	3.52	25.6		7.63			
700	1	6.18	1,594	-18.0		5,18	3.49	25.68		1.63		3	
1712	.1		45.14	10.0	+		3.35	-		1		2	
			TEST IS COMP 3 % ORP:			CESSIV		RE WITHIN T			TEMP.		
BOTTLES	SFILLED	PRESERV	ATIVE CODES	A - NONE	В	- HNO3	C - H2SO4	D - NaOl	Н	E - HC	L F-		
NUMBER	SIZE	TYPE	PRESERVATI	VE FILTE	ERED	NUME	BER SIZE	TYPE	PRES	SERVATI	VE F	ILTER	RED
2	250 mL	PLASTIC	В	□ Y	V N							Υ [
2	250 mL	PLASTIC	Α	□ Y	✓ N	N						Y [
1	125 mL	PLASTIC	А	□ Y	✓ N							Υ [
		1		Пү	Пи							Υſ	
						-						Υ [
	1.3		D	ATE SHIPPE				AIRBILL	NUMBE	D.			=1
HIPPING	METHOD												

1	TRC

PROJECT SAMPLE I WELL MAT SAMPLE T		R: 416559	A SAME OF THE PARTY OF THE PART						
WELL MAT		ROJECT NUMBER: 416559.0006.0000			JMB	DATE:9//	9/22 BY: JY	rB	DATE 7-23-2
	D: MV	V-FGD-1	8	WELL DIAM	METER: 🗸	2" 4" [6" OTHER		
SAMPLE TY	ERIAL:	✓ PVC	ss	IRON GA	LVANIZED S	STEEL	☐ OTHER		
a marking	YPE:	☑ GW	□ w w □	SW 🗌 DI		LEACHATE	OTHER		
PURC	SING	TIME: 14	33 DA	TE: 9/19/22	2 S	AMPLE	TIME: [550	DA	TE: 9/19/22
PURGE METHOD	. =	PUMP BAILER	PERISTALTIC F	PUMP	PH; ORP;	6.11 s	CONDUCTIV	1TY: 6,6	
DEPTH TO	WATER:	7.26	T/ PVC		TURBI	DITY: 3.2	5 NTU		
DEPTH TO	воттом:	18.30	T/ PVC		A No	NE SL	IGHT MO	DERATE	☐ VERY
WELL VOL	UME:	1.82	LITERS	☑ GALLONS	ТЕМРЕ	RATURE: 2	5.01 °C OT	HER:	
VOLUME F	REMOVED:	3.2	LITERS	✓ GALLONS	COLO	: clear	OD	OR: _	none
COLOR:	Lle	w	OD	OR: none	FILTRA	TE (0.45 um)	☐ YES ✓	NO	
		TUF	RBIDITY		FILTRA	TE COLOR:	FIL	TRATE ODC	DR:
NONE	SLI	GHT 🗌	MODERATE	☐ VERY	QC SA	MPLE: MS	MSD X	DU- W	MS-FGD-2230
DISPOSAL	METHOD:	GROUN	ND DRUM	✓ OTHER	COMM	ENTS:			
TIME	PURGE RATE	PH	CONDUCTIVITY	ORP	D.O.	TURBIDITY	TEMPERATURE	WATER LEVEL	CUMULATIVE PURGE VOLUME
	(ML/MIN)	(SU)	(umhos/cm)	(mV)	(mg/L)	(NTU)	(°C)	(FEET)	(GALLONS)
1438	110	6.01	5,245	109.3	0.27	3.95	26.70	7.70	INITIAL
1455	i	6.15	5,714	39.4	0.18	3.26	25.64	8.10	
1500		6.13	5,798	23.7	0.29	2.95	25.64	8,12	
1505		6.12	5,841	4.1	0.20	3.45	25.56	8.15	
1510		6.11	6,098	-23.1	0.40	3.39	25.70	8,15	
1515		1	6,517	-45,6	0.20	3.08	25.74	8.14	
1520		4.05	6,572	- 53.4	0.30	3.10	25,64	8.14	
1525	TYL I	4.06	6,635	-59.4	0.19	3.16	25.52	8.14	
1530		7. 5.3	1 2 1 2	-65.2			25.59	8.14	
1535			6,641	-68.7				-	
N(pH: +/-			TEST IS COMP 3 % ORP:		D.O.: +/-		RE WITHIN THE I		G LIMITS: TEMP.: +/-
BOTTLES	FILLED	PRESERV	ATIVE CODES	A - NONE	B - HNO3	C - H2SO4	D - NaOH	E - HO	CL F
NUMBER	SIZE	TYPE	PRESERVATI	VE FILTERE	D NUMB	ER SIZE	TYPE P	RESERVATI	IVE FILTERED
2	250 mL	PLASTIC	В	□ Y ☑	N				□ Y □ N
2	250 mL	PLASTIC	Α	□ Y ☑	N				□ Y □ N
1	125 mL	PLASTIC	А		N				□ Y □ N
					N				Y N
					N				UY UN
SHIPPING	METHOD:		DA	ATE SHIPPED:		-	AIRBILL NUM	MBER:	
COC NUMI				GNATURE:	1		DATE SIGNE	_	

WATER SAMPLE LOG (CONTINUED FROM PREVIOUS PAGE)

	CON a	م عرب	>				
PROJECT NAME:	Williams Station - NPDES		PREF	PARED	CHECKED		
PROJECT NUMBER:	416559.0006.0000	BY:	JY / B	DATE: 9/19/22	BY: JMB	DATE: 9-23-22	

SAMPLE ID: MW-FGD-18

TIME	PURGE RATE (ML/MIN)	PH (SU)	CONDUCTIVITY (umhos/cm)	ORP (mV)	D.O. (mg/L)	TURBIDITY (NTU)	TEMPERATURE (°C)	LEVEL	CUMULATIVE PURGE VOLUMI (GAL OR L)
1540	110	6.09	6.716	-72.4	0.18	3.18	24.96	(FEET) -18.12	1
1545				-74.3	0.18	3.20	24.94	8.12	1
1550		6.11	6,758	-76.7	0.20	3.25	25.01	8.12	3.2
1415						3.01			

dvan Judin 194	
SIGNATURE:	DATE SIGNED:

1	TRC

PROJECT NAME: Williams Station - CCR 2022Q				3	PR	EPARED		CHECKED		
PROJECT	NUMBER	R: 41655	9.0006.0000		BY: J	M	DATE: 9	-19-22 BY: _	IMB	DATE: 9-23-22
SAMPLE I	ERIAL:	W-FGB-4: DW-FG PVC	95 9 ss	WELL IRON SW		ER: X] 2"	6" ОТН ОТН ОТН	ER	5
30.00		₩ GW				I	100000000			
PURC		TIME: 16	2770 2 TV 2 TV 3		22		SAMPLE	TIME:)(5	0	ATE:9/19/22
PURGE METHOD		PUMP BAILER	PERISTALTIC	PUMP		PH: ORP:	-6·8	mV DO: C	0.15 mg	
DEPTH TO	WATER:	8.33	T/ PVC			-	IDITY: 2.0			_
DEPTH TO	воттом		T/ PVC 18.			D NC			MODERATE	☐ VERY
WELL VOL	40000	1.69	LITERS	GALLO		_		<u>6.03</u> °c	OTHER:	
VOLUME F			LITERS	GALLO	74.3	COLO			TATAL TOTAL	mu
COLOR:	CLEO		0.330.7	DOR: NOC	х	1	ATE (0.45 um)	YES	NO NO	
NONE			MODERATE		ERY		AMPLE: M	S/MSD	FILTRATE ODG	DR:
DISPOSAL			MILITARY TO ACT AND A				1077 - 100 -	-F6D-19	FRIK ~	WM3-F(,D-2)
	PURGE					T. C			WATER	CUMULATIVE
TIME	RATE (ML/MIN)	(SU)	(umhos/cm)	ORP (mV)		D.O. (mg/L)	TURBIDITY (NTU)	TEMPERATU (°C)	RE LEVEL (FEET)	PURGE VOLUME (GALLONS)
1618	100	5.87	4184.5	-30.1	-	0.10	10.09	25.90	8.66	INITIAL
1628	75	5.53	3839.4	-1.0		.34	4.89	25.78	8.94	+ can't majorit
1633	50	5.46	3671.4	3.9		.08	272	25.69		acangous
1638	50	5.44	36434	-4.0		0.15	2:33	25.85	9.21	Divisor Com
1643	50	5.46	3504.2	-5.5		.14	2.40	25.96	9.89	-
1448	50	5.46	3479.5	-6.3		.15	2.48	26.06	9.38	
1653	50	5.47	3457.1	-4.7		1.14	2.16	26.06	9.46	
1658	50	5.47	3449.9	-6.8		0.15	2.08	26.03	9.54	Sample time
1718	50	-					3.52		9.98	
PH: +/-	0.1	COND.: +/-): +/-	D.O	CESSIV	TURB: +	ARE WITHIN TI /- 10 % or 04 D - NaOh	= 5</td <td>G LIMITS: TEMP.: +/-</td>	G LIMITS: TEMP.: +/-
NUMBER	SIZE	TYPE	PRESERVAT		TERED	NUME		TYPE	PRESERVAT	
2	250 mL	PLASTIC	B	ΠY	HI		JIZE.	440	,outvivi	DY DN
2	250 mL	PLASTIC	A	□ ·		-				
1	125 mL	PLASTIC	A	Пү						
	, av IIIE	, 2.10110		□ Y	□ N					□ Y □ N
				Y	Пи					UY UN
SHIPPING	METHOD:		D	ATE SHIPP	ED:			AIRBILL	NUMBER: _	
COC NUMI	BER:		S	IGNATURE:	:			DATE SIG	GNED:	

1	IRC

PROJECT	NAME:	Willian	ns Station - CC	R 2022Q3		PR	EPARED		CHEC	KED
PROJECT	NUMBER	R: 41655	9.0006.0000		BY:	IAT	DATE:4	9 DE BY: 6) MB	DATE:9-23-2
SAMPLE	ID: M	N-FGD-1	9D	WELL	DIAM	ETER: 🔀	2"	6" OTH	ER	
WELL MAT	ERIAL:	▼ PVC	□ss □	IRON 🗌	GAL	VANIZED S	STEEL	ОТН	ER	
SAMPLE T	YPE:	⊠ GW	□w w □	sw 🗌	DI		LEACHATE	□ отн	ER	
PUR	SING	TIME: 12	135 DA	TE: 9/19	22	S	SAMPLE	TIME: 155	58 DA	TE:9 19 22
PURGE METHOD	. =	PUMP BAILER	Pristatic			PH:	<u>6.85</u> s		CTIVITY: 28-12 C. 16 mg/	
DEPTH TO	WATER:	4.08	T/ PVCC143	3		TURB	IDITY: 1.88	NTU		
DEPTH TO	воттом	18.58	T/ PVC 28.5	NO.		□ NO	NE SL	IGHT 🗌	MODERATE	☐ VERY
WELL VOL	UME:	3.14	LITERS	GALLON	NS	TEMPE	ERATURE: 29	.55 °C	OTHER:	
VOLUME I	REMOVED:	1.7	LITERS	GALLON	NS	COLO	R: Clear		ODOR: N	ene
COLOR:	cles	C	OD:	OR: None	2	FILTRA	ATE (0.45 um)	YES	⋈ NO	
NONE	[X] SLI		RBIDITY MODERATE	☐ VE	RY		AMPLE: MS	s/MSD	FILTRATE ODO	R:
DISPOSAL	METHOD	: GROUI	ND DRUM	OTHER		COM	MENTS: Water	browns h	ith time	
TIME	PURGE RATE	PH	CONDUCTIVITY	ORP		D.O.	TURBIDITY	TEMPERATU	LAVATED	CUMULATIVE PURGE VOLUME
	(ML/MIN)	(SU)	(umhos/cm)	(mV)		(mg/L)	(NTU)	(°C)	(FEET)	(GALLONS)
1453	50	6.56	2871.1	92.9		0.26	5.52	26 94	9.14	INITIAL
1458	50	6.43	2859.4	79.0	+1	0.23	6.18	26.96	9.14	
1503	50	670	2862.9	59.6		0.20	4.89	26.90	9.08	
1508	50	6.73	2861.6	50.2		0.90	3.85	26.89	9.10	
1513	50	6.74	2866.6	25.3		0.20	3.25	27.05	9.08	
1518	50	6.74	2870.4	9.8		0.19	4.46	27.03	9.08	
1523	50	6.79	2871.9	-49.8		0.19	3.07	26.00	9.08	
1528	50	6.80	2874.4	-64.0	4	D.17	3.01	26.23	9.08	
1533	75	6.83	2862.2	-91.2		0.17		25.51	9.68	
1538	75		2860.2			0.16	2.44	25.14	9.08	
N pH: +/-		COND,: +/-	TEST IS COMP		-16	JCCESSIV .O.: +/-		RE WITHIN T		ELIMITS: TEMP.: +/-
BOTTLE	SFILLED	PRESERV	ATIVE CODES	A - NONE		B - HNO3	C - H2SO4	D - NaOl	H E-HC	L F
NUMBER	SIZE	TYPE	PRESERVATI	VE FILT	EREC	NUME	BER SIZE	TYPE	PRESERVATI	VE FILTERED
2	250 mL	PLASTIC	В	□ Y	7	N				
2	250 mL	PLASTIC	Α	□ Y	√	N				
1	125 mL	PLASTIC	Α	□ Y	1	N				
				□ Y		N				
				☐ Y		N				UY UN
SHIPPING	METHOD:		DA	TE SHIPPE	D:			AIRBILL	NUMBER:	
COC NUM	BER: 06/2011		SIG	GNATURE:				DATE SI	GNED:	

WATER SAMPLE LOG (CONTINUED FROM PREVIOUS PAGE)

PROJECT NAME:	Williams Station - CCR 2022Q3	8	PREF	PARED	CHECKED		
PROJECT NUMBER:	416559.0006.0000	BY:	J) / JB	DATE: 9/19/22	BY: JMB	DATE: 9-23-22	

SAMPLE ID: MW-FGD-19D

TIME	PURGE RATE (ML/MIN)	PH (SU)	CONDUCTIVITY (umhos/cm)	ORP (mV)	D.O. (mg/L)	TURBIDITY (NTU)	TEMPERATURE (°C)	WATER LEVEL (FEET)	CUMULATIVE PURGE VOLUME (GAL OR L)
1538	75	6.84	2860.2	-101.3	0.16	2.44	26.14	9.08	
1543	76	6.84	2900.1	-118.0	0.16	2.09		9.09	
1548	75	6.85	2.899.4	-19.8.8	0.16	2.00	25.14	9.09	
1553	75	4.85	2894.5	-127.1	0.16	1.94	25.51	9.09	
1558	75	6.85	2894.7	-127.3	-	1.88	25.55		Sample Lim
1611	75	1111/2-				1.79		9.08	Sample tim Post sam
			-						

SIGNATURE:	DATE SIGNED:	

1	TOC
1	IRC

PROJECT NAME: Williams Station - CCR 2022Q				CR 2022Q3	PREPARED				CHECKED				
PROJECT	NUMBER	R: 41655	9,0006,0000	E	SY: J	AY	DATE	0/22 BY:	JM	B	DATE	9-:	23-2
SAMPLE	ID: M	W-FGD-2	0AR	WELL DI	AMET	ER: 🗸	2" 4" [6" OT	HER				
WELL MAT	ERIAL:	✓ PVC	ss	IRON 🔲 0	GALVA	NIZED S	STEEL	ОТ	HER				
SAMPLE T	YPE:	☑ GW	□ w w □	SW 🔲 [OI .		LEACHATE	ОТ	HER				
PUR	GING	TIME: 19	143 D	ATE:9/20/2	2	S	SAMPLE	TIME: 13	47	DA	TE: 9	20	22
PURGE METHOD		PUMP BAILER	PERISTALTIC		-		-	U CONDU	-	(ITY: <u>338</u> 0	0.3		hos/cr
DEPTH TO	WATER:	6.09	T/ PVC			TURBI	IDITY: 1.87	NTU					
DEPTH TO	воттом		T/ PVC		-	₩ NO	NE SL	GHT 🗌	MO	DERATE		VE	RY
WELL VOL	UME:	2.74	LITERS	☑ GALLONS	3	TEMPE	RATURE: 2	7.67 °C	ОТІ	HER:			
VOLUME REMOVED: 1.65 LITERS GALLO				☑ GALLONS	3	COLO	R: cleac		OD	OR: N	oce		
COLOR:	cle	40		OR: Nork		FILTRA	ATE (0.45 um)	YES	V	NO			
		TU	RBIDITY			FILTRA	TE COLOR:		FIL	TRATE ODO	R: _		
NONE	SL		MODERATE	VER	Y	QC SA	AMPLE: MS	MSD	4	DU			
DISPOSAL	METHOD	: GROU	ND DRUM	✓ OTHER		COMM	MENTS:						
TIME	PURGE RATE	PH	CONDUCTIVITY	ORP		D.O.	TURBIDITY	TEMPERAT	URE	WATER LEVEL	PUR		OLUME
	(ML/MIN)	(SU)	(umhos/cm)	(mV)	(mg/L)	(NTU)	(°C)		(FEET)	15020	SALLO	
1247	125	6.18	269.0	59.4	C	.33	3,24	29.11		6.17		INITIA	AL.
1252	125	6.22	2630.0	46.4	C	1.21	3.01	28.59	5	6.20		1	
1257	125	6.23	2640.20	43.0	C	.18	2.41	28.53	g ·	6.21			
1302	125	6.31	\$188.6	23.5	٥	.14	2.89	28.24		6.22			
1307	125	6.39	3142.8	10.1	٥	.13	3.26	27,99		6.23			
1312	125	6.44	3357.4	-7.1	U	.13	2.97	28.17		6.23			
1317	125	6.46	3378.1	-15.1	0	.12	2.69	27.87		6.24			
1322	125	6.46	3387.2	-22.6		.12	2.41	27.94		6:24			
1327		6.47				0.12	2.27	27.80		6.24			
1332		6.48			1). 11	2,34	27,92		6.24	1	.65	5
N pH: +/-			TEST IS COMP		D.O.:			1000	THE F		LIMI	TS:	
BOTTLES	SFILLED	PRESERV	ATIVE CODES	A - NONE	В	HNO3	C - H2SO4	D - NaC	Н	E - HC	L F	3_	
NUMBER	SIZE	TYPE	PRESERVAT	IVE FILTER	RED	NUMB	BER SIZE	TYPE	PF	RESERVATI	VE	FILT	ERED
2	250 mL	PLASTIC	В	□ Y 5	N						E	Υ	
2	250 mL	PLASTIC	А	□ Y .	N [V							Y	
1	125 mL	PLASTIC	Α	□ Y 5	V N						E	Y	
				□ Y □	N						E] Y	
				□ Y [N							Y	
SHIPPING	METHOD:		D	ATE SHIPPED:				AIRBILL	NUN	MBER:			
COC NUM	BER:		S	GNATURE:	_			DATE S	IGNE	:D:			
	Zellen -	_			_			CALL CONTRACTOR	2 472	_			

(CONTINUED FROM PREVIOUS PAGE)

	CCK at	240					
PROJECT NAME:	Williams Station - NPDES		PRE	PARED	CHECKED		
PROJECT NUMBER:	416559.0006.0000	BY:	JY) JB	DATE:9 20/22	BY: JMB	DATE: 9-23-22	

SAMPLE ID: MW-F6D-20AR

TIME	PURGE RATE (ML/MIN)	PH (SU)	CONDUCTIVITY (umhos/cm)	ORP (mV)	D.O. (mg/L)	TURBIDITY (NTU)	TEMPERATURE	WATER LEVEL (FEET)	CUMULATIVE PURGE VOLUME (GAL OR L)
1332	125	6.48	3384.2	-34.6	0.11	2.34	27.92	4.24	
1337	125	6.48	3375.7	-40.3	0.12	2.17	27.88	6.24	
1342	125	6.49	3371.4	-41.Ce	0.12	2.08	27.70	6.25	
1347	195	6.49	3380.3	-43.8	0.12	1.87	27.27	6.25	Sample kinge
1400	125	17.		•		2.15		- 1,	Post
		1							

SIGNATURE:	DATE SIGNED:	

4	

PROJECT	NAME:	Willian	ns Station - C	CR 2022Q3		PRI	EPARED			CHEC	KED	
PROJECT	NUMBER	R: 41655	9.0006.0000		BY: J	MB	DATE: 1	1/21/22	BY: JA	В	DATE: 4.	23-22
SAMPLE I	D: M	W-FGD-2	1	WELL D	IAMET	ER: 🗸	2" 4" [6"	OTHER			
WELL MAT	ERIAL:	✓ PVC	□ss □	IRON	GALVA	NIZED S	STEEL		OTHER			
SAMPLE TY	YPE:	☑ GW	□ww □	sw 🗌	DI		LEACHATE		OTHER			
PURG	SING	TIME: 08	10 P	ATE: 9/21	122		AMPLE		0853		TE: 9/2	1/22
PURGE METHOD		PUMP BAILER	PERISTALTIC	PUMP		9.55	5.32 45.5	SU COI		/ITY: <u>453</u> 40 mg		nhos/cm
DEPTH TO	WATER:	9.52	T/ PVC			TURBI	DITY: 3.	11 NTU				
DEPTH TO	воттом	21.17	T/ PVC			NON 🔀		SLIGHT		DERATE	☐ VE	RY.
WELL VOL	UME:	1.92	LITERS	✓ GALLON	IS	TEMPE	RATURE:	24.17	°C OTI	HER:		
VOLUME F	REMOVED	1.1	LITERS	✓ GALLON	IS	COLOF	r: clea	<u></u>	OD	OR: _	none	
COLOR:	_ c	lear		DOR: Non	e	FILTRA	TE (0.45 um)	YES	V	NO		
		TUF	RBIDITY			FILTRA	TE COLOR:		FIL	TRATE ODO	R:	
NONE			MODERATE	☐ VEF	RY	24.5 (2.5)	MPLE: N			DU-		collec-
DISPOSAL	METHOD	: GROU	ND DRUM	OTHER		COMM	ENTS: FB	LK-h	M5-	FGD-2	2302	co llect
TIME	PURGE RATE	PH	CONDUCTIVITY			D.O.	TURBIDITY		RATURE	WATER LEVEL	PURGE V	OLUME
	(ML/MIN)	(SU)	(umhos/cm)	(mV)		mg/L)	(NTU)		°C)	(FEET)	(GALL	
0833	85	5.01	463,17			.45	6.52		0.00	9.47	INIT	AL
3838		5.15	457.65	-		37	5.89	24.		9.67		
3843		5,24	454.93		C	141	4.57	24.	04	9.67	1 1 1	
0848		5,29	453.7	1 47.6	0	1.41	4.08	24	.15	9.67		
0853		5.32	453.19	45.5	0	.40	3.91	24	.17	9.67	1.1	
0905	1				,-	_	4.95			1		
											-	
N (pH: +/-			TEST IS COM			CESSIVE		ARE WITH			S LIMITS: TEMP.: +/	
BOTTLES	FILLED	PRESERV	ATIVE CODES	A - NONE	В-	- HNO3	C - H2S0	04 D-	NaOH	E - HO	L F	
NUMBER	SIZE	TYPE	PRESERVAT	TIVE FILTE	ERED	NUMB	ER SIZE	TYP	E PI	RESERVATI	VE FILT	ERED
2	250 mL	PLASTIC	В	□ Y	V N			1			□Y	□ N
2	250 mL	PLASTIC	A	□ Y	✓ N						Y	□ N
1	125 mL	PLASTIC	А	□ Y	✓ N						□ Y	□ N
				Пү	Пи						Пү	□ N
0					n N						ΠY	=
SHIPPING	METHOD:		I	DATE SHIPPED		1		AID	BILL NUN	MRED.		
L. T. D. C. C. C.		-			_			- 111		_		
COC NUMI	BER:		S	SIGNATURE:				DAT	TE SIGNE	:D:		

PROJECT NAME:	Williams Station			MODEL: AQUA TROLL 400	SAMPLER:	JA 1 (B)	
PROJECT NO.:	416559.0006.0000			SERIAL#: 851425	DATE: 9/19/2	022	
PH	CALIBRATION CHECK			SPECIFIC COND	UCTIVITY CALIBI	RATION CI	HECK
pH 7 (LOT #): 21380102 (EXP. DATE): 04/2023 PRE-CAL. READING / STANDARD	pH 4 / 10 (LOT #): 21470032 (EXP. DATE): 04/2023 PRE-CAL. READING / STANDARD	CAL. RANGE	TIME	CAL. READING (LOT #): 21470032 (EXP. DATE): 04/2022 PRE-CAL. READING / STANDARD	TEMPERATURE (°CELSIUS)		TIME
6.72 17.00	9.53 1 10.00	WITHIN RANGE		4431.31 4490	26.44	WITHIN RANGE	1405
(e.98 17.00	4.53 14.00	WITHIN RANGE WITHIN RANGE	1400	4490.02/4490		WITHIN RANGE	1404
6.98 17.00	3.99 14.00	-	1404	;		RANGE WITHIN	
OPE	CALIBRATION CHECK	RANGE	1 1-1	, DO CA	LIBRATION CHE	RANGE	
CAL. READING (LOT#): 21140147 (EXP. DATE): 04/2023 PRE-CAL. READING / STANDARD	TEMPERATURE (°CELSIUS)	CAL. RANGE	TIME	CALIBRATION		CAL. RANGE	TIME
212.1/228	26.07	WITHIN	1407	Barometer = 762.02	marty	WITHIN RANGE	1352
227.9 / 228	24,05	WITHIN		Temp. = 27,96 %	1	WITHIN	
/		RANGE WITHIN RANGE		Measured = 7.83 m	alL	WITHIN	
1		WITHIN		Calculated = 7.8 m		WITHIN	
TURBIT	DITY CALIBRATION CHE	CK RANGE			COMMENTS	RANGE	
the same of the sa	READING (NTU)			AUTOCAL SOLUTION		SOLUTION ((S)
(LOT #): 21380129 (0.0 NTU) (EXP. DATE): 04/2023	(LOT #): 21320048 (1.00) NTU (EXP. DATE): 04/2023	CAL. RANGE	TIME	(LOT #): 21470032 (EXP. DATE): 04/2022	LIST LOT NUMBERS		ION DATE
PRE-CAL. READING / STANDARD	POST-CAL. READING / STANDARD			CALIBRATED PARAMETERS	CALIBRATI	ON RANGES (1)
0.03 10.00	0.01 10.00	_	1412	✓ pH	pH: +/- 0.2 S.	U.	
2.62 /1,00	0.91 11.00	WITHIN RANGE	1416	☑ COND	COND: +/- 1% O	F CAL. STAN	DARD
7.99 110.00	10.02 10.00	WITHIN RANGE	1415	☐ ORP	ORP: +/- 25 m\	/	
1	1	WITHIN RANGE		□ D.O.	D.O.: VARIES		
	NOTES			☐ TURB	TURB: +/- 5% O	F CAL. STAN	IDARD
LaMotte 2020we turbi	dimeter				(1) CALIBRATION RA	NOES ARE SR	ECIEIC TO
Lot # for 10.00 NTU c	al standard = 21400081	1 exp 04/2	2023		THE MODEL OF THE		
	PROBLEMS ENCOUNTERED			CORREC	TIVE ACTIONS		
Jacob Bran	Mus 9.	23-22		Card- Bun	Men	9-3	23-22

REVISED 06/2011

PROJECT NAI	ME:	Williams Station			MODEL: AQUA TROLL 400	SAMPLER:	JY) JB	
PROJECT NO	.:	416559.0006.0000			SERIAL#: 969268	DATE: 9/19/2	2	
	PH	CALIBRATION CHECK			SPECIFIC CONDU	JCTIVITY CALIBR	RATION C	HECK
pH (LOT#): 21380102 (EXP. DATE): 04/2 PRE-CAL. READIN	023	pH 4 / 10 (LOT #): 21470032 (EXP. DATE): 04/2023 PRE-CAL. READING / STANDARD	CAL. RANGE	TIME	CAL. READING (LOT #): 21470032 (EXP. DATE): 04/2022 PRE-CAL. READING / STANDARD	TEMPERATURE	CAL. RANGE	TIME
6.691	7.00	4.99 17.00	WITHIN RANGE	1442	3923.9 14490 M	n 26.95	WITHIN RANGE	
9.691		9.94/10.00	IN WITHIN		466.2/4490 M	Jan 27.00	WITHIN RANGE	1448
	4.00	4.00 14.00	WITHIN RANGE	1,1,,-			WITHIN RANGE	
l/		1	WITHIN RANGE				WITHIN RANGE	
	ORP	CALIBRATION CHECK			D.O. CAI	IBRATION CHEC	K	
CAL. RE (LOT #): 21140147 (EXP. DATE): 04/2 PRE-CAL. READIN	023	TEMPERATURE (°CELSIUS)	CAL. RANGE	TIME	CALIBRATION F	EADING	CAL. RANGE	TIME
212.0	228	26.95	WITHIN		Barometer = 762.19	pHmm	WITHIN RANGE	1439
226.3		26.97	WITHIN RANGE	vun	Temp. = 28.67°C)	WITHIN	
			☐ WITHIN RANGE		Measured = 7.74 mg	٤	WITHIN RANGE	11
			WITHIN		Calculated = 7.7 mg/		WITHIN	
	TURBIC	ITY CALIBRATION CHEC				COMMENTS		
CA	LIBRATION	READING (NTU)			✓ AUTOCAL SOLUTION	STANDARD	SOLUTION ((S)
(LOT #): 21380129 (EXP. DATE): 04/2		(LOT #): 21320048 (1.00) NTU (EXP. DATE): 04/2023	CAL. RANGE	TIME	(LOT #): 21470032 (EXP. DATE): 04/2022	LIST LOT NUMBERS A UNDER CALIE		
PRE-CAL. READIN	NG / STANDARD	POST-CAL. READING / STANDARD			CALIBRATED PARAMETERS	CALIBRATI	ON RANGES (1)
-0.0)	0.00	1	WITHIN RANGE	1450	✓ pH	pH: +/- 0.2 S.	J.	
10.01	0,00	1	WITHIN RANGE	H53	☑ COND	COND: +/- 1% OF	CAL STAN	IDARD
		1	WITHIN RANGE		☐ ORP	ORP: +/- 25 mV		
,		1	WITHIN RANGE		D.O.	D.O.: VARIES		
		NOTES			☐ TURB	TURB: +/- 5% OF	CAL. STAN	IDARD
LaMotte 202	20we turbi	dimeter				(1) CALIBRATION RAI	IGES ARE SP	ECIFIC TO
Lot # for 10	.00 NTU c	al standard = 21400081	exp 04/2	023		THE MODEL OF THE		
		PROBLEMS ENCOUNTERED			CORREC	TIVE ACTIONS		

WATER QUALITY METER CALIBRATION LOG

LIBRATION CHECK pH 4 / 10 DT #): 21470032 KP. DATE): 04/2023 PRE-CAL. READING / STANDARD / PM 8 / 10.20 LIBRATION CHECK TEMPERATURE		TIME 830 832 834	SERIAL #: 909268 SPECIFIC COND CAL. READING (LOT #): 21470032 (EXP. DATE): 04/2022 PRE-CAL. READING / STANDARD 4379.1 / 4490	DATE: 9 SO S UCTIVITY CALIBRE TEMPERATURE (*2.5°C (*CELSIUS)		HECK
pH 4 / 10 DT #): 21470032 (P. DATE): 04/2023 PRE-CAL. READING / STANDARD / P	RANGE WITHIN RANGE RANGE WITHIN RANGE WITHIN WITHIN	830 832	SPECIFIC COND CAL. READING (LOT #): 21470032 (EXP. DATE): 04/2022 PRE-CAL. READING / STANDARD	TEMPERATURE (*25°) (*CELSIUS)	CAL.	
PRE-CAL. READING / STANDARD 10	RANGE WITHIN RANGE RANGE WITHIN RANGE WITHIN WITHIN	830 832	(LOT #): 21470032 (EXP. DATE): 04/2022 PRE-CAL. READING / STANDARD	(°CELSIUS)	Control and Arrest Training	TIME
/ 9.98/10.00 4.02/4.00 / ALIBRATION CHECK	WITHIN RANGE WITHIN RANGE	832	A STANDARD STANDARD TO			
4.02 / 4.00 / ALIBRATION CHECK	WITHIN RANGE WITHIN RANGE	832		24.72	WITHIN RANGE	
4.02 / 4.00 / ALIBRATION CHECK	WITHIN RANGE	172735	4470.314490	24.74	WITHIN	835
/ ALIBRATION CHECK	WITHIN	001	1	21,11	WITHIN	ی کی
	RANGE		,		WITHIN	
			D.O. CA	LIBRATION CHEC		
(°CELSIUS)	CAL. RANGE	TIME	CALIBRATION	123712.09/89 930 931 10 0 229 1	CAL. RANGE	TIME
01: 02	WITHIN	007	Barometer = 7/2 ~	- H	WITHIN	000
24.85	WITHIN	851	Temp. = 24,1192	mmild	WITHIN	838
	WITHIN		Measured = 8.51 mg	12	WITHIN	J
	WITHIN				WITHIN	
CALIBRATION CHEC					RANGE	
			AUTOCAL SOLUTION		SOLUTION ((S)
OT #): 21320048 (1.00) NTU KP. DATE): 04/2023	CAL. RANGE	TIME	(LOT #): 21470032 (EXP. DATE): 04/2022	LIST LOT NUMBERS A	AND EXPIRATI BRATION CHE	ON DATES
POST-CAL. READING / STANDARD			CALIBRATED PARAMETERS	CALIBRATI	ON RANGES	1)
1	RANGE	015	✓ pH	pH: +/- 0.2 S.	U,	
1	RANGE		✓ COND	COND: +/- 1% OI	F CAL. STAN	DARD
T			☐ ORP	ORP: +/- 25 mV	,	
1			☐ D.O.	D.O.: VARIES		
NOTES			☐ TURB	TURB: +/- 5% OI	F CAL. STAN	IDARD
eter				(1) CALIBRATION RAI	NGES ARE SP	ECIFIC TO
tandard = 21400081	exp 04/2	023				
BLEMS ENCOUNTERED			CORREC	TIVE ACTIONS		
A CONTRACTOR OF THE CONTRACTOR	(°CELSIUS) CALIBRATION CHECK ADING (NTU) IT #): 21320048 (1.00) NTU P. DATE): 04/2023 OST-CAL. READING / STANDARD / / / NOTES eter tandard = 21400081	(°CELSIUS) CAL. RANGE WITHIN RANGE WITHIN RANGE WITHIN RANGE WITHIN RANGE CALIBRATION CHECK ADING (NTU) IT #): 21320048 (1.00) NTU P. DATE): 04/2023 OST-CAL. READING / STANDARD / WITHIN RANGE NOTES eter tandard = 21400081 exp 04/2	(*CELSIUS) CAL. RANGE TIME ANGE WITHIN RANGE TIME ADING (NTU) T#): 21320048 (1.00) NTU P. DATE): 04/2023 OST-CAL. READING / STANDARD / WITHIN RANGE / WITHIN	CAL. RANGE TIME Barometer = 763.00 Temp. = 24.1190 Measured = 8.51 rsp. Calculated = 7.5 8.5 Calculated = 7.5 8.5 Calculated = 7.5 8.5 CALIBRATION CHECK ADING (NTU) T #): 21320048 (1.00) NTU P. DATE): 04/2023 DST-CAL READING / STANDARD TIME / WITHIN RANGE / COND ORP D.O. NOTES eter tandard = 21400081 exp 04/2023 LEMS ENCOUNTERED CAL. TIME Calculated = 7.5 8.5 Calculated = 7.5 8.5 Calculated = 7.5 8.5 Temp. = 24.1190 Measured = 8.51 rsp. Calculated = 7.5 8.5 Calculated = 7.5 8.5 Calculated = 7.5 8.5 Time Calculated = 7.5 8.5 Calculated = 7.5 8.5 Time Calculated = 7.5 8.5 Calculated = 7.5 8.5 Calculated = 7.5 8.5 Time Calculated = 7.5 8.5 Time Calculated = 7.5 8.5 Time Calculated = 7.5 8.5 Calculated = 7.5 8.5 Time Calculated = 7.5 8.5 Time Calculated = 7.5 8.5 Calculated = 7.5 8.	CAL. RANGE TIME ALL STS WITHIN RANGE CALIBRATION CHECK ADING (NTU) THE: 21320048 (1.00) NTU P. DATE: 04/2023 RANGE TIME AUTOCAL SOLUTION (LOT #): 21470032 (EXP. DATE: 04/2022 CALIBRATED PARAMETERS CALIBRATION CALIBRATION WITHIN RANGE / WITHIN RANGE TIME WITHIN RANGE TIME WITHIN RANGE TIME WITHIN RANGE TIME WITHIN RANGE TIME	CAL. RANGE TIME

PROJECT NAME:	Williams Station			MODEL:	AQUA TROLL 400	SAMPLER:	JY/B	
PROJECT NO.:	416559.0006.0000			SERIAL	#: 851425	DATE: 1/20	2022	
PH	CALIBRATION CHECK				SPECIFIC CON	DUCTIVITY CALIB	RATION C	HECK
pH 7 (LOT #): 21380102 (EXP. DATE): 04/2023 PRE-CAL, READING / STANDARD	pH 4 / 10 (LOT #): 21470032 (EXP. DATE): 04/2023 PRE-CAL. READING / STANDARD	CAL. RANGE	TIME		CAL. READING (LOT#): 21470032 (EXP. DATE): 04/2022 PRE-CAL. READING / STANDARI	TEMPERATURE (*CELSIUS)	CAL. RANGE	TIME
6.94 17.00	9,18 / 10,00	WITHIN	0839		4475 1 4 490	24.05	WITHIN	0845
1	4.65 / 4.00		0842	bast	448814490		WITHIN RANGE	
6.99 17.00	10.02 / 10.00	WITHIN RANGE		,	/		WITHIN	
1	3.98 / 4.00	WITHIN RANGE			1		WITHIN	
ORP	CALIBRATION CHECK	RANGE	0.001	1	D.O. C	ALIBRATION CHE	CK RANGE	
CAL. READING	TEMPERATURE				CALIBRATION			
(LOT #): 21140147 (EXP. DATE): 04/2023	(°CELSIUS)	CAL. RANGE	TIME		30,00,00,00,00		CAL. RANGE	TIME
219. / 228	04.00	WITHIN	0849		Barometer = 762.	33 mar Ha	WITHIN RANGE	0834
•	24.00	-	0850		Temp. = 23.56°C		WITHIN	0030
229.8/228	24.03	RANGE WITHIN	-				RANGE WITHIN	
		RANGE WITHIN			Measured = 8,65	0	RANGE WITHIN	
/ TURRIN	ITY OAL IDDATION OUT	RANGE			Calculated = %.Co		RANGE	
	ITY CALIBRATION CHEC READING (NTU)	- N		1	AUTOCAL SOLUTION	COMMENTS	SOLUTION ((2)
(LOT #): 21380129 (0.0 NTU) (EXP. DATE): 04/2023	(LOT #): 21320048 (1.00) NTU (EXP. DATE): 04/2023	CAL. RANGE	TIME		(LOT #): 21470032 (EXP. DATE): 04/2022	LIST LOT NUMBERS	and a second	ION DATES
PRE-CAL. READING / STANDARD	POST-CAL. READING / STANDARD				CALIBRATED PARAMETERS	CALIBRAT	ION RANGES	1)
0.0010.00	0.00 1 0.00	WITHIN RANGE	0830		√ pH	pH: +/- 0.2 S	.U.	
1.64/1.00	1.62 / 1.00	WITHIN RANGE	0832		COND	COND: +/- 1% C	F CAL. STAN	DARD
7.40/10.00	10.02/10.00	X WITHIN RANGE	0834		☐ ORP	ORP: +/- 25 m	V	
1	1	WITHIN RANGE			☐ D.O.	D.O.: VARIES		
	NOTES				☐ TURB	TURB: +/- 5% C	F CAL. STAN	DARD
LaMotte 2020we turbio	dimeter					(1)		
Lot # for 10.00 NTU ca	al standard = 21400081	exp 04/2	2023			— (1) CALIBRATION RA THE MODEL OF THE		
						737.0		
F	PROBLEMS ENCOUNTERED				CORRE	CTIVE ACTIONS		
,						10		
11 0.11.		10 20			1.11	MA	9-23-	22

PH CAI pH 7 (LOT #): 21380102 (LC (EXP. DATE): 04/2023 (EX	ILIBRATION CHECK pH 4 / 10 DT #): 21470032 XP. DATE): 04/2023 PRE-CAL. READING / STANDARD	CAL.		SERIAL#: 929268	DATE: 9 21 2	2	
pH 7 (LOT #): 21380102 (LCC (EXP. DATE): 04/2023 (EXP. CAL. READING / STANDARD F	pH 4 / 10 OT #): 21470032 XP. DATE): 04/2023	CAL.					
pH 7 (LOT #): 21380102 (LCC (EXP. DATE): 04/2023 (EXP. CAL. READING / STANDARD F	pH 4 / 10 OT #): 21470032 XP. DATE): 04/2023	CAL.			JCTIVITY CALIBR	ATION C	HECK
6.96 17.00		RANGE	TIME	CAL. READING (LOT #): 21470032 (EXP. DATE): 04/2022 PRE-CAL. READING / STANDARD	TEMPERATURE とうらく (*CELSIUS)	CAL. RANGE	TIME
3 10	1	WITHIN RANGE	832	4335.8 14490	23.51	WITHIN	
9.77 /10.00	4.99 /10.00	WITHIN RANGE	834	4488.814490	23.48	WITHIN RANGE	839
THE SECTION OF THE SE	1.02 14.00	WITHIN RANGE	837	1		WITHIN RANGE	
1	1	WITHIN RANGE		1		WITHIN	
ORP C	ALIBRATION CHECK			D.O. CA	LIBRATION CHEC		
CAL. READING (LOT #): 21140147 (EXP. DATE): 04/2023 PRE-CAL. READING / STANDARD	TEMPERATURE (*CELSIUS)	CAL. RANGE	TIME	CALIBRATION F	READING	CAL. RANGE	TIME
231.6 /228	23.43	WITHIN		Barometer = つしつ、45	phon	WITHIN RANGE	830
226.2/228	23.46	WITHIN RANGE	840	Temp. = 23.73°2	1 1	WITHIN RANGE	
1		WITHIN RANGE		Measured = 8.63 m	シケ	WITHIN RANGE	
1		WITHIN RANGE		Calculated = 8.6 mg	9/2	WITHIN RANGE	
TURBIDITY	Y CALIBRATION CHEC	K			COMMENTS		
CALIBRATION REA	ADING (NTU)			✓ AUTOCAL SOLUTION	STANDARD	SOLUTION ((S)
	OT #): 21320048 (1.00) NTU XP. DATE): 04/2023	CAL. RANGE	TIME	(LOT #): 21470032 (EXP. DATE): 04/2022	LIST LOT NUMBERS A UNDER CALIE		
PRE-CAL, READING / STANDARD P	POST-CAL, READING / STANDARD			CALIBRATED PARAMETERS	CALIBRATIO	ON RANGES (1)
-0.02 1 8.00	1	X WITHIN RANGE	841	✓ pH	pH: +/- 0.2 S.I	J.	
0.94 11.00	1	WITHIN RANGE	842	☑ COND	COND: +/- 1% OF	CAL. STAN	DARD
9.87 /10.00	1	WITHIN RANGE	842	☐ ORP	ORP: +/- 25 mV		
1	1	WITHIN RANGE		□ D.O.	D.O.: VARIES		
	NOTES			☐ TURB	TURB: +/- 5% OF	CAL. STAN	IDARD
LaMotte 2020we turbidim	neter				(1) CALIBRATION RAN	IGES ARE SP	ECIFIC TO
Lot # for 10.00 NTU cal s	standard = 21400081	exp 04/2	023		THE MODEL OF THE		
PROI	BLEMS ENCOUNTERED			CORREC	TIVE ACTIONS		

PROJECT NAME:	Williams Station			MODEL: AQUA TROLL 400	SAMPLER:	JY/B	-
PROJECT NO.:	416559.0006.0000			SERIAL #: 851425	DATE: 9/21	122	
PH	CALIBRATION CHECK			SPECIFIC COND	ICTIVITY CALIBR	RATION C	HECK
pH 7 (LOT#): 21380102 (EXP. DATE): 04/2023 PRE-CAL. READING / STANDARD	pH 4 / 10 (LOT #): 21470032 (EXP. DATE): 04/2023 PRE-CAL. READING / STANDARD	CAL. RANGE	TIME	CAL. READING (LOT #): 21470032 (EXP. DATE): 04/2022 PRE-CAL. READING / STANDARD	TEMPERATURE (*CELSIUS)		TIME
CAL, READING (LOT#): 21140147 (EXP. DATE): 04/2023 PRE-CAL READING / STANDARD 238, 1 / 228	9.45 / 10.00 4.73 / 4.00 10.02 / 10.00 3.98 / 4.00 CALIBRATION CHECK TEMPERATURE (*CELSIUS)	WITHIN RANGE WITHIN RANGE CAL. RANGE	0820 0819 0823 TIME	D.O. CA CALIBRATION F Barometer = 761.66	25.02 LIBRATION CHEC	CK CAL. RANGE WITHIN RANGE	082C
229.\/228 /	24,98	WITHIN RANGE WITHIN RANGE WITHIN RANGE	0820	Temp. = 24,17 °C Measured = 8,4 mg Calculated = 8,4 mg	11	WITHIN RANGE WITHIN RANGE WITHIN RANGE	
CALIBRATION (LOT #): 21380129 (0.0 NTU) (EXP. DATE): 04/2023	DITY CALIBRATION CHEC READING (NTU) (LOT #): 21320048 (1.00) NTU (EXP. DATE): 04/2023	CAL., RANGE	TIME	✓ AUTOCAL SOLUTION (LOT #): 21470032 (EXP. DATE): 04/2022	COMMENTS STANDARD LIST LOT NUMBERS A UNDER CALIE	AND EXPIRAT	ION DATES
8.01 / 0.00 1.65 / 1.00 7.49 / 10.00	0.01 / 0.00 1.58 / 1.00 10.02 / 10.00 NOTES	WITHIN RANGE	0833	CALIBRATED PARAMETERS	pH: +/- 0.2 S. COND: +/- 1% OI ORP: +/- 25 mV D.O.: VARIES	F CAL. STAN	IDARD
LaMotte 2020we turbi	dimeter al standard = 21400081	exp 04/2	2023		(1) CALIBRATION RAI THE MODEL OF THE		
	PROBLEMS ENCOUNTERED			CORREC	TIVE ACTIONS		
Jacob Brailey	9-	23-22 DATE	2	Just Busia EHECKED BY	ly	9	23-2 DATE

DATE 9/23/2022

gel.com

October 05, 2022

Kelly Hicks Dominion Energy Services, Inc. 120 Tredegar Street Richmond, Virginia 23219

Re: CCR Groundwater Monitoring - Level 1 Package

Work Order: 594158

Dear Kelly Hicks:

GEL Laboratories, LLC (GEL) appreciates the opportunity to provide the enclosed analytical results for the sample(s) we received on September 22, 2022. This original data report has been prepared and reviewed in accordance with GEL's standard operating procedures.

Test results for NELAP or ISO 17025 accredited tests are verified to meet the requirements of those standards, with any exceptions noted. The results reported relate only to the items tested and to the sample as received by the laboratory. These results may not be reproduced except as full reports without approval by the laboratory. Copies of GEL's accreditations and certifications can be found on our website at www.gel.com.

Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at (843) 556-8171, ext. 1648.

Sincerely,

Meredith Boddiford Project Manager

Meredith Boldiford

Purchase Order: 50149867 Chain of Custody: 20220920

Enclosures

Table of Contents

Case Narrative	1
Chain of Custody and Supporting Documentation	4
Laboratory Certifications	7
Metals Analysis	9
Case Narrative	10
Sample Data Summary	14
Quality Control Summary	25
General Chem Analysis	36
Case Narrative	37
Sample Data Summary	43
Ouality Control Summary	54

Receipt Narrative for Dominion Energy (50149867) SDG: 594158

October 05, 2022

Laboratory Identification:

GEL Laboratories LLC 2040 Savage Road Charleston, South Carolina 29407 (843) 556-8171

Summary:

<u>Sample receipt:</u> The samples arrived at GEL Laboratories LLC, Charleston, South Carolina on September 22, 2022 for analysis. The samples were delivered with proper chain of custody documentation and signatures. All sample containers arrived without any visible signs of tampering or breakage. There are no additional comments concerning sample receipt.

Sample Identification: The laboratory received the following samples:

<u>Laboratory ID</u>	Client ID
594158001	MW-FGD-16-2022Q3
594158002	MW-FGD-17-2022Q3
594158003	MW-FGD-18-2022Q3
594158004	MW-FGD-19-2022Q3
594158005	MW-FGD-19D-2022Q3
594158006	MW-FGD-20AR-2022Q3
594158007	MW-FGD-21-2022Q3
594158008	FBLK-WMS-FGD-22301
594158009	FBLK-WMS-FGD-22302
594158010	DU-WMS-FGD-22301

Case Narrative:

Sample analyses were conducted using methodology as outlined in GEL's Standard Operating Procedures. Any technical or administrative problems during analysis, data review, and reduction are contained in the analytical case narratives in the enclosed data package.

Page 2 of 59 SDG: 594158

The enclosed data package contains the following sections: Case Narrative, Chain of Custody, Cooler Receipt Checklist, Data Package Qualifier Definitions and data from the following fractions: General Chemistry and Metals.

Meredith Boddiford Project Manager

Meredith Boldiford

Page: 1 of 1						-10							GEL	GEL Laboratories, LLC	TTC	
Por ect # 416559.6.0.6.2		()		C	00 00	aboratories	SIC						2040	2040 Savage Road		
GE Quote #:	205	C04168	gel.com	Chem	istry Radio	Chemistry Radiochemistry Radiobloassay Specialty Analytics	diobioassa	/ Speci	alty Ana	ytics			Charl	Charleston, SC 29407	107	
Coc Number (1); 20220920)	0	Cha	Chain of Cu	stody a	Custody and Analytical Request	ical Re	dnest					Phone	Phone: (843) 556-8171	171	
Po-Number: PO 50149867	GEL Work	GEL Work Order Number: 207139	: 207139	1	GEL	GEL Project Manager: Meredith Boddiford	nager: N	feredit	h Bod	diford			Fax: (Fax: (843) 766-1178	8	
Client Name: Dominion Energy			Phone # 803-258-	-258-1528	~		S	ample	Anal	sis R	equeste	(5) (Fil	in the nur	nber of cont	Sample Analysis Requested (5) (Fill in the number of containers for each test)	st)
Project/Site Name: Williams Station New FGD (CCR 2022Q3		Fax#			Shot	Should this	S.J.			IN				< Preser	< Preservative Type (6)
Acres: Goose Creek, South Carolina						sam	sample be considered:	ənisən		17	etals				(
Celected By: J. Yonts / J. Bradley	Send Resul	Send Results To: AReed@envstd.com	envstd.com			H)	spat	102 Jo .			III W				Col Note: ex	Comments Note: extra sample is
Sample ID * For composites - indicate start and stop date/time	ate/time	*Date Collected	*Time Collected (Military)	QC Fill	Field Sar	Sample Matrix 3.	(7) Known or	Fotal numbe	TDS-SA	300 Cl' El' 20	qqA latoT				requirec	required for sample specific QC
MW-FGD-16-2022Q3 ms/msd		9 (20/2022	9	z	Z	Z)	0	×	×	*				EPA 200.7 - 1	- B, Ca
MW-FGD-17-2022Q3		9/19/2022	1400	z	N G	GW N		3	×	×	X					
MW-FGD-18-2022Q3		9/19/2022	1550	z	N S	GW N		W	×	×	×					
MW-FGD-19-2022Q3		9/19/2022	1658	Z	N	GW N		S	×	×	×				811	
MW-FGD-19D-2022Q3		9/19/2022	1558	z	N	GW N		W	×	×	×					
MW-FGD-20AR-2022Q3		9/20/2022 1347	1347	z	N	GW N		3	×	×	X				see attached work	ed work
MW-FGD-21-2022Q3		9/21/2022 0853	0853	z	N	GW N		3	×	X	×				order for details	details
FBLK-WMS-FGD-22301		9/19/2022	1720	FB	N	AQ N		3	X	X	X					
FBLK-WMS-FGD-22302		9/21/2022	0900	FB	N	AQ N		M	X	×	×					
DU-WMS-FGD-22301		a/19/2022	-	FD	N G	GW N		m	×	×	X					
2	Chain of Custo	Chain of Custody Signatures							TA	r Req	TAT Requested:	Normal:	X	Rush: S	Specify:	
Relinquished By (Signed) Date Tir	Time	Received by (signed)	ed) Date		Time		Fax Results: [] Yes	ults: [lYes	[X] No	No No					
and braden 4/22/22	1348	14H	-	9	9/22/22	1345	Select Deliverable: [] C of A	elivera	ble: [C of	4 [] 0	[] QC Summary	ry [X] level 1	_	Level 2 [] Level 3	[] Level 4
2/ /		2					Additional Remarks	ial Ren	arks:							
3		3					For La	Recei	ving U.	e Onl	v: Custoo	y Seal In	For Lab Receiving Use Only: Custody Seal Intact? [] Yes	s [] No	Cooler Temp: 3.5	ر ا
> For sample shipping and delivery details, see Sample Receipt & Review form (SRR.)	Sample Receipt	& Review form (SRR.)			Sample	Sample Collection Time Zone: [X] Eastern	1 Time	Zone:	[X]	Sastern	[] Pacific	ic [] Central	ral	[] Mountain [] Other:	er:
1.) Chain of Custody Number = Client Determined						-			(
2.) Q. Codes: N = Normal Sampte, 15 = 1 th Brains, FD = Freid Duplicate, ED = Equipment Brains, MS = Matrix Spike Sampte, MSD = Matrix Spike Duplicate Sampte, G = Criao, C = Composite 3.) Field Filtered: For liquid matrices, indicate with a - Y - for yes the sample was field filtered or - N - for sample was not field filtered.	for yes the sample w	as field filtered or - N	MS = Maurix S - for sample wa	pike Sampie s not field fi	, MSD = Ma Itered.	их эріке Dupi	icate Sample	5 5	ap, C = 0	roduo	<u> </u>					
4.) Matrix Codes: DW=Drinking Water, GW=Groundwater, SW=Surface Water, WW=Water, WE-Water, ML=Misc Liquid, SO=Soil, SD=Sediment, SL=Sludge, SS=Solid Waste, O=Oil, F=Filter, P=Wipe, U=Urine, F=Fecal, N=Nasal	r, SW=Surface Water	r, WW=Waste Water,	W=Water, ML	=Misc Liqu	id, SO=Soil,	SD=Sediment,	SL=Sludge,	SS=Solic	l Waste,	O=Oil,	F=Filter, P	Wipe, U=[rine, F=Fecal	N=Nasal		
5.) Sample Analysis Requested: Analytical method requested (i.e. 8260B, 6010B/7470A) and number of containers provided for each (i.e., 8260B	ed (i.e. 8260B, 60101	B/7470A) and number	of containers p	rovided for	each (i.e. 826	08 - 3, 60108/74704 - 1)	74704 - 1).									
6.) Preservative Type: HA = Hydrochloric Acid, NI = Nitric Acid, SH = Sodium Hydroxide, SA = Sulfuric Acid, AA = Ascorbic Acid, HX = Hexane, ST = Sodium Thiosulfate, If no preservative is added = leave field blank	c Acid, SH = Sodium	Hydroxide, SA = Sull	uric Acid, AA	- Ascorbic	keid, HX = E	exane, ST = So	dium Thios	ılfate, If	no prese	vative i	s added = le	ave field bl	ınk			ž
(1) INDWIN OK POSSIBLE HAZARDS	Characteristic Hazards FL = Flammable/Ignitabl	Characteristic Hazards FL = Flammable/Ignitable	Listed Waste LW= Listed W	Listed Waste LW= Listed Waste		7	OT= Other / Unknown	her / U	nknowı	٦				Please j	Please provide any additional details below regarding handling and/or disposal	onal details and/or disposal
s	CO = Corrosive RE = Reactive	ive re	(F,K,P and U-I Waste code(s):	(F,K,P and U-listed wastes.) Waste code(s):	d wastes.)		(i.e.: High/low pH, asbest misc. health hazards, etc.)	zh/low alth ha	pH, ass	estos,	(i.e.: High/low pH, asbestos, beryllium, irritants, other misc. health hazards, etc.)	, irritant	, other	concern of site c	concerns. (i.e.: Origin of sample(s), type of site collected from, odd matrices, etc.)	sample(s), type matrices, etc.)
	TOCA D	1000				ì	Description:	ion:								
Cr = Carmium Ag= Suiver Cr = Chromium MR= Misc. RCRA metals	PCB = Polychlorinated	hlorinated				Í										
$\mathbf{P}\mathbf{b} = \mathbf{Lead}$	biphe	biphenyls														

	CEL Laboratories LLC				SAMPLE RECEIPT & REVIEW FORM 594154, 1118
lier	" DWWN			SDG//	AR/COC/Work Order: 594 158, 594 163, 594 149, 594 160, 59
ece	ived By: SD			Date	Received: 297-22
_	one tracking number per line below.				IR temperature gun # Daily Calibration performed?Y/N
Ente	r courier if applicable and no tracking available.			Unc	orrected temperature readings are to the 0.1 degree with final recorded tepmeratures rounded to the 0.5 degree. Provide individual container details when a cooler requiring 0 <=60C is identified as out of specification.
^	IMSELDUDAS	n			DI NA DA A
	MISPERDURA			Uncor	rected Temp: 4 1R Correction Factor: +/ Final Recorded Temp: 4 Within 0.0-6.0C? [V]N
1	JM 35 LCCKLI	F A	D	Uncor	rected Temp: . IR Correction Factor: +/- Final Recorded Temp: . Within 0.0-6.0C?(J/N
M	IMS 52 NPD	ES		Uncor	rected Temp: 9 IR Correction Factor: +/- 16 Final Recorded Temp: 5 O Within 0.0-6.0C? (W)
1	IMS EGD NOO	T			rected Temp: 3.5 IR Correction Factor: +/- 6.0 Final Recorded Temp: 3.5 Within 0.0-6.0C? YN
IA.	W.C.E.C.	0		Uncor	rected Temp: VIR Correction Factor: +/- Final Recorded Temp: Within 0.0-6.0C2 Y/S
7	INSTUD CC	-		Uncor	rected Temp: IR Correction Factor: +/- Final Recorded Temp: Within 0.0-6.0C? Y/N
				Uncor	rected Temp: IR Correction Factor: +/- Final Recorded Temp: Within 0.0-6.0C? Y/N
ısp	ected Hazard Information	Yes	S.	*If Ne	t Counts > 100cpm on samples not marked "radioactive", contact the Radiation Safety Group for further investigation.
-			1	Hazar	d Class Shipped: UN#:
1 51	ipped as a DOT Hazardous?		X	Hazar	If UN2910, Is the Radioactive Shipment Survey Compliant? YesNo
			.1	000	notation or radioactive stickers on containers equal client designation.
	d the client designate the samples are to be yed as radioactive?		X	COCI	obtation of radioactive stickers on containers equal often designation.
			V	Maxin	num Net Counts Observed* (Observed Counts - Area Background Counts): CPM / mR/Hr
D	d the RSO classify the samples as radioactive?		1		Classified as: Rad 1 Rad 2 Rad 3
	data Paristana and Sanadana	2	X	COC	notation or huzard labels on containers equal client designation.
טו	id the client designate samples are hazardous?		1	If D or	E is yes, select Hazards below.
) Di	d the RSO identify possible hazards?		X		PCB's Flammable Foreign Soil RCRA Asbestos Beryllium Other:
	Sample Receipt Criteria	Yes	N.	o _N	Comments/Qualifiers (Required for Non-Conforming Items)
_		>	Z	-	Circle Applicable: Seals broken Dannaged container Leaking container Other (describe)
	Shipping containers received intact and sealed?	X	9		Citate Applicable. Seas broken Daniaged committee Econoligy Controlled State (Seasons)
	Chain of custody documents included with	X			Circle Applicable: Client contacted and provided COC COC created upon receipt
	shipment?	1		E	Circle Applicable: Seals broken Damaged container Leaking container Other (describe)
3	Sample containers intact and sealed?	X			Circle Applicable: Seals broken Darmaged container Leaking contoiner Other (describer)
+		1	PSINGS	33	Uncorrected Temp: Correction Factor: +/- Final Recorded Temp: Within 0.0-6.0C? Y/N
	Samples requiring cold preservation were unpacked directly into cold storage?	IX			NA Response = Samples are for radiochemistry testing only
	THE RESERVE OF THE PARTY OF THE	1	+	+-	Sample ID's and Containers Affected:
5	Samples requiring chemical preservation at proper pH?	X			If Preservative added, Lat#:
		1	1		If Yes, are Encores or Soil Kits present for solids? Yes No NA (If yes, take to VOA Freezer)
6	Do any samples require Volatile Analysis's			./	Do liquid VOA vials contain acid preservation? YesNoNA(If unknown, select No) Are liquid VOA vials free of headspace? YesNoNA
ŭ	Do mly sumples require y outline runny,			X	Sample ID's and containers affected:
		11)	ID's and tests affected:
7	Samples received within holding time?	X			
T		1			ID's and containers affected:
8	Sample ID's on COC match ID's on bottles	X			
	Date & time on COC match date & time	1	100	-	Circle Applicable: No dates on containers No times on containers COC missing info Other (describe)
9	on bottles?	X			
10	Number of containers received match	V			Circle Applicable: No container count on COC Other (describe)
	number indicated on COC? Are sample containers identifiable as GEL	1			
11	provided by use of GEL labels?	X		1	
	COC form is properly signed in	X			Circle Applicable: Not relinquished Other (describe)
12	relinquished/received sections? nments (Use Continuation Form if needed):	1,	100		- E

PM (or PMA) review: Initials

List of current GEL Certifications as of 05 October 2022

State	Certification
Alabama	42200
Alaska	17-018
Alaska Drinking Water	SC00012
Arkansas	88-0651
CLIA	42D0904046
California	2940
Colorado	SC00012
Connecticut	PH-0169
DoD ELAP/ ISO17025 A2LA	2567.01
Florida NELAP	E87156
Foreign Soils Permit	P330-15-00283, P330-15-00253
Georgia	SC00012
Georgia SDWA	967
Hawaii	SC00012
Idaho	SC00012
Illinois NELAP	200029
Indiana	C-SC-01
Kansas NELAP	E-10332
Kentucky SDWA	90129
Kentucky Wastewater	90129
Louisiana Drinking Water	LA024
Louisiana NELAP	03046 (AI33904)
Maine	2019020
Maryland	270
Massachusetts	M-SC012
Massachusetts PFAS Approv	Letter
Michigan	9976
Mississippi	SC00012
Nebraska	NE-OS-26-13
Nevada	SC000122023-3
New Hampshire NELAP	2054
New Jersey NELAP	SC002
New Mexico	SC00012
New York NELAP	11501
North Carolina	233
North Carolina SDWA	45709
North Dakota	R-158
Oklahoma	2022–137
Pennsylvania NELAP	68-00485
Puerto Rico	SC00012
S. Carolina Radiochem	10120002
Sanitation Districts of L	9255651
South Carolina Chemistry	10120001
Tennessee	TN 02934
Texas NELAP	T104704235-22-20
Utah NELAP	SC000122021–36
Vermont	VT87156
Virginia NELAP	460202
Washington	C780
asimigion	2.00

Metals Technical Case Narrative Dominion Energy SDG #: 594158

<u>Product:</u> Determination of Metals by ICP-MS <u>Analytical Method:</u> EPA 200.8 SC_NPDES <u>Analytical Procedure:</u> GL-MA-E-014 REV# 35

Analytical Batch: 2320496

Preparation Method: EPA 200.2

Preparation Procedure: GL-MA-E-016 REV# 18

Preparation Batch: 2320495

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
594158001	MW-FGD-16-2022Q3
594158002	MW-FGD-17-2022Q3
594158003	MW-FGD-18-2022Q3
594158004	MW-FGD-19-2022Q3
594158005	MW-FGD-19D-2022Q3
594158006	MW-FGD-20AR-2022Q3
594158007	MW-FGD-21-2022Q3
594158008	FBLK-WMS-FGD-22301
594158009	FBLK-WMS-FGD-22302
594158010	DU-WMS-FGD-22301
1205199149	Method Blank (MB) ICP-MS
1205199150	Laboratory Control Sample (LCS)
1205199153	594158001(MW-FGD-16-2022Q3L) Serial Dilution (SD)
1205199151	594158001(MW-FGD-16-2022Q3D) Sample Duplicate (DUP)
1205199152	594158001(MW-FGD-16-2022Q3S) Matrix Spike (MS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Calibration Information

ICSA/ICSAB Statement

For the ICP-MS analysis, the ICSA solution contains analyte concentrations which are verified trace impurities indigenous to the purchased standard.

Technical Information

Sample Dilutions

Dilutions may be required for many reasons, including to minimize matrix interferences or to bring over range target analyte concentrations into the linear calibration range. Samples 594158002 (MW-FGD-17-2022Q3), 594158003 (MW-FGD-18-2022Q3), 594158004 (MW-FGD-19-2022Q3), 594158005 (MW-FGD-19D-2022Q3), 594158006 (MW-FGD-20AR-2022Q3) and 594158010 (DU-WMS-FGD-22301) were diluted to ensure that the analyte concentrations were within the linear calibration range of the instrument.

A 14 .	594158									
Analyte	002	003	004	005	006	010				
Boron	5X	50X	5X	10X	10X	50X				
Calcium	5X	50X	5X	10X	10X	50X				

Miscellaneous Information

Additional Comments

All method-driven specifications are followed for these analyses except where client-specific SOW requirements are required to be met.

Certification Statement

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Page 12 of 59 SDG: 594158

GEL LABORATORIES LLC

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Qualifier Definition Report for

DMNN001 Dominion Energy (50149867)

Client SDG: 594158 GEL Work Order: 594158

The Qualifiers in this report are defined as follows:

- * A quality control analyte recovery is outside of specified acceptance criteria
- B Either presence of analyte detected in the associated blank, or MDL/IDL < sample value < PQL
- J Value is estimated
- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

Review/Validation

GEL requires all analytical data to be verified by a qualified data reviewer. In addition, all CLP-like deliverables receive a third level review of the fractional data package.

The following data validator verified the information presented in this data report:

Signature: Name: Alan Stanley

Date: 03 OCT 2022 Title: Team Leader

METALS

-1-

INORGANICS ANALYSIS DATA PACKAGE

SDG No: 594158 CONTRACT: DMNN00101 METHOD TYPE: EPA

SAMPLE ID:594158001 BASIS: As Received DATE COLLECTED 20–SEP–22

CLIENT ID: MW-FGD-16-2022Q3 LEVEL: Low DATE RECEIVED 22-SEP-22

MATRIX: GW %SOLIDS: 0

CAS	Analyte	Result	Units	Qual	MDL	PQL	CRDL	DF	M*	Analyst	Run Date	Analytical Run	Analytical Batch
7440-42-8	Boron	51.4	ug/L		4.00	15.0	15.0	1	MS	PRB	09/29/22 12:59	220929-1	2320496
7440-70-2	Calcium	15100	ug/L		30.0	100	100	1	MS	PRB	09/29/22 12:59	220929-1	2320496

Prep Information:

Analytical Batch	Prep Batch	Prep Method	Initial wt./vol.	Units	Final wt./vol.	Units	Date	Analyst
2320496	2320495	EPA 200.2	50	mL	50	mL	09/26/22	EM2

*Analytical Methods:

MS EPA 200.8 SC_NPDES

METALS

-1-

INORGANICS ANALYSIS DATA PACKAGE

SDG No: 594158 CONTRACT: DMNN00101 METHOD TYPE: EPA

SAMPLE ID:594158002 BASIS: As Received DATE COLLECTED 19–SEP–22

CLIENT ID: MW-FGD-17-2022Q3 LEVEL: Low DATE RECEIVED 22-SEP-22

MATRIX: GW %SOLIDS: 0

CAS	Analyte	Result	Units	Qual	MDL	PQL	CRDL	DF	M*	Analyst	Run Date	Analytical Run	Analytical Batch
7440-42-8	Boron	256	ug/L		20.0	75.0	75.0	5	MS	PRB	09/29/22 13:08	220929-1	2320496
7440-70-2	Calcium	151000	ug/L		150	500	500	5	MS	PRB	09/29/22 13:08	220929-1	2320496

Prep Information:

Analytical Batch	Prep Batch	Prep Method	Initial wt./vol.	Units	Final wt./vol.	Units	Date	Analyst
2320496	2320495	EPA 200.2	50	mL	50	mL	09/26/22	EM2

*Analytical Methods:

MS EPA 200.8 SC_NPDES

-1-

INORGANICS ANALYSIS DATA PACKAGE

SDG No: 594158 CONTRACT: DMNN00101 METHOD TYPE: EPA

SAMPLE ID:594158003 BASIS: As Received DATE COLLECTED 19–SEP–22

CLIENT ID: MW-FGD-18-2022Q3 LEVEL: Low DATE RECEIVED 22-SEP-22

MATRIX: GW %SOLIDS: 0

CAS	Analyte	Result	Units	Qual	MDL	PQL	CRDL	DF	M*	Analyst	Run Date	Analytical Run	Analytical Batch
7440-42-8	Boron	6980	ug/L		200	750	750	50	MS	PRB	09/29/22 13:10	220929-1	2320496
7440-70-2	Calcium	391000	ug/L		1500	5000	5000	50	MS	PRB	09/29/22 13:10	220929-1	2320496

Prep Information:

Analytical Batch	Prep Batch	Prep Method	Initial wt./vol.	Units	Final wt./vol.	Units	Date	Analyst
2320496	2320495	EPA 200.2	50	mL	50	mL	09/26/22	EM2

*Analytical Methods:

-1-

INORGANICS ANALYSIS DATA PACKAGE

SDG No: 594158 CONTRACT: DMNN00101 METHOD TYPE: EPA

SAMPLE ID:594158004 BASIS: As Received DATE COLLECTED 19–SEP–22

CLIENT ID: MW-FGD-19-2022Q3 LEVEL: Low DATE RECEIVED 22-SEP-22

MATRIX: GW %SOLIDS: 0

CAS	Analyte	Result	Units	Qual	MDL	PQL	CRDL	DF	M*	Analyst	Run Date	Analytical Run	Analytical Batch
7440-42-8	Boron	172	ug/L		20.0	75.0	75.0	5	MS	PRB	09/29/22 13:12	220929-1	2320496
7440-70-2	Calcium	163000	ug/L		150	500	500	5	MS	PRB	09/29/22 13:12	220929-1	2320496

Prep Information:

Analytical Batch	Prep Batch	Prep Method	Initial wt./vol.	Units	Final wt./vol.	Units	Date	Analyst
2320496	2320495	EPA 200.2	50	mL	50	mL	09/26/22	EM2

*Analytical Methods:

-1-

INORGANICS ANALYSIS DATA PACKAGE

SDG No: 594158 CONTRACT: DMNN00101 METHOD TYPE: EPA

SAMPLE ID:594158005 BASIS: As Received DATE COLLECTED 19–SEP–22

CLIENT ID: MW-FGD-19D-2022Q3 LEVEL: Low DATE RECEIVED 22-SEP-22

MATRIX: GW %SOLIDS: 0

CAS	Analyte	Result	Units	Qual	MDL	PQL	CRDL	DF	M*	Analyst	Run Date	Analytical Run	Analytical Batch
7440-42-8	Boron	1610	ug/L		40.0	150	150	10	MS	PRB	09/29/22 13:18	220929-1	2320496
7440-70-2	Calcium	112000	ug/L		300	1000	1000	10	MS	PRB	09/29/22 13:18	220929-1	2320496

Prep Information:

Analytical Batch	Prep Batch	Prep Method	Initial wt./vol.	Units	Final wt./vol.	Units	Date	Analyst
2320496	2320495	EPA 200.2	50	mL	50	mL	09/26/22	EM2

*Analytical Methods:

-1-

INORGANICS ANALYSIS DATA PACKAGE

SDG No: 594158 CONTRACT: DMNN00101 METHOD TYPE: EPA

SAMPLE ID:594158006 BASIS: As Received DATE COLLECTED 20–SEP–22

CLIENT ID: MW-FGD-20AR-2022Q3 LEVEL: Low DATE RECEIVED 22-SEP-22

MATRIX: GW %SOLIDS: 0

CAS	Analyte	Result	Units	Qual	MDL	PQL	CRDL	DF	M*	Analyst	Run Date	Analytical Run	Analytical Batch
7440-42-8	Boron	1710	ug/L		40.0	150	150	10	MS	PRB	09/29/22 13:20	220929-1	2320496
7440-70-2	Calcium	172000	ug/L		300	1000	1000	10	MS	PRB	09/29/22 13:20	220929-1	2320496

Prep Information:

Analytical Batch	Prep Batch	Prep Method	Initial wt./vol.	Units	Final wt./vol.	Units	Date	Analyst
2320496	2320495	EPA 200.2	50	mL	50	mL	09/26/22	EM2

*Analytical Methods:

-1-

INORGANICS ANALYSIS DATA PACKAGE

SDG No: 594158 CONTRACT: DMNN00101 METHOD TYPE: EPA

SAMPLE ID:594158007 BASIS: As Received DATE COLLECTED 21–SEP–22

CLIENT ID: MW-FGD-21-2022Q3 LEVEL: Low DATE RECEIVED 22-SEP-22

MATRIX: GW %SOLIDS: 0

CAS	Analyte	Result	Units	Qual	MDL	PQL	CRDL	DF	M*	Analyst	Run Date	Analytical Run	Analytical Batch
7440-42-8	Boron	32.8	ug/L		4.00	15.0	15.0	1	MS	PRB	09/29/22 13:21	220929-1	2320496
7440-70-2	Calcium	45400	ug/L		30.0	100	100	1	MS	PRB	09/29/22 13:21	220929-1	2320496

Prep Information:

Analytical Batch	Prep Batch	Prep Method	Initial wt./vol.	Units	Final wt./vol.	Units	Date	Analyst
2320496	2320495	EPA 200.2	50	mL	50	mL	09/26/22	EM2

^{*}Analytical Methods:

-1-

INORGANICS ANALYSIS DATA PACKAGE

SDG No: 594158 CONTRACT: DMNN00101 METHOD TYPE: EPA

SAMPLE ID:594158008 BASIS: As Received DATE COLLECTED 19–SEP–22

CLIENT ID: FBLK-WMS-FGD-22301 LEVEL: Low DATE RECEIVED 22-SEP-22

MATRIX: GW %SOLIDS: 0

CAS	Analyte	Result	Units	Qual	MDL	PQL	CRDL	DF	M*	Analyst	Run Date	Analytical Run	Analytical Batch
7440-42-8	Boron	4.60	ug/L	J	4.00	15.0	15.0	1	MS	PRB	09/29/22 13:23	220929-1	2320496
7440-70-2	Calcium	85.0	ug/L	J	30.0	100	100	1	MS	PRB	09/29/22 13:23	220929-1	2320496

Prep Information:

Analytical Batch	Prep Batch	Prep Method	Initial wt./vol.	Units	Final wt./vol.	Units	Date	Analyst
2320496	2320495	EPA 200.2	50	mL	50	mL	09/26/22	EM2

^{*}Analytical Methods:

-1-

INORGANICS ANALYSIS DATA PACKAGE

SDG No: 594158 CONTRACT: DMNN00101 METHOD TYPE: EPA

SAMPLE ID:594158009 BASIS: As Received DATE COLLECTED 21–SEP–22

CLIENT ID: FBLK-WMS-FGD-22302 LEVEL: Low DATE RECEIVED 22-SEP-22

MATRIX: GW %SOLIDS: 0

CAS	Analyte	Result	Units	Qual	MDL	PQL	CRDL	DF	M*	Analyst	Run Date	Analytical Run	Analytical Batch
7440-42-8	Boron	4.24	ug/L	J	4.00	15.0	15.0	1	MS	PRB	09/29/22 13:25	220929-1	2320496
7440-70-2	Calcium	142	ug/L		30.0	100	100	1	MS	PRB	09/29/22 13:25	220929-1	2320496

Prep Information:

Analytical Batch	Prep Batch	Prep Method	Initial wt./vol.	Units	Final wt./vol.	Units	Date	Analyst
2320496	2320495	EPA 200.2	50	mL	50	mL	09/26/22	EM2

^{*}Analytical Methods:

-1-

INORGANICS ANALYSIS DATA PACKAGE

SDG No: 594158 CONTRACT: DMNN00101 METHOD TYPE: EPA

SAMPLE ID:594158010 BASIS: As Received DATE COLLECTED 19–SEP–22

CLIENT ID: DU-WMS-FGD-22301 LEVEL: Low DATE RECEIVED 22-SEP-22

MATRIX: GW %SOLIDS: 0

CAS	Analyte	Result	Units	Qual	MDL	PQL	CRDL	DF	M*	Analyst	Run Date	Analytical Run	Analytical Batch
7440-42-8	Boron	6930	ug/L		200	750	750	50	MS	PRB	09/29/22 13:27	220929-1	2320496
7440-70-2	Calcium	391000	ug/L		1500	5000	5000	50	MS	PRB	09/29/22 13:27	220929-1	2320496

Prep Information:

Analytical Batch	Prep Batch	Prep Method	Initial wt./vol.	Units	Final wt./vol.	Units	Date	Analyst
2320496	2320495	EPA 200.2	50	mL	50	mL	09/26/22	EM2

*Analytical Methods:

$\begin{array}{c} {\bf METALS} \\ -2a- \\ \\ {\bf Initial\ and\ Continuing\ Calibration\ Verification} \end{array}$

SDG No: 594158

Contract: DMNN00101 Lab Code: GEL

Instrument ID: ICPMS15

Sample ID	Analyte	Result	<u>Units</u>	True Value	<u>Units</u>	% Recovery	Acceptance Window (%R)	<u>M*</u>	Analysis Date/Time	<u>Run</u> <u>Number</u>
ICV01										
	Boron	103	ug/L	100	ug/L	103	90.0 - 110.0	MS	29-SEP-22 11:34	220929-1
	Calcium	5010	ug/L	5000	ug/L	100.3	90.0 - 110.0	MS	29-SEP-22 11:34	220929-1
CCV01										
	Boron	99	ug/L	100	ug/L	99	90.0 - 110.0	MS	29-SEP-22 11:43	220929-1
	Calcium	5070	ug/L	5000	ug/L	101.5	90.0 - 110.0	MS	29-SEP-22 11:43	220929-1
CCV02										
	Boron	101	ug/L	100	ug/L	100.8	90.0 - 110.0	MS	29-SEP-22 11:49	220929-1
	Calcium	5070	ug/L	5000	ug/L	101.4	90.0 - 110.0	MS	29-SEP-22 11:49	220929-1
CCV03										
	Boron	99.6	ug/L	100	ug/L	99.6	90.0 - 110.0	MS	29-SEP-22 12:49	220929-1
	Calcium	5060	ug/L	5000	ug/L	101.2	90.0 - 110.0	MS	29-SEP-22 12:49	220929-1
CCV04										
	Boron	104	ug/L	100	ug/L	104	90.0 - 110.0	MS	29-SEP-22 13:14	220929-1
	Calcium	5020	ug/L	5000	ug/L	100.3	90.0 - 110.0	MS	29-SEP-22 13:14	220929-1
CCV05										
22.02	Boron	101	ug/L	100	ug/L	100.9	90.0 - 110.0	MS	29-SEP-22 13:33	220929-1
	Calcium	5070	ug/L	5000	ug/L	101.3	90.0 - 110.0	MS	29-SEP-22 13:33	220929-1

^{*}Analytical Methods:

METALS -2bCRDL Standard for ICP & ICPMS

SDG No: 594158

Contract: DMNN00101 Lab Code: GEL

Instrument ID: ICPMS15

Sample ID	<u>Analyte</u>	Result	<u>Units</u>	True Value	<u>Units</u>	% Recovery	Advisory Limits (%R)	<u>M*</u>	Analysis Date/Time	<u>Run</u> <u>Number</u>
CRDL01										
	Boron	18.1	ug/L	15	ug/L	120.8	70.0 - 130.0	MS	29-SEP-22 11:37	220929-1
	Calcium	220	ug/L	200	ug/L	110.2	70.0 – 130.0	MS	29-SEP-22 11:37	220929-1
CRDL02										
	Boron	17.6	ug/L	15	ug/L	117.2	70.0 - 130.0	MS	29-SEP-22 12:51	220929-1
	Calcium	219	ug/L	200	ug/L	109.5	70.0 - 130.0	MS	29-SEP-22 12:51	220929-1
CRDL03										
	Boron	18.7	ug/L	15	ug/L	124.6	70.0 - 130.0	MS	29-SEP-22 13:35	220929-1
	Calcium	218	ug/L	200	ug/L	108.8	70.0 - 130.0	MS	29-SEP-22 13:35	220929-1

*Analytical Methods:

Metals
-3aInitial and Continuing Calibration Blank Summary

SDG No.: 594158

Contract: DMNN00101

Lab Code: GEL

Sample ID	<u>Analyte</u>	Result ug/L	Acceptance	Conc Qual	MDL	RDL	Matrix	<u>M*</u>	Analysis Date/Time	Run
ICB01										
	Boron	4.63	+/-7.5	В	4.0	15.0	LIQ	MS	29-SEP-22 11:35	220929-1
	Calcium	30.0	+/-50	U	30.0	100	LIQ	MS	29-SEP-22 11:35	220929-1
CCB01										
	Boron	4.0	+/-7.5	U	4.0	15.0	LIQ	MS	29-SEP-22 11:45	220929-1
	Calcium	30.0	+/-50	U	30.0	100	LIQ	MS	29-SEP-22 11:45	220929-1
CCB02										
	Boron	4.0	+/-7.5	U	4.0	15.0	LIQ	MS	29-SEP-22 11:51	220929-1
	Calcium	30.0	+/-50	U	30.0	100	LIQ	MS	29-SEP-22 11:51	220929-1
CCB03										
	Boron	4.0	+/-7.5	U	4.0	15.0	LIQ	MS	29-SEP-22 12:53	220929-1
	Calcium	30.0	+/-50	U	30.0	100	LIQ	MS	29-SEP-22 12:53	220929-1
CCB04										
CCDV.	Boron	4.0	+/-7.5	U	4.0	15.0	LIQ	MS	29-SEP-22 13:16	220929-1
	Calcium	30.0	+/-50	U	30.0	100	LIQ	MS	29-SEP-22 13:16	220929-1
CCB05										
2 3200	Boron	4.0	+/-7.5	U	4.0	15.0	LIQ	MS	29-SEP-22 13:37	220929-1
	Calcium	30.0	+/-50	U	30.0	100	LIQ	MS	29-SEP-22 13:37	220929-1

^{*}Analytical Methods:

METALS -3bPREPARATION BLANK SUMMARY

SDG NO. 594158

Contract: DMNN00101

Matrix: GW

Sample ID	<u>Analyte</u>	Result	<u>Units</u>	Acceptance Window	Conc Qual	<u>M*</u>	MDL	RDL
1205199149								
	Boron	4.00	ug/L	+/-7.5	U	MS	4.00	15.0
	Calcium	30.0	ug/L	+/-50	U	MS	30.0	100

^{*}Analytical Methods:

METALS -4-

Interference Check Sample

SDG No: 594158

Contract: DMNN00101 Lab Code: GEL

Instrument: ICPMS15

Sample ID	<u>Analyte</u>	<u>Result</u>	<u>Units</u>	<u>True</u> <u>Value</u>	<u>Units</u>	% Recovery	Acceptance Window (%R)	<u>Analysis</u> Date/Time	<u>Run</u> <u>Number</u>
ICSA01									
	Boron	3.83	ug/L					29-SEP-22 11:39	220929-1
	Calcium	94500	ug/L	100000	ug/L	94.5	80.0 - 120.0	29-SEP-22 11:39	220929-1
ICSAB01									
	Boron	20.9	ug/L	22.06	ug/L	94.7	80.0 - 120.0	29-SEP-22 11:41	220929-1
	Calcium	95400	ug/L	100000	ug/L	95.4	80.0 - 120.0	29-SEP-22 11:41	220929-1
ICSA02									
	Boron	3.46	ug/L					29-SEP-22 12:45	220929-1
	Calcium	94400	ug/L	100000	ug/L	94.4	80.0 - 120.0	29-SEP-22 12:45	220929-1
ICSAB02									
	Boron	21.2	ug/L	22.06	ug/L	95.9	80.0 - 120.0	29-SEP-22 12:47	220929-1
	Calcium	94700	ug/L	100000	ug/L	94.7	80.0 - 120.0	29-SEP-22 12:47	220929-1
ICSA03									
	Boron	6.26	ug/L					29-SEP-22 13:29	220929-1
	Calcium	94100	ug/L	100000	ug/L	94.1	80.0 - 120.0	29-SEP-22 13:29	220929-1
ICSAB03									
	Boron	22.6	ug/L	22.06	ug/L	102	80.0 - 120.0	29-SEP-22 13:31	220929-1
	Calcium	95600	ug/L	100000	ug/L	95.6	80.0 - 120.0	29-SEP-22 13:31	220929-1

METALS -5a-

Matrix Spike Summary

SDG NO. 594158 **Client ID** MW–FGD–16–2022Q3S

Contract: DMNN00101 Level: Low

Matrix: GROUND WATER % Solids:

Sample ID: 594158001 **Spike ID:** 1205199152

<u>Analyte</u>	<u>Units</u>	Acceptance Limit	Spiked Result	<u>C</u>	Sample Result	<u>C</u>	<u>Spike</u> <u>Added</u>	% Recovery	Qual	<u>M*</u>
Boron	ug/L	75–125	148		51.4		100	96.6		MS
Calcium	ug/L		17300		15100		2000	111	N/A	MS

^{*}Analytical Methods:

Metals -6Duplicate Sample Summary

SDG No.: 594158

Lab Code: GEL

Contract: Di

DMNN00101

Client ID: MW-FGD-16-2022Q3D

Matrix:

GROUND WATER

Level:

Low

Sample ID: 594158001

Duplicate ID: 1205199151

Percent Solids for Dup: N/A

Analyte	Units	Acceptance Limit	Sample Result C	Duplicate Result C	RPD	Qual	M *
Boron	ug/L	+/-30	51.4	49.6	3.65		MS
Calcium	ug/L	+/-20%	15100	15200	.521		MS

^{*}Analytical Methods:

-7-

Laboratory Control Sample Summary

SDG NO. 594158

Contract: DMNN00101

Aqueous LCS Source: Environmental Express

Solid LCS Source:

Sample ID 1205199150	<u>Analyte</u>	<u>Units</u>	<u>True</u> <u>Value</u>	Result	<u>C</u>	% Recovery	Acceptance Limit	<u>M*</u>
	Calcium Boron	ug/L ug/L	2000 100	2160 102		108 102	85–115 85–115	MS MS

^{*}Analytical Methods:

METALS -9Serial Dilution Sample Summary

SDG NO. 594158 **Client ID** MW-FGD-16-2022Q3L

Contract: DMNN00101

Matrix: LIQUID Level: Low

Sample ID: 594158001 **Serial Dilution ID:** 1205199153

Analyte	Initial C Yalue C ug/L	<u>Serial</u> <u>Value</u> ug/L	<u>C</u>	<u>%</u> Difference	Qual	Acceptance Limit	<u>M*</u>
Boron	51.4	66.8	В	29.867			MS
Calcium	15100	14400		4.505		10	MS

^{*}Analytical Methods:

METALS -13SAMPLE PREPARATION SUMMARY

SDG No: 594158 Method Type MS

Contract: DMNN00101 Lab Code: GEL

Sample ID	<u>Client ID</u>	<u>Sample</u> Type	<u>Matrix</u>	<u>Prep</u> <u>Date</u>	<u>Initial</u> <u>Sample</u> <u>Size</u>	Final Sample Volume Solids
Batch Number	er 2320495					
1205199149	MB for batch 2320495	MB	G	26-SEP-22	50mL	50mL
1205199150	LCS for batch 2320495	LCS	G	26-SEP-22	50mL	50mL
1205199152	MW-FGD-16-2022Q3S	MS	G	26-SEP-22	50mL	50mL
1205199151	MW-FGD-16-2022Q3D	DUP	G	26-SEP-22	50mL	50mL
594158001	MW-FGD-16-2022Q3	SAMPLE	G	26-SEP-22	50mL	50mL
594158002	MW-FGD-17-2022Q3	SAMPLE	G	26-SEP-22	50mL	50mL
594158003	MW-FGD-18-2022Q3	SAMPLE	G	26-SEP-22	50mL	50mL
594158004	MW-FGD-19-2022Q3	SAMPLE	G	26-SEP-22	50mL	50mL
594158005	MW-FGD-19D-2022Q3	SAMPLE	G	26-SEP-22	50mL	50mL
594158006	MW-FGD-20AR-2022Q3	SAMPLE	G	26-SEP-22	50mL	50mL
594158007	MW-FGD-21-2022Q3	SAMPLE	G	26-SEP-22	50mL	50mL
594158008	FBLK-WMS-FGD-22301	SAMPLE	G	26-SEP-22	50mL	50mL
594158009	FBLK-WMS-FGD-22302	SAMPLE	G	26-SEP-22	50mL	50mL
594158010	DU-WMS-FGD-22301	SAMPLE	G	26-SEP-22	50mL	50mL

General Chemistry Technical Case Narrative Dominion Energy SDG #: 594158

Product: Ion Chromatography Analytical Method: EPA 300.0

Analytical Procedure: GL-GC-E-086 REV# 30

Analytical Batch: 2321486

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
594158001	MW-FGD-16-2022Q3
594158002	MW-FGD-17-2022Q3
594158003	MW-FGD-18-2022Q3
594158004	MW-FGD-19-2022Q3
594158005	MW-FGD-19D-2022Q3
594158006	MW-FGD-20AR-2022Q3
594158007	MW-FGD-21-2022Q3
594158008	FBLK-WMS-FGD-22301
594158009	FBLK-WMS-FGD-22302
594158010	DU-WMS-FGD-22301
1205201215	Method Blank (MB)
1205201216	Laboratory Control Sample (LCS)
1205201217	594149004(GW-19-2022Q3) Sample Duplicate (DUP)
1205201218	594158001(MW-FGD-16-2022Q3) Sample Duplicate (DUP)
1205201219	594149004(GW-19-2022Q3) Post Spike (PS)
1205201220	594158001(MW-FGD-16-2022Q3) Post Spike (PS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Technical Information

Sample Dilutions

The following samples 1205201217 (GW-19-2022Q3DUP), 1205201218 (MW-FGD-16-2022Q3DUP), 1205201219 (GW-19-2022Q3PS), 1205201220 (MW-FGD-16-2022Q3PS), 594158001 (MW-FGD-16-2022Q3), 594158002 (MW-FGD-17-2022Q3), 594158003 (MW-FGD-18-2022Q3), 594158004 (MW-FGD-19-2022Q3), 594158005 (MW-FGD-19D-2022Q3), 594158006 (MW-FGD-20AR-2022Q3), 594158007 (MW-FGD-21-2022Q3) and 594158010 (DU-WMS-FGD-22301) were diluted because target analyte concentrations exceeded the calibration range. Dilutions may be required for many reasons, including to minimize matrix interferences or to bring over range target analyte concentrations into the linear calibration range.

Page 38 of 59 SDG: 594158

Amalasta		594158							
Analyte	001	002	003	004	005	006	007	010	
Chloride	5X	25X	400X	100X	100X	100X	1X	400X	
Sulfate	5X	1X	400X	100X	5X	1X	10X	400X	

Miscellaneous Information

Manual Integrations

Samples 594158003 (MW-FGD-18-2022Q3) and 594158010 (DU-WMS-FGD-22301) were manually integrated to correctly position the baseline as set in the calibration standards.

Additional Comments

All method-driven specifications are followed for these analyses except where client-specific SOW requirements are required to be met.

Page 39 of 59 SDG: 594158

Product: Solids, Total Dissolved **Analytical Method:** SM 2540C

Analytical Procedure: GL-GC-E-001 REV# 19 Analytical Batches: 2320549, 2321243 and 2321838

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
594158001	MW-FGD-16-2022Q3
594158002	MW-FGD-17-2022Q3
594158003	MW-FGD-18-2022Q3
594158004	MW-FGD-19-2022Q3
594158005	MW-FGD-19D-2022Q3
594158006	MW-FGD-20AR-2022Q3
594158007	MW-FGD-21-2022Q3
594158008	FBLK-WMS-FGD-22301
594158009	FBLK-WMS-FGD-22302
594158010	DU-WMS-FGD-22301
1205199278	Method Blank (MB)
1205199279	Laboratory Control Sample (LCS)
1205199280	594064010(NonSDG) Sample Duplicate (DUP)
1205199281	594126001(NonSDG) Sample Duplicate (DUP)
1205199282	594149004(GW-19-2022Q3) Sample Duplicate (DUP)
1205199283	594158001(MW-FGD-16-2022Q3) Sample Duplicate (DUP)
1205200682	Method Blank (MB)
1205200683	Laboratory Control Sample (LCS)
1205200685	593965006(NonSDG) Sample Duplicate (DUP)
1205200686	594163006(GW-8-2022Q3) Sample Duplicate (DUP)
1205201660	594016001(NonSDG) Sample Duplicate (DUP)
1205201685	593920002(NonSDG) Sample Duplicate (DUP)
1205201917	Method Blank (MB)
1205201918	Laboratory Control Sample (LCS)
1205201919	593896001(NonSDG) Sample Duplicate (DUP)
1205201920	593969003(NonSDG) Sample Duplicate (DUP)
1205201921	594040002(NonSDG) Sample Duplicate (DUP)
1205201922	594047006(NonSDG) Sample Duplicate (DUP)
1205201923	594161004(MW-LF-21-2022Q3) Sample Duplicate (DUP)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Quality Control (QC) Information

Duplicate Relative Percent Difference (RPD) Statement

The Relative Percent Difference (RPD) between the sample and duplicate falls outside of the established acceptance

limits because of the heterogeneous matrix of the sample:

Analyte	Sample	Value
Total Dissolved Solids	1205201920 (Non SDG 593969003DUP)	9.7* (0%-5%)
	1205201921 (Non SDG 594040002DUP)	5.88* (0%-5%)

Miscellaneous Information

Additional Comments

All method-driven specifications are followed for these analyses except where client-specific SOW requirements are required to be met.

Certification Statement

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Page 41 of 59 SDG: 594158

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Qualifier Definition Report for

DMNN001 Dominion Energy (50149867) Client SDG: 594158 GEL Work Order: 594158

The Qualifiers in this report are defined as follows:

- * A quality control analyte recovery is outside of specified acceptance criteria
- J Value is estimated
- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

Review/Validation

GEL requires all analytical data to be verified by a qualified data reviewer. In addition, all CLP-like deliverables receive a third level review of the fractional data package.

The following data validator verified the information presented in this data report:

Signature: Name: Aubrey Kingsbury

Date: 05 OCT 2022 Title: Team Leader

Page 42 of 59 SDG: 594158

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: October 5, 2022

DMNN00101

DMNN001

Dominion Energy Services, Inc. Company:

Address: 120 Tredegar Street

Richmond, Virginia 23219

Contact: Kelly Hicks

Project: CCR Groundwater Monitoring - Level 1 Package

Client Sample ID: MW-FGD-16-2022Q3

Sample ID: 594158001

Matrix: GW

Collect Date: 20-SEP-22 16:46 Receive Date: 22-SEP-22

Client Collector:

Parameter	Qualifier	Result	DL	RL	Units	PF	DF Analyst Date	Time Batch	Method
Ion Chromatography									
EPA 300.0 Anions Lic	quid "As Recei	ved"							
Fluoride		0.330	0.0330	0.100	mg/L		1 HXC1 09/26/22	2 1920 2321486	1
Chloride		24.5	0.335	1.00	mg/L		5 HXC1 09/27/22	2 1233 2321486	2
Sulfate		48.9	0.665	2.00	mg/L		5		
Solids Analysis									
SM2540C TDS "As R	eceived"								
Total Dissolved Solids		193	2.38	10.0	mg/L		CH6 09/23/22	2 1526 2320549	3
The following Analyt	ical Methods v	vere performed:							
Method	Description	Į.			1	Analys	st Comments		

Method	Description
1	EPA 300.0
2	EPA 300.0
3	SM 2540C

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity **RL**: Reporting Limit

SQL: Sample Quantitation Limit MDC: Minimum Detectable Concentration

Page 44 of 59 SDG: 594158

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: October 5, 2022

Company: Dominion Energy Services, Inc.

Address: 120 Tredegar Street

Richmond, Virginia 23219

Contact: Kelly Hicks

Project: CCR Groundwater Monitoring - Level 1 Package

Client Sample ID: MW-FGD-17-2022Q3

Sample ID: 594158002

Matrix: GW

Collect Date: 19-SEP-22 17:00
Receive Date: 22-SEP-22
Collector: Client

Project: DMNN00101 Client ID: DMNN001

Parameter	Qualifier	Result	DL	RL	Units	PF	DF Anal	yst Date	Time Batch	Method
Ion Chromatography										
EPA 300.0 Anions Lie	quid "As Recei	ved"								
Fluoride	-	0.511	0.0330	0.100	mg/L		1 HXC	09/26/22	2050 2321486	1
Sulfate		15.9	0.133	0.400	mg/L		1			
Chloride		148	1.68	5.00	mg/L		25 HXC	09/27/22	1403 2321486	2
Solids Analysis										
SM2540C TDS "As R	deceived"									
Total Dissolved Solids		948	2.38	10.0	mg/L		CH6	09/23/22	1526 2320549	3
The following Analys	tical Methods v	vere performed:								
Method	Description				Α	nalys	t Commen	ts		

Method	Description
1	EPA 300.0
2	EPA 300.0
3	SM 2540C

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 45 of 59 SDG: 594158

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Analyst Comments

Report Date: October 5, 2022

DMNN00101

DMNN001

Company: Dominion Energy Services, Inc.

Address: 120 Tredegar Street

Richmond, Virginia 23219

Contact: Kelly Hicks

Project: CCR Groundwater Monitoring - Level 1 Package

Client Sample ID: MW-FGD-18-2022Q3

Sample ID: 594158003

Matrix: GW

Collect Date: 19-SEP-22 15:50 Receive Date: 22-SEP-22 Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF Ana	lyst Date	Time Batch	Method
Ion Chromatography										
EPA 300.0 Anions Li	quid "As Recei	ved"								
Fluoride		0.420	0.0330	0.100	mg/L		1 HXC	1 09/26/22	2120 2321486	1
Chloride		1750	26.8	80.0	mg/L		400 HXC	1 09/27/22	1432 2321486	2
Sulfate		175	53.2	160	mg/L		400			
Solids Analysis										
SM2540C TDS "As R	Received"									
Total Dissolved Solids		3720	2.38	10.0	mg/L		CH6	09/23/22	1526 2320549	3
The following Analy	tical Methods v	vere perform	ned:							

Method	Description	
1	EPA 300.0	
2	EPA 300.0	

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

SM 2540C

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 46 of 59 SDG: 594158

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Analyst Comments

Report Date: October 5, 2022

DMNN00101

DMNN001

Company: Dominion Energy Services, Inc.

Address: 120 Tredegar Street

Richmond, Virginia 23219

Contact: Kelly Hicks

Project: CCR Groundwater Monitoring - Level 1 Package

Client Sample ID: MW-FGD-19-2022Q3

Sample ID: 594158004

Matrix: GW

Collect Date: 19-SEP-22 16:58 Receive Date: 22-SEP-22 Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF Anal	yst Date	Time Batch	Method	
Ion Chromatography											
EPA 300.0 Anions Lic	quid "As Recei	ved"									
Fluoride	J	0.0963	0.0330	0.100	mg/L		1 HXC1	09/26/22	2149 2321486	1	
Chloride		704	6.70	20.0	mg/L		100 HXC1	09/27/22	1502 2321486	2	
Sulfate		58.2	13.3	40.0	mg/L		100				
Solids Analysis											
SM2540C TDS "As R	eceived"										
Total Dissolved Solids		1550	2.38	10.0	mg/L		CH6	09/23/22	1526 2320549	3	
The following Analytical Methods were performed:											

Method	Description
1	EPA 300.0
2	EPA 300.0
3	SM 2540C

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 47 of 59 SDG: 594158

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Project:

Client ID:

Certificate of Analysis

Report Date: October 5, 2022

DMNN00101

DMNN001

Company: Dominion Energy Services, Inc.

Address: 120 Tredegar Street

Richmond, Virginia 23219

Contact: Kelly Hicks

Project: CCR Groundwater Monitoring - Level 1 Package

Client Sample ID: MW-FGD-19D-2022Q3

Sample ID: 594158005 Matrix: GW

Matrix: GW

Collect Date: 19-SEP-22 15:58
Receive Date: 22-SEP-22
Collector: Client

Parameter	Oualifier	Result	DL	RL	Units	PF	DF Analyst Date		Time Batch		Method	
		resure			Cints			mary	st Bute	111110	Butch	
Ion Chromatograph	y											
EPA 300.0 Anions	Liquid "As Recei	ved"										
Fluoride		0.640	0.0330	0.100	mg/L		1 F	HXC1	09/26/22	2219 2	2321486	1
Chloride		600	6.70	20.0	mg/L		100 F	HXC1	09/27/22	1532 2	2321486	2
Sulfate		26.4	0.665	2.00	mg/L		5 F	HXC1	09/27/22	1602 2	2321486	3
Solids Analysis												
SM2540C TDS "As	Received"											
Total Dissolved Solids		1320	2.38	10.0	mg/L		(CH6	09/23/22	1526 2	2320549	4
The following Ana	lytical Methods v	vere performed:										

Method Description Analyst Comments

EPA 300.0 2 EPA 300.0 3 EPA 300.0

SM 2540C

Notes:

Column headers are defined as follows:

DF: Dilution Factor

DL: Detection Limit

MDA: Minimum Detectable Activity

Lc/LC: Critical Level

PF: Prep Factor

RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 48 of 59 SDG: 594158

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Analyst Comments

Report Date: October 5, 2022

DMNN00101

DMNN001

Company: Dominion Energy Services, Inc.

Address: 120 Tredegar Street

Richmond, Virginia 23219

Contact: Kelly Hicks

Project: CCR Groundwater Monitoring - Level 1 Package

Client Sample ID: MW-FGD-20AR-2022Q3

Sample ID: 594158006

Matrix: GW

Collect Date: 20-SEP-22 13:47 Receive Date: 22-SEP-22 Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF Analyst Date	Time Batch	Method
Ion Chromatography	7								
EPA 300.0 Anions L	iquid "As Recei	ved"							
Fluoride		0.184	0.0330	0.100	mg/L		1 HXC1 09/26/2	2 2249 2321486	1
Sulfate		10.5	0.133	0.400	mg/L		1		
Chloride		383	6.70	20.0	mg/L		100 HXC1 09/27/2	2 1632 2321486	2
Solids Analysis									
SM2540C TDS "As	Received"								
Total Dissolved Solids		1270	2.38	10.0	mg/L		CH6 09/23/2	2 1526 2320549	3
The following Anal	ytical Methods v	vere performed:							

Method	Description	
1	EPA 300.0	
2	EPA 300.0	
3	SM 2540C	

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 49 of 59 SDG: 594158

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: October 5, 2022

DMNN00101

DMNN001

Company: Dominion Energy Services, Inc.

Address: 120 Tredegar Street

Richmond, Virginia 23219

Contact: Kelly Hicks

Project: CCR Groundwater Monitoring - Level 1 Package

Client Sample ID: MW-FGD-21-2022Q3

Sample ID: 594158007

Matrix: GW

Collect Date: 21-SEP-22 08:53
Receive Date: 22-SEP-22
Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF Ana	lyst Date	Time Batch	Method
Ion Chromatography	<i>I</i>									
EPA 300.0 Anions L	Liquid "As Recei	ved"								
Chloride	_	3.01	0.0670	0.200	mg/L		1 HXC	1 09/26/22	2319 2321486	1
Fluoride	J	0.0470	0.0330	0.100	mg/L		1			
Sulfate		84.8	1.33	4.00	mg/L		10 HXC	1 09/27/22	1831 2321486	2
Solids Analysis										
SM2540C TDS "As	Received"									
Total Dissolved Solids		243	2.38	10.0	mg/L		CH6	09/23/22	1526 2320549	3
The following Analy	ytical Methods v	vere performed:								

Method Description Analyst Comments
1 EPA 300.0

2 EPA 300.0 3 SM 2540C

Notes:

Column headers are defined as follows:

DF: Dilution Factor

DL: Detection Limit

MDA: Minimum Detectable Activity

Lc/LC: Critical Level

PF: Prep Factor

RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 50 of 59 SDG: 594158

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: October 5, 2022

DMNN00101

DMNN001

Company: Dominion Energy Services, Inc.

Address: 120 Tredegar Street

Richmond, Virginia 23219

Contact: Kelly Hicks

Project: CCR Groundwater Monitoring - Level 1 Package

Client Sample ID: FBLK-WMS-FGD-22301

Sample ID: 594158008

Matrix: GW

Collect Date: 19-SEP-22 17:20 Receive Date: 22-SEP-22 Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF A	nalyst	Date	Time Batc	h Method
Ion Chromatography	,										
EPA 300.0 Anions L	iquid "As Recei	ved"									
Chloride	U	ND	0.0670	0.200	mg/L		1 H	XC1 09	/26/22	2349 23214	86 1
Fluoride	U	ND	0.0330	0.100	mg/L		1				
Sulfate	U	ND	0.133	0.400	mg/L		1				
Solids Analysis											
SM2540C TDS "As	Received"										
Total Dissolved Solids	U	ND	2.38	10.0	mg/L		C	H6 09	/23/22	1526 23205	49 2
The following Analy	ytical Methods v	vere performed:									

Method Description Analyst Comments

EPA 300.0 SM 2540C

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 51 of 59 SDG: 594158

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: October 5, 2022

DMNN00101

DMNN001

Company: Dominion Energy Services, Inc.

Address: 120 Tredegar Street

Richmond, Virginia 23219

Contact: Kelly Hicks

Project: CCR Groundwater Monitoring - Level 1 Package

Client Sample ID: FBLK-WMS-FGD-22302

Sample ID: 594158009

Matrix: GW

Collect Date: 21-SEP-22 09:00
Receive Date: 22-SEP-22
Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF Analyst	Date	Time Batch	Method
Ion Chromatography										
EPA 300.0 Anions Li	quid "As Recei	ved"								
Chloride	U	ND	0.0670	0.200	mg/L		1 HXC1 09	/27/22	0148 2321486	1
Fluoride	U	ND	0.0330	0.100	mg/L		1			
Sulfate	U	ND	0.133	0.400	mg/L		1			
Solids Analysis										
SM2540C TDS "As F	Received"									
Total Dissolved Solids	U	ND	2.38	10.0	mg/L		CH6 09	/27/22	1503 2321838	2
The following Analy	tical Methods v	vere performed:								
Method	Description				,	Analys	st Comments			

 Method
 Description

 1
 EPA 300.0

 2
 SM 2540C

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 52 of 59 SDG: 594158

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: October 5, 2022

09/26/22 1538 2321243

DMNN00101

DMNN001

CH6

Analyst Comments

Company: Dominion Energy Services, Inc.

Address: 120 Tredegar Street

Richmond, Virginia 23219

Contact: Kelly Hicks

Project: CCR Groundwater Monitoring - Level 1 Package

Client Sample ID: DU-WMS-FGD-22301

Sample ID: 594158010

Matrix: GW

Collect Date: 19-SEP-22 12:00
Receive Date: 22-SEP-22
Collector: Client

Oualifier DL RL Units Parameter Result PF DF Analyst Date Time Batch Method Ion Chromatography EPA 300.0 Anions Liquid "As Received" Fluoride 0.411 0.0330 0.100 mg/L HXC1 09/27/22 0218 2321486 1 400 HXC1 09/27/22 1901 2321486 Chloride 1800 26.8 80.0 mg/L 2

10.0

mg/L

2.38

Project:

Client ID:

Sulfate 177 53.2 160 mg/L 400 Solids Analysis

Total Dissolved Solids 3790

The following Analytical Methods were performed:

 Method
 Description

 1
 EPA 300.0

 2
 EPA 300.0

 3
 SM 2540C

SM2540C TDS "As Received"

Notes:

Column headers are defined as follows:

DF: Dilution Factor

DL: Detection Limit

MDA: Minimum Detectable Activity

Lc/LC: Critical Level

PF: Prep Factor

RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 53 of 59 SDG: 594158

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Report Date: October 5, 2022

Page 1 of 5

Dominion Energy Services, Inc.

120 Tredegar Street Richmond, Virginia

Contact: Kelly Hicks

Workorder: 594158

Parmname	NOM	Sample Qual	QC	Units	RPD%	REC%	Range Anlst	Date Time
Ion Chromatography Batch 2321486 ———								
QC1205201217 594149004 DUP Chloride		19.4	19.4	mg/L	0.144		(0%-20%) HXC1	09/27/22 08:16
Fluoride		0.385	0.388	mg/L	0.957 ^		(+/2)	09/26/22 15:51
Sulfate		136	137	mg/L	0.176		(0%-20%)	09/27/22 08:16
QC1205201218 594158001 DUP Chloride		24.5	24.4	mg/L	0.0879		(0%-20%)	09/27/22 13:03
Fluoride		0.330	0.326	mg/L	1.16 ^		(+/2)	09/26/22 19:50
Sulfate		48.9	48.8	mg/L	0.0235		(0%-20%)	09/27/22 13:03
QC1205201216 LCS Chloride	5.00		4.66	mg/L		93.3	(90%-110%)	09/26/22 13:22
Fluoride	2.50		2.46	mg/L		98.5	(90%-110%)	
Sulfate	10.0		9.45	mg/L		94.5	(90%-110%)	
QC1205201215 MB Chloride		U	ND	mg/L				09/26/22 12:52
Fluoride		U	ND	mg/L				
Sulfate		U	ND	mg/L				
QC1205201219 594149004 PS Chloride	5.00	1.94	6.82	mg/L		97.7	(90%-110%)	09/27/22 08:46

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 594158 Page 2 of 5 **Parmname** NOM Sample Qual \mathbf{QC} Units RPD% REC% Range Anlst Date Time Ion Chromatography Batch 2321486 Fluoride 2.50 0.385 2.83 mg/L 97.8 (90%-110%) HXC1 09/26/22 16:21 Sulfate 10.0 13.6 24.2 mg/L 106 (90%-110%) 09/27/22 08:46 QC1205201220 594158001 PS Chloride 10.4 109 09/27/22 13:33 5.00 4.89 (90%-110%) mg/L Fluoride 2.50 0.330 2.78 mg/L 98.1 (90%-110%) 09/26/22 20:20 Sulfate 10.0 9.77 20.2 105 (90%-110%) 09/27/22 13:33 mg/L**Solids Analysis** 2320549 QC1205199280 594064010 DUP 3370 3340 **Total Dissolved Solids** mg/L 0.893 (0%-5%)CH6 09/23/22 15:26 QC1205199281 594126001 DUP 237 09/23/22 15:26 **Total Dissolved Solids** 226 mg/L 4.75 (0%-5%)QC1205199282 594149004 DUP 710 705 Total Dissolved Solids mg/L 0.707 (0%-5%)09/23/22 15:26 OC1205199283 594158001 DUP 193 **Total Dissolved Solids** 188 2.62 (0%-5%)09/23/22 15:26 mg/L QC1205199279 LCS 300 302 101 (95%-105%) 09/23/22 15:26 **Total Dissolved Solids** mg/L QC1205199278 MB Total Dissolved Solids U ND 09/23/22 15:26

mg/L

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 594158 Page 3 of 5

Parmname		NOM	Sample Qual	QC	Units	RPD%	REC%	Range An	ılst	Date Time
Solids Analysis										
Batch 2321243 QC1205200685 593965006 Total Dissolved Solids	DUP		248	252	mg/L	1.6		(0%-5%)	СН6 0	09/26/22 15:38
QC1205200686 594163006 Total Dissolved Solids	DUP		1430	1420	mg/L	0.422		(0%-5%)	0	09/26/22 15:38
QC1205201660 594016001 Total Dissolved Solids	DUP		1860	1870	mg/L	0.537		(0%-5%)	0	09/26/22 15:38
QC1205201685 593920002 Total Dissolved Solids	DUP		183	177	mg/L	3.33		(0%-5%)	O	09/26/22 15:38
QC1205200683 LCS Total Dissolved Solids		300		302	mg/L		101	(95%-105%)	0	09/26/22 15:38
QC1205200682 MB Total Dissolved Solids			U	ND	mg/L				0	09/26/22 15:38
Batch 2321838										
QC1205201919 593896001 Total Dissolved Solids	DUP		117	120	mg/L	2.53		(0%-5%)	СН6 0	09/27/22 15:03
QC1205201920 593969003 Total Dissolved Solids	DUP		227	206	mg/L	9.7*		(0%-5%)	0	09/27/22 15:03
QC1205201921 594040002 Total Dissolved Solids	DUP		175	165	mg/L	5.88*		(0%-5%)	0	09/27/22 15:03
QC1205201922 594047006 Total Dissolved Solids	DUP		730	734	mg/L	0.546		(0%-5%)	0	09/27/22 15:03
QC1205201923 594161004 Total Dissolved Solids	DUP		612	611	mg/L	0.164		(0%-5%)	0	09/27/22 15:03

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 594158 Page 4 of 5 Parmname **NOM** Sample Qual \mathbf{QC} Units RPD% REC% Range Anlst Date Time Solids Analysis 2321838 Batch OC1205201918 LCS 300 302 101 Total Dissolved Solids mg/L (95%-105%) CH6 09/27/22 15:03 QC1205201917 U ND 09/27/22 15:03 **Total Dissolved Solids** mg/L

Notes:

The Qualifiers in this report are defined as follows:

- < Result is less than value reported
- > Result is greater than value reported
- B The target analyte was detected in the associated blank.
- E General Chemistry--Concentration of the target analyte exceeds the instrument calibration range
- H Analytical holding time was exceeded
- J See case narrative for an explanation
- J Value is estimated
- N/A RPD or %Recovery limits do not apply.
- N1 See case narrative
- ND Analyte concentration is not detected above the detection limit
- NJ Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Q One or more quality control criteria have not been met. Refer to the applicable narrative or DER.
- R Per section 9.3.4.1 of Method 1664 Revision B, due to matrix spike recovery issues, this result may not be reported or used for regulatory compliance purposes.
- R Sample results are rejected
- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Z Paint Filter Test--Particulates passed through the filter, however no free liquids were observed.
- ^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL. Qualifier Not Applicable for Radiochemistry.
- d 5-day BOD--The 2:1 depletion requirement was not met for this sample
- e 5-day BOD--Test replicates show more than 30% difference between high and low values. The data is qualified per the method and can be used for reporting purposes
- h Preparation or preservation holding time was exceeded

Page 58 of 59 SDG: 594158

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

594158 Page 5 of 5

-Parmname NOM Sample Qual \mathbf{QC} Units RPD% REC% Range Anlst Date Time

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more or %RPD not applicable.

Workorder:

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Page 59 of 59 SDG: 594158

[^] The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where the duplicate value is less than 5X the RL, a control limit of +/- the RL is used to evaluate the DUP result.

^{*} Indicates that a Quality Control parameter was not within specifications.

This quality assurance (QA) review is based upon an examination of the data generated from the analyses of the samples collected as part of:

Williams Power Station Groundwater Sampling Samples Collected between: 9/19/2022 and 9/22/2022

This review was performed with guidance from the associated US EPA data validation guidelines and in accordance with the Quality Assurance Program Plan. These validation guidance documents specifically address analyses performed in accordance with the Contract Laboratory Program (CLP) analytical methods and are not completely applicable to the type of analyses and analytical protocols performed for the US EPA, SW-846, and Standard Methods utilized by the laboratory for these samples. Environmental Standards, Inc. (Environmental Standards) used professional judgment to determine the usability of the analytical results and compliance relative to the US EPA, SW-846, and Standard Methods utilized by the laboratory. This QA review was performed on the data associated with Job Number:

594158

The findings offered in this report are based on a review of holding times and preservation, method blank results, field blank results, filter blank results, equipment blank results, tubing blank results, matrix spike/matrix spike duplicate recoveries and precision, laboratory control sample/laboratory control sample duplicate recoveries and precision, laboratory and field duplicate precision, total and dissolved results comparisons, and/or positive results between the method detection limit and quantitation limit.

The following results were qualified based on the data verification effort:

Sample	Location	Sample Type	Method	Anayte	T/D	Result	Qual	Reason Code(s)	MDL	QL	Uncertainty	Unit
MW-FGD-19-2022Q3	MW-FGD- 19	N	EPA 300.0	Fluoride	N	0.0963	J	RL	0.0330	0.100		mg/L
MW-FGD-21-2022Q3	MW-FGD- 21	N	EPA 300.0	Fluoride	N	0.0470	J	RL	0.0330	0.100		mg/L
FBLK-WMS-FGD-22301	Field Blank	FB	EPA 200.8	Boron	Т	4.60	J	RL	4.00	15.0		ug/L
FBLK-WMS-FGD-22301	Field Blank	FB	EPA 200.8	Calcium	Т	85.0	J	RL	30.0	100		ug/L
FBLK-WMS-FGD-22302	Field Blank	FB	EPA 200.8	Boron	Т	4.24	J	RL	4.00	15.0		ug/L

Data Qua	Data Qualifiers The condition was not detected above the level of the consideration limits.											
U	The analyte was not detected above the level of the sample reporting limit.											
J	Quantitation is approximate due to limitations identified during data validation.											
J+	The result is an estimated quantity; the result may be biased high.											
J-	The result is an estimated quantity; the result may be biased low.											
UJ	The analyte was not detected; the reporting limit is approximate and may be inaccurate or imprecise.											
R	Unreliable positive result; analyte may or may not be present in sample.											
Reason C	odes and Explanations											
BE	Equipment blank contamination.											
BF	Field blank contamination.											
BL	Laboratory blank contamination.											
BN	Negative laboratory blank contamination.											
FD	Field duplicate imprecision.											
FG	Total versus Dissolved Imprecision.											
Н	Holding time exceeded.											
L	LCS and LCSD recoveries outside of acceptance limits											
LD	Laboratory duplicate imprecision.											
LP	LCS/LCSD imprecision.											
М	MS and MSD recoveries outside of acceptance limits											

MP	MS/MSD imprecision.
Q	Chemical Preservation issue.
RL	Reported Results between the MDL and QL.
S	Radium-226+228 flagged due to reporting protocol for combined results
Т	Temperature preservation issue.
X	Percent solids < 50%.
Y	Chemical yield outside of acceptance limits
ZZ	Other

				Lab Sample ID	594158001										
				Sys Sample Code	MW-FGD-16-2	202203									
														—	
				Sample Name	MW-FGD-16-2	2022Q3									
				Sample Date	9/20/2022 4:46	6:00 PM									
				Location	WMS-MW-FG	D-16 / M	W-FGD-16								
				Sample Type	N										
				Matrix	GW										
				Parent Sample											
Analytic Method	Chemical Name	CAS Rn	Fraction	Result Unit	Final Result	Final Qual	Reason code	Uncertainty	Final MDL	Final RL	Final QL	Final Detect	Final Report		Basis
EPA 200.8	Boron	7440-42-8	Т	ug/L	51.4				4.00	4.00	15.0	Υ	Yes	1	NA
	Calcium	7440-70-2	Т	ug/L	15100				30.0	30.0	100	Υ	Yes	1	NA
EPA 300.0	Fluoride	16984-48-8	N	mg/L	0.330				0.0330	0.0330	0.100	Υ	Yes	1	NA
EPA 300.0	Chloride	16887-00-6	N	mg/L	24.5				0.335	0.335	1.00	Υ	Yes	5	NA
	Sulfate	14808-79-8	N	mg/L	48.9				0.665	0.665	2.00	Υ	Yes	5	NA
SM 2540C	Total Dissolved Solids	TDS	N	mg/L	193				2.38	2.38	10.0	Υ	Yes	1	NA

Report Generated: 10/7/2022 3:07:36 PM Page: 1 of 10

				Lab Sample ID	D 594158002										
				Sys Sample Code	MW-FGD-17-2	2022Q3									
				Sample Name	MW-FGD-17-2	2022Q3									
				Sample Date	9/19/2022 5:00	0:00 PM									
				Location	WMS-MW-FG	iD-17 / M	IW-FGD-17								
				Sample Type	N										
				Matrix	GW										
				Parent Sample											
Analytic Method	Chemical Name	CAS Rn	Fraction	Result Unit	Final Result	Final Qual	Reason code	Uncertainty	Final MDL	Final RL	Final QL	Final Detect	Final Report	DF	Basis
EPA 200.8	Boron	7440-42-8	Т	ug/L	256				20.0	20.0	75.0	Υ	Yes	5	NA
	Calcium	7440-70-2	Т	ug/L	151000				150	150	500	Υ	Yes	5	NA
EPA 300.0	Fluoride	16984-48-8	N	mg/L	0.511				0.0330	0.0330	0.100	Υ	Yes	1	NA
	Sulfate	14808-79-8	N	mg/L	15.9				0.133	0.133	0.400	Υ	Yes	1	NA
EPA 300.0	Chloride	16887-00-6	N	mg/L	148				1.68	1.68	5.00	Υ	Yes	25	NA
SM 2540C	Total Dissolved Solids	TDS	N	mg/L	948				2.38	2.38	10.0	Υ	Yes	1	NA

Report Generated: 10/7/2022 3:07:36 PM Page: 2 of 10

				Lab Sample ID	D 594158003										
				Sys Sample Code	MW-FGD-18-2	2022Q3									
				Sample Name	MW-FGD-18-2	2022Q3									
				Sample Date	9/19/2022 3:50	0:00 PM									
				Location	WMS-MW-FG	D-18 / N	1W-FGD-18								
				Sample Type	N										
				Matrix	GW										
				Parent Sample											
Analytic Method	Chemical Name	CAS Rn	Fraction	Result Unit	Final Result	Final Qual	Reason code	Uncertainty	Final MDL	Final RL	Final QL	Final Detect	Final Report		Basis
EPA 200.8	Boron	7440-42-8	Т	ug/L	6980				200	200	750	Υ	Yes	50	NA
	Calcium	7440-70-2	Т	ug/L	391000				1500	1500	5000	Υ	Yes	50	NA
EPA 300.0	Fluoride	16984-48-8	N	mg/L	0.420				0.0330	0.0330	0.100	Υ	Yes	1	NA
EPA 300.0	Chloride	16887-00-6	N	mg/L	1750				26.8	26.8	80.0	Υ	Yes	400	NA
	Sulfate	14808-79-8	N	mg/L	175				53.2	53.2	160	Υ	Yes	400	NA
SM 2540C	Total Dissolved Solids	TDS	N	mg/L	3720				2.38	2.38	10.0	Y	Yes	1	NA

Report Generated: 10/7/2022 3:07:36 PM Page: 3 of 10

				Lab Sample ID	D 594158004										
				Lab Sample ID	594158004										
				Sys Sample Code	MW-FGD-19-2	2022Q3									
				Sample Name	MW-FGD-19-2	2022Q3									
				Sample Date	9/19/2022 4:58	3:00 PM									
				Location	WMS-MW-FG	D-19 / N	IW-FGD-19								
				Sample Type	N										
				Matrix	GW										
				Parent Sample											
Analytic Method	Chemical Name	CAS Rn	Fraction	Result Unit	Final Result	Final Qual	Reason code	Uncertainty	Final MDL	Final RL	Final QL	Final Detect	Final Report		Basis
EPA 200.8	Boron	7440-42-8	Т	ug/L	172				20.0	20.0	75.0	Υ	Yes	5	NA
	Calcium	7440-70-2	Т	ug/L	163000				150	150	500	Υ	Yes	5	NA
EPA 300.0	Fluoride	16984-48-8	N	mg/L	0.0963	J	RL		0.0330	0.0330	0.100	Υ	Yes	1	NA
EPA 300.0	Chloride	16887-00-6	N	mg/L	704				6.70	6.70	20.0	Υ	Yes	100	NA
	Sulfate	14808-79-8	N	mg/L	58.2				13.3	13.3	40.0	Υ	Yes	100	NA
SM 2540C	Total Dissolved Solids	TDS	N	mg/L	1550				2.38	2.38	10.0	Υ	Yes	1	NA

Report Generated: 10/7/2022 3:07:36 PM Page: 4 of 10

				Lab Sample ID	594158005										
				Sys Sample Code	MW-FGD-19D	-2022Q	3								
				Sample Name	MW-FGD-19D	-2022Q	3								
				Sample Date	9/19/2022 3:58	3:00 PM									
				Location	WMS-MW-FG	D-19D /	MW-FGD-19D								
				Sample Type	N										
				Matrix	GW										
				Parent Sample											
Analytic Method	Chemical Name	CAS Rn	Fraction	Result Unit	Final Result	Final Qual	Reason code	Uncertainty	Final MDL	Final RL	Final QL	Final Detect	Final Report		Basis
EPA 200.8	Boron	7440-42-8	Т	ug/L	1610				40.0	40.0	150	Υ	Yes	10	NA
	Calcium	7440-70-2	Т	ug/L	112000				300	300	1000	Υ	Yes	10	NA
EPA 300.0	Fluoride	16984-48-8	N	mg/L	0.640				0.0330	0.0330	0.100	Υ	Yes	1	NA
EPA 300.0	Chloride	16887-00-6	N	mg/L	600				6.70	6.70	20.0	Υ	Yes	100	NA
	Sulfate	14808-79-8	N	mg/L	26.4				0.665	0.665	2.00	Υ	Yes	5	NA
SM 2540C	Total Dissolved Solids	TDS	N	mg/L	1320				2.38	2.38	10.0	Y	Yes	1	NA

Report Generated: 10/7/2022 3:07:36 PM Page: 5 of 10

				Lab Sample ID	ID 594158006										
				Sys Sample Code	MW-FGD-20A	R-20220	Q3								
				Sample Name	MW-FGD-20A	R-20220	Q3								
				Sample Date	9/20/2022 1:4	7:00 PM									
				Location	WMS-MW-FG	D-20AR	/ MW-FGD-20	AR							
				Sample Type	N										
				Matrix	GW										
				Parent Sample											
Analytic Method	Chemical Name	CAS Rn	Fraction	Result Unit	Final Result	Final Qual	Reason code	Uncertainty	Final MDL	Final RL	Final QL	Final Detect	Final Report	DF	Basis
EPA 200.8	Boron	7440-42-8	Т	ug/L	1710				40.0	40.0	150	Υ	Yes	10	NA
	Calcium	7440-70-2	Т	ug/L	172000				300	300	1000	Υ	Yes	10	NA
EPA 300.0	Fluoride	16984-48-8	N	mg/L	0.184				0.0330	0.0330	0.100	Y	Yes	1	NA
	Sulfate	14808-79-8	N	mg/L	10.5				0.133	0.133	0.400	Υ	Yes	1	NA
EPA 300.0	Chloride	16887-00-6	N	mg/L	383				6.70	6.70	20.0	Υ	Yes	100	NA
SM 2540C	Total Dissolved Solids	TDS	N	mg/L	1270				2.38	2.38	10.0	Υ	Yes	1	NA

Report Generated: 10/7/2022 3:07:36 PM Page: 6 of 10

				Lab Sample ID	594158007										
				Sys Sample Code	MW-FGD-21-2	2022Q3									
				Sample Name	MW-FGD-21-2	2022Q3									
				Sample Date	9/21/2022 8:53	3:00 AM									
				Location	WMS-MW-FG	D-21 / M	W-FGD-21								
				Sample Type	N										
				Matrix	GW										
				Parent Sample											
Analytic Method	Chemical Name	CAS Rn	Fraction	Result Unit	Final Result	Final Qual	Reason code	Uncertainty	Final MDL	Final RL	Final QL	Final Detect	Final Report		Basis
EPA 200.8	Boron	7440-42-8	Т	ug/L	32.8				4.00	4.00	15.0	Υ	Yes	1	NA
	Calcium	7440-70-2	Т	ug/L	45400				30.0	30.0	100	Υ	Yes	1	NA
EPA 300.0	Chloride	16887-00-6	N	mg/L	3.01				0.0670	0.0670	0.200	Υ	Yes	1	NA
	Fluoride	16984-48-8	N	mg/L	0.0470	J	RL		0.0330	0.0330	0.100	Υ	Yes	1	NA
EPA 300.0	Sulfate	14808-79-8	N	mg/L	84.8				1.33	1.33	4.00	Υ	Yes	10	NA
SM 2540C	Total Dissolved Solids	TDS	N	mg/L	243				2.38	2.38	10.0	Y	Yes	1	NA

Report Generated: 10/7/2022 3:07:36 PM Page: 7 of 10

				Lab Sample ID	594158008										
				Sys Sample Code	FBLK-WMS-FGD-22301										
				Sample Name	FBLK-WMS-FGD-22301										
				Sample Date	9/19/2022 5:20	0:00 PM									
				Location	WMS-FB / Field Blank										
				Sample Type	FB										
				Matrix	AQ										
				Parent Sample											
Analytic Method	Chemical Name	CAS Rn	Fraction	Result Unit	Final Result	Final Qual	Reason code	Uncertainty	Final MDL	Final RL	Final QL	Final Detect	Final Report		Basis
EPA 200.8	Boron	7440-42-8	Т	ug/L	4.60	J	RL		4.00	4.00	15.0	Υ	Yes	1	NA
	Calcium	7440-70-2	Т	ug/L	85.0	J	RL		30.0	30.0	100	Υ	Yes	1	NA
EPA 300.0	Chloride	16887-00-6	N	mg/L		U			0.0670	0.0670	0.200	N	Yes	1	NA
	Fluoride	16984-48-8	N	mg/L		U			0.0330	0.0330	0.100	N	Yes	1	NA
	Sulfate	14808-79-8	N	mg/L		U			0.133	0.133	0.400	N	Yes	1	NA
						_									

Report Generated: 10/7/2022 3:07:36 PM Page: 8 of 10

Lab Sample ID 594158009 Sys Sample Code FBLK-WMS-FGD-22302 Sample Name FBLK-WMS-FGD-22302 Sample Date 9/21/2022 9:00:00 AM Location WMS-FB / Field Blank Sample Type FΒ

_	_	-
Parent	Sam	nle

Matrix

AQ

				i arent Sample											
Analytic Method	Chemical Name	CAS Rn	Fraction	Result Unit	Final Result	Final Qual	Reason code	Uncertainty	Final MDL	Final RL	Final QL	Final Detect	Final Report		Basis
EPA 200.8	Boron	7440-42-8	Т	ug/L	4.24	J	RL		4.00	4.00	15.0	Υ	Yes	1	NA
	Calcium	7440-70-2	Т	ug/L	142				30.0	30.0	100	Υ	Yes	1	NA
EPA 300.0	Chloride	16887-00-6	N	mg/L		U			0.0670	0.0670	0.200	N	Yes	1	NA
	Fluoride	16984-48-8	N	mg/L		U			0.0330	0.0330	0.100	N	Yes	1	NA
	Sulfate	14808-79-8	N	mg/L		U			0.133	0.133	0.400	N	Yes	1	NA
SM 2540C	Total Dissolved Solids	TDS	N	mg/L		U			2.38	2.38	10.0	N	Yes	1	NA

Report Generated: 10/7/2022 3:07:36 PM Page: 9 of 10

	Lab Sample ID	594158010	58010										
	Sys Sample Code	DU-WMS-FGE	NMS-FGD-22301										
	Sample Name	DU-WMS-FGE	0-22301										
	Sample Date	9/19/2022 12:0	00:00 PN	Л									
	Location	WMS-MW-FG	IS-MW-FGD-18 / MW-FGD-18										
	Sample Type	FD											
	Matrix	GW											
	Parent Sample	MW-FGD-18-2	2022Q3										
tion	Result Unit	Final Result	Final Qual	Reason code	Uncertainty	Final MDL	Final RL	Final QL	Final Detect	Final Report	DF	Basis	
	ug/L	6930				200	200	750	Υ	Yes	50	NA	
	ug/L	391000				1500	1500	5000	Υ	Yes	50	NA	
	mg/L	0.411				0.0330	0.0330	0.100	Υ	Yes	1	NA	
									-				

				Parent Sample	MMA-LGD-19-7	2022Q3									
Analytic Method	Chemical Name	CAS Rn	Fraction	Result Unit	Final Result	Final Qual	Reason code	Uncertainty	Final MDL	Final RL	Final QL	Final Detect	Final Report		Basis
EPA 200.8	Boron	7440-42-8	Т	ug/L	6930				200	200	750	Υ	Yes	50	NA
	Calcium	7440-70-2	Т	ug/L	391000				1500	1500	5000	Υ	Yes	50	NA
EPA 300.0	Fluoride	16984-48-8	N	mg/L	0.411				0.0330	0.0330	0.100	Υ	Yes	1	NA
EPA 300.0	Chloride	16887-00-6	N	mg/L	1800				26.8	26.8	80.0	Υ	Yes	400	NA
	Sulfate	14808-79-8	N	mg/L	177				53.2	53.2	160	Υ	Yes	400	NA
SM 2540C	Total Dissolved Solids	TDS	N	mg/L	3790				2.38	2.38	10.0	Y	Yes	1	NA

Report Generated: 10/7/2022 3:07:36 PM Page: 10 of 10

Appendix D First Semiannual 2022 Detection Monitoring Statistical Evaluation

DOMINION ENERGY SOUTH CAROLINA

WILLIAMS STATION NEW FGD POND

SEMIANNUAL DETECTION MONITORING

BERKELEY COUNTY, SOUTH CAROLINA

CCR GROUNDWATER DETECTION MONITORING STATISTICAL ANALYSIS REPORT

For the

March 2022 Sampling Event

July 2022

Joyce Peterson, P.E.

Senior Environmental Engineer

Richard A. Mayer Jr., P.6

Project Manager

TRC Environmental Corporation | Dominion Energy South Carolina Williams Station New FGD Pond – Detection Monitoring

Table of Contents

Statis	tical Analysis Report	. 1
	Groundwater Sampling	. 1
	Statistical Analysis	

List of Tables

- Table 1 Background Threshold Values for 2021 and 2022
- Table 2 March 2022 Downgradient Results and Potential SSIs

Statistical Analysis Report

Groundwater Sampling

TRC Environmental Corporation (TRC) is providing this Statistically Significant Increases (SSI) notification for the Williams Station New FGD Pond for the initial semiannual detection monitoring event. Samples were collected on March $22^{nd} - 23^{rd}$, 2022. The final laboratory analytical data packages for the event were received on April 4^{th} , 2022, and the data validation report was received on April 8^{th} , 2022. This report addresses results from Detection Monitoring wells MW-FGD-17, MW-FGD-18, MW-FGD-19, MW-FGD-19D, and MW-FGD-20AR. Background wells for the New FGD Pond include MW-FGD-16 and MW-FGD-21.

Statistical Analysis

Statistically Significant Level (SSL) exceedances above background concentrations include the following:

- MW-FGD-17: boron, calcium, chloride, pH, sulfate, and total dissolved solids (TDS)
- MW-FGD-18: boron, calcium, chloride, pH, sulfate, and TDS
- MW-FGD-19: boron, calcium, chloride, and TDS
- MW-FGD-19D: boron, calcium, chloride, fluoride, pH, and TDS
- MW-FGD-20AR: boron, calcium, chloride, pH, sulfate, and TDS

The New FGD Pond opened in April 2021 in accordance with the CCR Rule requirements. TRC conducted statistical evaluation of eight baseline groundwater sampling events that were collected from the New FGD Pond monitoring wells between April 28, 2021, and September 23, 2021. The samples were analyzed for the CCR Rule Appendix III and Appendix IV parameters. The data from the baseline events were statically evaluated to determine the background threshold values (BTVs) for Appendix III constituents and groundwater protection standards (GWPS) for Appendix IV constituents. A *Baseline Statistical Evaluation Report* presenting the results of the baseline evaluation was prepared by TRC dated January 2022.

Table 1 presents BTVs calculated based on the background data. **Table 2** presents the data set for the initial detection monitoring event and highlights results that are potential SSIs. An Alternative Source Demonstration (ASD) should be prepared for these potential SSIs.

Table 1 Background Threshold Values

Table 1 Background Threshold Values Dominion Energy South Carolina Williams Station New FGD Pond

CONSTITUENT	PERCENT DETECTED	DISTRIBUTION	TREND	BACKGROUND THRESHOLD VALUE	BASIS
Boron (mg/L)	100	Normal	None	0.0667	95% UPL (k = 20)
Calcium (mg/L)	100	Nonnormal	None	41.7	95% USL
Chloride (mg/L)	100	Nonnormal	None	33.3	95% USL
Fluoride (mg/L)	100	Normal	None	0.646	95% UPL (k = 20)
рН (s.u.)	100	Nonnormal	None	4.67 - 5.82	Min - Max result
Sulfate (mg/L	100	Nonnormal	None	89.2	95% USL
TDS (mg/L)	100	Normal	None	329	95% UPL (k = 20)

mg/L = milligrams per liter.

pH expressed in standard units (s.u.).

UPL = upper prediction limit.

USL = upper statistical limit.

Table 2 March 2022 Downgradient Results and Potential SSIs

Table 2

March 2022 Downgradient Results and Potential SSIs

Dominion Energy South Carolina

Williams Station New FGD Pond

			CONSTITUE	NT / BTV / RESUL	T (mg/L except as noted) ^[1]							
WELL	BORON	CALCIUM	CHLORIDE	FLUORIDE	рН	SULFATE	TDS					
	0.0667	41.7	33.3	0.646	4.67 - 5.82	89.2	329					
BACKGROUND WELLS												
MW-FGD-16	0.0390	12.8	29.9	0.300	5.01	41.0	199					
MW-FGD-21	0.0229	45.2	3.26	0.0767 J	5.72	94.2	236					
DOWNGRADIENT WEL	LS											
MW-FGD-17	1.250	216	323	0.423	6.16	92.6	1,250					
MW-FGD-18	7.240	421	1,950	0.537	6.44	169	3,850					
MW-FGD-19	0.194	132	755	0.120	5.60	35.6	1,870					
MW-FGD-19D	1.340	105	570	0.659	6.62	19.2	1,270					
MW-FGD-20AR	3.430	266	601	0.256	6.47	178	1700					

Shaded cells indicate an SSI.

^[1] pH expressed in standard units (s.u.).

J Estimated concentration.

Appendix E Second Semiannual 2022 Detection Monitoring Statistical Evaluation

DOMINION ENERGY SOUTH CAROLINA

WILLIAMS STATION NEW FGD POND

SEMIANNUAL DETECTION MONITORING

BERKELEY COUNTY, SOUTH CAROLINA

CCR GROUNDWATER DETECTION MONITORING STATISTICAL ANALYSIS REPORT

For the

September 2022 Sampling Event

December 2022

Joyce Peterson, P.E.

Senior Environmental Engineer

Richard A. Mayer Jr., P.G.

Project Manager

TRC Environmental Corporation | Dominion Energy South Carolina Williams Station New FGD Pond – Detection Monitoring

Table of Contents

Statist	tical Analysis Report	. 1
	Groundwater Sampling	
	Statistical Analysis	

List of Tables

- Table 1 Background Threshold Values for 2021 and 2022
- Table 2 September 2022 Downgradient Results and Potential SSIs

Statistical Analysis Report

Groundwater Sampling

TRC Environmental Corporation (TRC) is providing this Statistically Significant Increases (SSI) notification for the Williams Station New FGD Pond for the second semiannual detection monitoring event. Samples were collected on September 19th – 21st, 2022. The final laboratory analytical data packages for the event were received on October 5th, 2022, and the data validation report was received on October 7th, 2022. This report addresses results from Detection Monitoring wells MW-FGD-17, MW-FGD-18, MW-FGD-19D, and MW-FGD-20AR. Background wells for the New FGD Pond include MW-FGD-16 and MW-FGD-21.

Statistical Analysis

Statistically Significant Level (SSL) exceedances above background concentrations include the following:

- MW-FGD-17: boron, calcium, chloride, pH, and total dissolved solids (TDS)
- MW-FGD-18: boron, calcium, chloride, pH, sulfate, and TDS
- MW-FGD-19: boron, calcium, chloride, and TDS
- MW-FGD-19D: boron, calcium, chloride, pH, and TDS
- MW-FGD-20AR: boron, calcium, chloride, pH, and TDS

The New FGD Pond opened in April 2021 in accordance with the CCR Rule requirements. TRC conducted statistical evaluation of eight baseline groundwater sampling events that were collected from the New FGD Pond monitoring wells between April 28, 2021, and September 23, 2021. The samples were analyzed for the CCR Rule Appendix III and Appendix IV parameters. The data from the baseline events were statically evaluated to determine the background threshold values (BTVs) for Appendix III constituents and groundwater protection standards (GWPS) for Appendix IV constituents. A *Baseline Statistical Evaluation Report* presenting the results of the baseline evaluation was prepared by TRC dated January 2022 and included the baseline evaluation in the 2021 Annual Report.

Table 1 presents BTVs calculated based on the background data. **Table 2** presents the data set for the second detection monitoring event and highlights results that are potential SSIs.

DESC conducted a Well Network Evaluation in August 2022 to reevaluate the monitoring system for this CCR unit. The following recommendations were presented based on the Evaluation:

 Replace the current background monitoring wells (MW-FGD-16 and MW-FGD-21) with two new monitoring wells placed directly upgradient of the New FGD Pond.

- Remove MW-FGD-19 from the existing CCR well network as this well may intercept groundwater from clay fill material.
- Install a new downgradient monitoring well along the southern edge of the CCR Unit boundary.

The new wells will be installed during December 2022. Meanwhile, an Alternative Source Demonstration (ASD) should be prepared for the potential SSIs.

Table 1 Background Threshold Values

Table 1 Background Threshold Values Dominion Energy South Carolina Williams Station New FGD Pond

CONSTITUENT	PERCENT DETECTED	DISTRIBUTION	TREND	BACKGROUND THRESHOLD VALUE	BASIS
Boron (mg/L)	100	Normal	None	0.0667	95% UPL (k = 20)
Calcium (mg/L)	100	Nonnormal	None	41.7	95% USL
Chloride (mg/L)	100	Nonnormal	None	33.3	95% USL
Fluoride (mg/L)	100	Normal	None	0.646	95% UPL (k = 20)
рН (s.u.)	100	Nonnormal	None	4.67 - 5.82	Min - Max result
Sulfate (mg/L	100	Nonnormal	None	89.2	95% USL
TDS (mg/L)	100	Normal	None	329	95% UPL (k = 20)

mg/L = milligrams per liter.

pH expressed in standard units (s.u.).

UPL = upper prediction limit.

USL = upper statistical limit.

Table 2 September 2022 Downgradient Results and Potential SSIs

Table 2
September 2022 Downgradient Results and Potential SSIs
Dominion Energy South Carolina
Williams Station New FGD Pond

			CONSTITUENT / B	TV / RESULT (mg/L	except as noted) ^[1]							
WELL	BORON	CALCIUM	CHLORIDE	FLUORIDE	рН	SULFATE	TDS					
	0.0667	41.7	33.3	0.646	4.67 - 5.82	89.2	329					
BACKGROUND WELLS												
MW-FGD-16	0.0514	15.1	24.5	0.330	4.80	48.9	193					
MW-FGD-21	0.0328	45.4	3.01	0.047 J	5.32	84.8	243					
DOWNGRADIENT WEL	LS											
MW-FGD-17	0.256	151	148	0.511	6.18	15.9	948					
MW-FGD-18	6.980	391	1,750	0.420	6.11	175	3,720					
MW-FGD-19	0.172	163	704	0.096	5.47	58.2	1,550					
MW-FGD-19D	1.610	112	600	0.64	6.85	26.4	1,320					
MW-FGD-20AR	1.710	172	383	0.184	6.47	10.5	1,270					

Shaded cells indicate an SSI.

^[1] pH expressed in standard units (s.u.).

J Estimated concentration.